Zhi-Yong Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7472905/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nature Energy, 2016, 1, .	19.8	1,979
2	Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires. Science, 2002, 297, 237-240.	6.0	1,778
3	Nanostructured artificial nacre. Nature Materials, 2003, 2, 413-418.	13.3	1,362
4	Biomedical Applications of Layer-by-Layer Assembly: From Biomimetics to Tissue Engineering. Advanced Materials, 2006, 18, 3203-3224.	11.1	1,214
5	Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature, 2016, 539, 76-80.	13.7	1,201
6	Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nature Communications, 2015, 6, 6430.	5.8	848
7	Self-Assembly of CdTe Nanocrystals into Free-Floating Sheets. Science, 2006, 314, 274-278.	6.0	824
8	One-Dimensional Assemblies of Nanoparticles: Preparation, Properties, and Promise. Advanced Materials, 2005, 17, 951-962.	11.1	749
9	MoS ₂ /Celgard Separator as Efficient Polysulfide Barrier for Longâ€Life Lithium–Sulfur Batteries. Advanced Materials, 2017, 29, 1606817.	11.1	746
10	Growth of Polypyrrole Ultrathin Films on MoS ₂ Monolayers as Highâ€Performance Supercapacitor Electrodes. Advanced Materials, 2015, 27, 1117-1123.	11.1	691
11	Accurate Control of Multishelled Co ₃ O ₄ Hollow Microspheres as Highâ€Performance Anode Materials in Lithiumâ€ion Batteries. Angewandte Chemie - International Edition, 2013, 52, 6417-6420.	7.2	650
12	Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nature Energy, 2020, 5, 881-890.	19.8	647
13	Core–Shell Palladium Nanoparticle@Metal–Organic Frameworks as Multifunctional Catalysts for Cascade Reactions. Journal of the American Chemical Society, 2014, 136, 1738-1741.	6.6	632
14	Facile Synthesis of Surfactant-Free Au Cluster/Graphene Hybrids for High-Performance Oxygen Reduction Reaction. ACS Nano, 2012, 6, 8288-8297.	7.3	578
15	Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chemical Society Reviews, 2019, 48, 488-516.	18.7	564
16	Core–Shell Nobleâ€Metal@Metalâ€Organicâ€Framework Nanoparticles with Highly Selective Sensing Property. Angewandte Chemie - International Edition, 2013, 52, 3741-3745.	7.2	553
17	Carbonized Nanoscale Metal–Organic Frameworks as High Performance Electrocatalyst for Oxygen Reduction Reaction. ACS Nano, 2014, 8, 12660-12668.	7.3	509
18	Threeâ€Dimensional Graphene/Metal Oxide Nanoparticle Hybrids for Highâ€Performance Capacitive Deionization of Saline Water. Advanced Materials, 2013, 25, 6270-6276.	11.1	499

#	Article	IF	CITATIONS
19	Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nature Nanotechnology, 2011, 6, 580-587.	15.6	488
20	Accurate Control of Multishelled ZnO Hollow Microspheres for Dye‧ensitized Solar Cells with High Efficiency. Advanced Materials, 2012, 24, 1046-1049.	11.1	482
21	Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chemical Society Reviews, 2012, 41, 1111-1129.	18.7	454
22	A General Route to Prepare Lowâ€Rutheniumâ€Content Bimetallic Electrocatalysts for pHâ€Universal Hydrogen Evolution Reaction by Using Carbon Quantum Dots. Angewandte Chemie - International Edition, 2020, 59, 1718-1726.	7.2	452
23	Photocatalytic Properties of Graphdiyne and Graphene Modified TiO ₂ : From Theory to Experiment. ACS Nano, 2013, 7, 1504-1512.	7.3	434
24	Facile synthesis of Au@TiO2 core–shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency. Energy and Environmental Science, 2012, 5, 6914.	15.6	427
25	Highâ€Performance Fiberâ€Shaped Allâ€Solidâ€State Asymmetric Supercapacitors Based on Ultrathin MnO ₂ Nanosheet/Carbon Fiber Cathodes for Wearable Electronics. Advanced Energy Materials, 2016, 6, 1501458.	10.2	409
26	Co ₃ O ₄ Hexagonal Platelets with Controllable Facets Enabling Highly Efficient Visibleâ€Light Photocatalytic Reduction of CO ₂ . Advanced Materials, 2016, 28, 6485-6490.	11.1	395
27	Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage. Chemical Society Reviews, 2016, 45, 4873-4891.	18.7	383
28	Metal–Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives. Advanced Materials, 2018, 30, e1800702.	11.1	362
29	A Highly Efficient Nonâ€Fullerene Organic Solar Cell with a Fill Factor over 0.80 Enabled by a Fineâ€Tuned Holeâ€Transporting Layer. Advanced Materials, 2018, 30, e1801801.	11.1	360
30	Multi-shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nature Energy, 2016, 1, .	19.8	352
31	Core–Shell Upconversion Nanoparticle@Metal–Organic Framework Nanoprobes for Luminescent/Magnetic Dualâ€Mode Targeted Imaging. Advanced Materials, 2015, 27, 4075-4080.	11.1	348
32	Noble metal nanoparticle@metal oxide core/yolk–shell nanostructures as catalysts: recent progress and perspective. Nanoscale, 2014, 6, 3995-4011.	2.8	347
33	Selective Synthesis of Single-Crystalline Rhombic Dodecahedral, Octahedral, and Cubic Gold Nanocrystals. Journal of the American Chemical Society, 2009, 131, 697-703.	6.6	316
34	Reversible Plasmonic Circular Dichroism of Au Nanorod and DNA Assemblies. Journal of the American Chemical Society, 2012, 134, 3322-3325.	6.6	307
35	Efficient Electrocatalytic Water Oxidation by Using Amorphous Ni–Co Double Hydroxides Nanocages. Advanced Energy Materials, 2015, 5, 1401880	10.2	307
36	Single Atom Rutheniumâ€Doped CoP/CDs Nanosheets via Splicing of Carbonâ€Dots for Robust Hydrogen Production. Angewandte Chemie - International Edition, 2021, 60, 7234-7244.	7.2	306

#	Article	IF	CITATIONS
37	Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration. Nature Chemistry, 2018, 10, 961-967.	6.6	295
38	Metalâ^'Organic Framework Supported Gold Nanoparticles as a Highly Active Heterogeneous Catalyst for Aerobic Oxidation of Alcohols. Journal of Physical Chemistry C, 2010, 114, 13362-13369.	1.5	292
39	Accurate Control of Multishelled Co ₃ O ₄ Hollow Microspheres as Highâ€Performance Anode Materials in Lithiumâ€Ion Batteries. Angewandte Chemie, 2013, 125, 6545-6548.	1.6	290
40	Insights into photoluminescence mechanisms of carbon dots: advances and perspectives. Science Bulletin, 2021, 66, 839-856.	4.3	288
41	Quintupleâ€Shelled SnO ₂ Hollow Microspheres with Superior Light Scattering for Highâ€Performance Dyeâ€Sensitized Solar Cells. Advanced Materials, 2014, 26, 905-909.	11.1	283
42	Ultratough Artificial Nacre Based on Conjugated Crossâ€linked Graphene Oxide. Angewandte Chemie - International Edition, 2013, 52, 3750-3755.	7.2	278
43	Multifunctional Nanoparticle@MOF Core–Shell Nanostructures. Advanced Materials, 2013, 25, 5819-5825.	11.1	277
44	Bioinspired Layered Materials with Superior Mechanical Performance. Accounts of Chemical Research, 2014, 47, 1256-1266.	7.6	276
45	Recent Progress on Two-Dimensional Materials. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2021, .	2.2	269
46	Uncovering the Circular Polarization Potential of Chiral Photonic Cellulose Films for Photonic Applications. Advanced Materials, 2018, 30, e1705948.	11.1	264
47	Mechanism of Strong Luminescence Photoactivation of Citrate-Stabilized Water-Soluble Nanoparticles with CdSe Cores. Journal of Physical Chemistry B, 2004, 108, 15461-15469.	1.2	263
48	Multi-shelled CeO ₂ hollow microspheres as superior photocatalysts for water oxidation. Nanoscale, 2014, 6, 4072-4077.	2.8	262
49	Ultrathin Nitrogenâ€Doped Holey Carbon@Graphene Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions in Alkaline and Acidic Media. Angewandte Chemie - International Edition, 2018, 57, 16511-16515.	7.2	261
50	Facile synthesis of core–shell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for CO oxidation. Energy and Environmental Science, 2012, 5, 8937.	15.6	258
51	Magnetic polydopamine decorated with Mg–Al LDH nanoflakes as a novel bio-based adsorbent for simultaneous removal of potentially toxic metals and anionic dyes. Journal of Materials Chemistry A, 2016, 4, 1737-1746.	5.2	251
52	Synthesis and Shape-Tailoring of Copper Sulfide/Indium Sulfide-Based Nanocrystals. Journal of the American Chemical Society, 2008, 130, 13152-13161.	6.6	246
53	Similar Topological Origin of Chiral Centers in Organic and Nanoscale Inorganic Structures: Effect of Stabilizer Chirality on Optical Isomerism and Growth of CdTe Nanocrystals. Journal of the American Chemical Society, 2010, 132, 6006-6013.	6.6	243
54	Molecular Architecture of Cobalt Porphyrin Multilayers on Reduced Graphene Oxide Sheets for Highâ€Performance Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 5585-5589.	7.2	242

#	Article	IF	CITATIONS
55	Boosting Hot Electrons in Hetero-superstructures for Plasmon-Enhanced Catalysis. Journal of the American Chemical Society, 2017, 139, 17964-17972.	6.6	241
56	Near-infrared emissive carbon dots with 33.96% emission in aqueous solution for cellular sensing and light-emitting diodes. Science Bulletin, 2019, 64, 1285-1292.	4.3	240
57	Efficient Polysulfide Chemisorption in Covalent Organic Frameworks for Highâ€Performance Lithium‣ulfur Batteries. Advanced Energy Materials, 2016, 6, 1601250.	10.2	231
58	Chiral inorganic nanoparticles: origin, optical properties and bioapplications. Nanoscale, 2011, 3, 1374.	2.8	215
59	A redox-active 2D covalent organic framework with pyridine moieties capable of faradaic energy storage. Journal of Materials Chemistry A, 2016, 4, 16312-16317.	5.2	213
60	Full Assessment of Fate and Physiological Behavior of Quantum Dots Utilizing <i>Caenorhabditis elegans</i> as a Model Organism. Nano Letters, 2011, 11, 3174-3183.	4.5	212
61	Chirality of Glutathione Surface Coating Affects the Cytotoxicity of Quantum Dots. Angewandte Chemie - International Edition, 2011, 50, 5860-5864.	7.2	210
62	Hollow Metal–Organicâ€Framework Micro/Nanostructures and their Derivatives: Emerging Multifunctional Materials. Advanced Materials, 2019, 31, e1803291.	11.1	210
63	Manipulation of Collective Optical Activity in One-Dimensional Plasmonic Assembly. ACS Nano, 2012, 6, 2326-2332.	7.3	209
64	Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Science Advances, 2015, 1, e1500372.	4.7	209
65	Superstructures and SERS Properties of Gold Nanocrystals with Different Shapes. Angewandte Chemie - International Edition, 2011, 50, 1593-1596.	7.2	206
66	Self-assembly of noble metal nanocrystals: Fabrication, optical property, and application. Nano Today, 2012, 7, 564-585.	6.2	202
67	A Biopolymer Heparin Sodium Interlayer Anchoring TiO ₂ and MAPbI ₃ Enhances Trap Passivation and Device Stability in Perovskite Solar Cells. Advanced Materials, 2018, 30, e1706924.	11.1	199
68	A self-sponsored doping approach for controllable synthesis of S and N co-doped trimodal-porous structured graphitic carbon electrocatalysts. Energy and Environmental Science, 2014, 7, 3720-3726.	15.6	198
69	Multicolor Luminescence Patterning by Photoactivation of Semiconductor Nanoparticle Films. Journal of the American Chemical Society, 2003, 125, 2830-2831.	6.6	195
70	Rational Design of Multi olorâ€Emissive Carbon Dots in a Single Reaction System by Hydrothermal. Advanced Science, 2021, 8, 2001453.	5.6	194
71	Nanoparticleassemblies for biological and chemical sensing. Journal of Materials Chemistry, 2010, 20, 24-35.	6.7	193
72	Acellular Synthesis of a Human Enamel-like Microstructure. Advanced Materials, 2006, 18, 1846-1851.	11.1	191

#	Article	IF	CITATIONS
73	Design and Application of Inorganic Nanoparticle Superstructures: Current Status and Future challenges. Small, 2011, 7, 2133-2146.	5.2	191
74	Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots. Biosensors and Bioelectronics, 2011, 26, 3081-3085.	5.3	191
75	Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer's disease. Nature Communications, 2020, 11, 4790.	5.8	188
76	Selfâ€Assembly of Chiral Gold Clusters into Crystalline Nanocubes of Exceptional Optical Activity. Angewandte Chemie - International Edition, 2017, 56, 15397-15401.	7.2	185
77	Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. Journal of Materials Chemistry A, 2014, 2, 3719.	5.2	183
78	Gold Nanorod@Chiral Mesoporous Silica Core–shell Nanoparticles with Unique Optical Properties. Journal of the American Chemical Society, 2013, 135, 9659-9664.	6.6	182
79	Strong circularly polarized luminescence from the supramolecular gels of an achiral gelator: tunable intensity and handedness. Chemical Science, 2015, 6, 4267-4272.	3.7	181
80	Ultrathin Transition Metal Dichalcogenide/3d Metal Hydroxide Hybridized Nanosheets to Enhance Hydrogen Evolution Activity. Advanced Materials, 2018, 30, e1801171.	11.1	180
81	Supercapacitor electrode materials with hierarchically structured pores from carbonization of MWCNTs and ZIF-8 composites. Nanoscale, 2017, 9, 2178-2187.	2.8	179
82	Membrane Separation in Organic Liquid: Technologies, Achievements, and Opportunities. Advanced Materials, 2019, 31, e1806090.	11.1	178
83	Polyoxometalate-based functional nanostructured films: Current progress and future prospects. Nano Today, 2010, 5, 267-281.	6.2	176
84	Glucose Biosensor Based on Nanocomposite Films of CdTe Quantum Dots and Glucose Oxidase. Langmuir, 2009, 25, 6580-6586.	1.6	174
85	Facile Means of Preparing Superamphiphobic Surfaces on Common Engineering Metals. Journal of Physical Chemistry C, 2008, 112, 11454-11458.	1.5	173
86	Reversible Photoswitchable Fluorescence in Thin Films of Inorganic Nanoparticle and Polyoxometalate Assemblies. Journal of the American Chemical Society, 2010, 132, 2886-2888.	6.6	171
87	Designed controllable nitrogen-doped carbon-dots-loaded MoP nanoparticles for boosting hydrogen evolution reaction in alkaline medium. Nano Energy, 2020, 72, 104730.	8.2	171
88	Coordination-responsive drug release inside gold nanorod@metal-organic framework core–shell nanostructures for near-infrared-induced synergistic chemo-photothermal therapy. Nano Research, 2018, 11, 3294-3305.	5.8	170
89	Electrochemical Reduction of CO ₂ over Heterogeneous Catalysts in Aqueous Solution: Recent Progress and Perspectives. Small Methods, 2019, 3, 1800369.	4.6	168
90	Rational Design of Multicolorâ€Emitting Chiral Carbonized Polymer Dots for Fullâ€Color and White Circularly Polarized Luminescence. Angewandte Chemie - International Edition, 2021, 60, 14091-14099.	7.2	168

#	Article	IF	CITATIONS
91	Reordering d Orbital Energies of Single‣ite Catalysts for CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2019, 58, 12711-12716.	7.2	166
92	One dimensional CuInS2–ZnS heterostructured nanomaterials as low-cost and high-performance counter electrodes of dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 835.	15.6	164
93	Circularly polarised phosphorescent photoluminescence and electroluminescence of iridium complexes. Scientific Reports, 2015, 5, 14912.	1.6	157
94	Conformation Modulated Optical Activity Enhancement in Chiral Cysteine and Au Nanorod Assemblies. Journal of the American Chemical Society, 2014, 136, 16104-16107.	6.6	156
95	Integration of Conductivity, Transparency, and Mechanical Strength into Highly Homogeneous Layer-by-Layer Composites of Single-Walled Carbon Nanotubes for Optoelectronics. Chemistry of Materials, 2007, 19, 5467-5474.	3.2	154
96	Pt–Ni Alloy Nanoparticles as Superior Counter Electrodes for Dyeâ€ 5 ensitized Solar Cells: Experimental and Theoretical Understanding. Advanced Materials, 2014, 26, 8101-8106.	11.1	149
97	Counterintuitive Effect of Molecular Strength and Role of Molecular Rigidity on Mechanical Properties of Layer-by-Layer Assembled Nanocomposites. Nano Letters, 2007, 7, 1224-1231.	4.5	147
98	Simulations and Analysis of Self-Assembly of CdTe Nanoparticles into Wires and Sheets. Nano Letters, 2007, 7, 1670-1675.	4.5	147
99	High production-yield solid-state carbon dots with tunable photoluminescence for white/multi-color light-emitting diodes. Science Bulletin, 2019, 64, 1788-1794.	4.3	147
100	Preparation and 31P NMR Characterization of Nickel Phosphides on Silica. Journal of Catalysis, 2002, 208, 456-466.	3.1	146
101	Simple Preparation Strategy and One-Dimensional Energy Transfer in CdTe Nanoparticle Chains. Journal of Physical Chemistry B, 2004, 108, 6927-6931.	1.2	143
102	Shape-dependent ordering of gold nanocrystals into large-scale superlattices. Nature Communications, 2017, 8, 14038.	5.8	141
103	Insight into Structural Evolution, Active Sites, and Stability of Heterogeneous Electrocatalysts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	140
104	Shape-dependent electrocatalytic activity of monodispersed gold nanocrystals toward glucose oxidation. Chemical Communications, 2011, 47, 6894.	2.2	138
105	New Insight into the Role of Gold Nanoparticles in Au@CdS Core–Shell Nanostructures for Hydrogen Evolution. Small, 2014, 10, 4664-4670.	5.2	138
106	Spontaneous Transformation of Stabilizer-Depleted Binary Semiconductor Nanoparticles into Selenium and Tellurium Nanowires. Advanced Materials, 2005, 17, 358-363.	11.1	137
107	Bioinspired Layered Composites Based on Flattened Doubleâ€Walled Carbon Nanotubes. Advanced Materials, 2012, 24, 1838-1843.	11.1	137
108	Effective and Selective Catalysts for Cinnamaldehyde Hydrogenation: Hydrophobic Hybrids of Metal–Organic Frameworks, Metal Nanoparticles, and Micro―and Mesoporous Polymers. Angewandte Chemie - International Edition, 2018, 57, 5708-5713.	7.2	137

#	Article	IF	CITATIONS
109	Tunable chiral metal organic frameworks toward visible light–driven asymmetric catalysis. Science Advances, 2017, 3, e1701162.	4.7	136
110	Hydrothermal Transformation of Dried Grass into Graphitic Carbonâ€Based High Performance Electrocatalyst for Oxygen Reduction Reaction. Small, 2014, 10, 3371-3378.	5.2	135
111	Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate. Nature Sustainability, 2021, 4, 509-515.	11.5	135
112	Encapsulation of Plasmid DNA by Nanoscale Metal–Organic Frameworks for Efficient Gene Transportation and Expression. Advanced Materials, 2019, 31, e1901570.	11.1	130
113	Metal–organic frameworks as catalytic selectivity regulators for organic transformations. Chemical Society Reviews, 2021, 50, 5366-5396.	18.7	130
114	Optical Coupling Between Chiral Biomolecules and Semiconductor Nanoparticles: Sizeâ€Dependent Circular Dichroism Absorption. Angewandte Chemie - International Edition, 2011, 50, 11456-11459.	7.2	126
115	Solarâ€Lightâ€Driven Renewable Butanol Separation by Core–Shell Ag@ZIFâ€8 Nanowires. Advanced Materials, 2015, 27, 3273-3277.	11.1	126
116	Self-Assembled Chiral Nanofibers from Ultrathin Low-Dimensional Nanomaterials. Journal of the American Chemical Society, 2015, 137, 1565-1571.	6.6	123
117	"Raisin Bunâ€â€Łike Nanocomposites of Palladium Clusters and Porphyrin for Superior Formic Acid Oxidation. Advanced Materials, 2013, 25, 2728-2732.	11.1	120
118	Molecular engineering of Ni–/Co–porphyrin multilayers on reduced graphene oxide sheets as bifunctional catalysts for oxygen evolution and oxygen reduction reactions. Chemical Science, 2016, 7, 5640-5646.	3.7	120
119	Nanostructured Thin Films Made by Dewetting Method of Layer-By-Layer Assembly. Nano Letters, 2007, 7, 3266-3273.	4.5	118
120	Ultrathin Chiral Metal–Organicâ€Framework Nanosheets for Efficient Enantioselective Separation. Angewandte Chemie - International Edition, 2018, 57, 6873-6877.	7.2	115
121	Mirror-Like Photoconductive Layer-by-Layer Thin Films of Te Nanowires: The Fusion of Semiconductor, Metal, and Insulator Properties. Advanced Materials, 2006, 18, 518-522.	11.1	113
122	Biomimetic Chiral Photonic Crystals. Angewandte Chemie - International Edition, 2019, 58, 7783-7787.	7.2	113
123	Advancing osmotic power generation by covalent organic framework monolayer. Nature Nanotechnology, 2022, 17, 622-628.	15.6	113
124	Spontaneous Organization of Inorganic Nanoparticles into Nanovesicles Triggered by UV Light. Advanced Materials, 2014, 26, 5613-5618.	11.1	112
125	Perspective of Chiral Colloidal Semiconductor Nanocrystals: Opportunity and Challenge. Journal of the American Chemical Society, 2019, 141, 13700-13707.	6.6	111
126	Membraneâ€Free Zn/MnO ₂ Flow Battery for Largeâ€Scale Energy Storage. Advanced Energy Materials, 2020, 10, 1902085.	10.2	111

#	Article	IF	CITATIONS
127	Theoretical Understanding of Structure–Property Relationships in Luminescence of Carbon Dots. Journal of Physical Chemistry Letters, 2021, 12, 7671-7687.	2.1	111
128	Twisted Metalâ^'Amino Acid Nanobelts: Chirality Transcription from Molecules to Frameworks. Journal of the American Chemical Society, 2010, 132, 8202-8209.	6.6	110
129	Excitonic Circular Dichroism of Chiral Quantum Rods. Journal of the American Chemical Society, 2017, 139, 8734-8739.	6.6	110
130	Applications of Nanomaterials in Asymmetric Photocatalysis: Recent Progress, Challenges, and Opportunities. Advanced Materials, 2021, 33, e2001731.	11.1	108
131	Halogenâ€Doped Carbon Dots on Amorphous Cobalt Phosphide as Robust Electrocatalysts for Overall Water Splitting. Advanced Energy Materials, 2022, 12, .	10.2	108
132	Circular Dichroism Studies on Plasmonic Nanostructures. Small, 2017, 13, 1601115.	5.2	107
133	Synthesis of Fluorapatite Nanorods and Nanowires by Direct Precipitation from Solution. Crystal Growth and Design, 2006, 6, 1504-1508.	1.4	106
134	α-Synuclein Protofibrils Inhibit 26 S Proteasome-mediated Protein Degradation. Journal of Biological Chemistry, 2008, 283, 20288-20298.	1.6	106
135	Monodisperse inorganic supraparticles: formation mechanism, properties and applications. Chemical Communications, 2012, 48, 6320.	2.2	105
136	Circularly Polarized Luminescent Carbon Dot Nanomaterials of Helical Superstructures for Circularly Polarized Light Detection. Advanced Optical Materials, 2018, 6, 1801246.	3.6	105
137	Enantioseparation of Au ₂₀ (PP ₃) ₄ Cl ₄ Clusters with Intrinsically Chiral Cores. Angewandte Chemie - International Edition, 2018, 57, 9059-9063.	7.2	104
138	Mesoporous Silica Nanoparticles Carrier for Urea: Potential Applications in Agrochemical Delivery Systems. Journal of Nanoscience and Nanotechnology, 2012, 12, 2221-2228.	0.9	103
139	Red-emitting, self-oxidizing carbon dots for the preparation of white LEDs with super-high color rendering index. Science China Chemistry, 2021, 64, 1547-1553.	4.2	103
140	Self-assembled inorganic chiral superstructures. Nature Reviews Chemistry, 2022, 6, 125-145.	13.8	102
141	Can Nature's Design be Improved Upon? High Strength, Transparent Nacre-Like Nanocomposites with Double Network of Sacrificial Cross Links. Journal of Physical Chemistry B, 2008, 112, 14359-14363.	1.2	101
142	Circularly polarized luminescence in chiral materials. Matter, 2022, 5, 837-875.	5.0	100
143	One-step solid phase synthesis of a highly efficient and robust cobalt pentlandite electrocatalyst for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 18314-18321.	5.2	97
144	Fabrication of Highly Stable Metal Oxide Hollow Nanospheres and Their Catalytic Activity toward 4-Nitrophenol Reduction. ACS Applied Materials & Interfaces, 2017, 9, 18207-18214.	4.0	97

#	Article	IF	CITATIONS
145	Recent advances in chiral carbonized polymer dots: From synthesis and properties to applications. Nano Today, 2020, 34, 100953.	6.2	95
146	Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Research, 2021, 14, 2037.	5.8	95
147	Carbon quantum dots enhanced the activity for the hydrogen evolution reaction in ruthenium-based electrocatalysts. Materials Chemistry Frontiers, 2020, 4, 277-284.	3.2	95
148	Electrochemical synthesis of polyaniline nanoparticles. Electrochemistry Communications, 2000, 2, 32-35.	2.3	94
149	Biological Assembly of Nanocircuit Prototypes from Protein-Modified CdTe Nanowires. Nano Letters, 2005, 5, 243-248.	4.5	94
150	Potential for Layered Double Hydroxides-Based, Innovative Drug Delivery Systems. International Journal of Molecular Sciences, 2014, 15, 7409-7428.	1.8	94
151	Fast and Selective Semihydrogenation of Alkynes by Palladium Nanoparticles Sandwiched in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 3650-3657.	7.2	94
152	Metal–Organic Frameworks for Electrocatalysis: Beyond Their Derivatives. Small Science, 2021, 1, 2100015.	5.8	94
153	Photoelectrochemical sensing of glucose based on quantum dot and enzyme nanocomposites. Journal of Electroanalytical Chemistry, 2011, 656, 167-173.	1.9	92
154	Bread-derived 3D macroporous carbon foams as high performance free-standing anode in microbial fuel cells. Biosensors and Bioelectronics, 2018, 122, 217-223.	5.3	91
155	Metallic Cobalt–Carbon Composite as Recyclable and Robust Magnetic Photocatalyst for Efficient CO ₂ Reduction. Small, 2018, 14, e1800762.	5.2	91
156	Ethanol-derived white emissive carbon dots: the formation process investigation and multi-color/white LEDs preparation. Nano Research, 2022, 15, 942-949.	5.8	91
157	Advances and challenges in 2D MXenes: From structures to energy storage and conversions. Nano Today, 2021, 40, 101273.	6.2	91
158	Strongly Coupled CoCr ₂ O ₄ /Carbon Nanosheets as High Performance Electrocatalysts for Oxygen Evolution Reaction. Small, 2016, 12, 2866-2871.	5.2	90
159	Spontaneous Transformation of CdTe Nanoparticles into Angled Te Nanocrystals:Â From Particles and Rods to Checkmarks, X-Marks, and Other Unusual Shapes. Journal of the American Chemical Society, 2006, 128, 6730-6736.	6.6	89
160	Size-dependent endocytosis of single gold nanoparticles. Chemical Communications, 2011, 47, 8091.	2.2	89
161	Improving the Yield of Mono-DNA-Functionalized Gold Nanoparticles through Dual Steric Hindrance. Journal of the American Chemical Society, 2011, 133, 15284-15287.	6.6	89
162	Remarkably enhanced water splitting activity of nickel foam due to simple immersion in a ferric nitrate solution. Nano Research, 2018, 11, 3959-3971.	5.8	88

#	Article	IF	CITATIONS
163	Detection of mixed organophosphorus pesticides in real samples using quantum dots/bi-enzyme assembly multilayers. Journal of Materials Chemistry, 2011, 21, 16955.	6.7	87
164	Shape-dependent electrocatalytic activity of monodispersed palladium nanocrystals toward formic acid oxidation. Nanoscale, 2013, 5, 8392.	2.8	87
165	Regulating Bulkâ€Heterojunction Molecular Orientations through Surface Free Energy Control of Holeâ€Transporting Layers for Highâ€Performance Organic Solar Cells. Advanced Materials, 2019, 31, e1806921.	11.1	86
166	Semiconductor Nanoparticles on Solid Substrates:Â Film Structure, Intermolecular Interactions, and Polyelectrolyte Effects. Langmuir, 2002, 18, 7035-7040.	1.6	83
167	Monodisperse Hollow Spheres with Sandwich Heterostructured Shells as High-Performance Catalysts via an Extended SiO2Template Method. Small, 2015, 11, 420-425.	5.2	83
168	Helical aromatic imide based enantiomers with full-color circularly polarized luminescence. Chemical Communications, 2016, 52, 9921-9924.	2.2	83
169	Optically Active Nanostructured ZnO Films. Angewandte Chemie - International Edition, 2015, 54, 15170-15175.	7.2	82
170	Efficient water oxidation under visible light by tuning surface defects on ceria nanorods. Journal of Materials Chemistry A, 2015, 3, 20465-20470.	5.2	82
171	Three dimensional iron oxide/graphene aerogel hybrids as all-solid-state flexible supercapacitor electrodes. RSC Advances, 2016, 6, 58994-59000.	1.7	80
172	Facile synthesis of ultrathin metal-organic framework nanosheets for Lewis acid catalysis. Nano Research, 2019, 12, 437-440.	5.8	79
173	SiO2-Coated CdTe Nanowires:Â Bristled Nano Centipedes. Nano Letters, 2004, 4, 225-231.	4.5	78
174	Synthesis of Au@Ag Core–Shell Nanocubes Containing Varying Shaped Cores and Their Localized Surface Plasmon Resonances. Langmuir, 2012, 28, 8959-8964.	1.6	78
175	Advanced Inorganic Nanoarchitectures from Oriented Selfâ€Assembly. Advanced Materials, 2016, 28, 1096-1108.	11.1	78
176	Magnetic Circular Dichroism in Nanomaterials: New Opportunity in Understanding and Modulation of Excitonic and Plasmonic Resonances. Advanced Materials, 2020, 32, e1801491.	11.1	78
177	Gold Nanowire Chiral Ultrathin Films with Ultrastrong and Broadband Optical Activity. Angewandte Chemie - International Edition, 2017, 56, 5055-5060.	7.2	77
178	Controlling the Selectivity of Conjugated Microporous Polymer Membrane for Efficient Organic Solvent Nanofiltration. Advanced Functional Materials, 2019, 29, 1900134.	7.8	76
179	Recent advances in electrocatalytic chloride oxidation for chlorine gas production. Journal of Materials Chemistry A, 2021, 9, 18974-18993.	5.2	75
180	MOF-derived nitrogen-doped nanoporous carbon for electroreduction of CO ₂ to CO: the calcining temperature effect and the mechanism. Nanoscale, 2019, 11, 4911-4917.	2.8	73

#	Article	IF	CITATIONS
181	Silver(i)–glutathione biocoordination polymer hydrogel: effective antibacterial activity and improved cytocompatibility. Journal of Materials Chemistry, 2011, 21, 19214.	6.7	72
182	Carbon Dots and RuP ₂ Nanohybrid as an Efficient Bifunctional Catalyst for Electrochemical Hydrogen Evolution Reaction and Hydrolysis of Ammonia Borane. ACS Sustainable Chemistry and Engineering, 2020, 8, 3995-4002.	3.2	72
183	Controllable Optical Activity of Gold Nanorod and Chiral Quantum Dot Assemblies. Angewandte Chemie - International Edition, 2013, 52, 13571-13575.	7.2	71
184	Highly selective aerobic oxidation of methane to methanol over gold decorated zinc oxide <i>via</i> photocatalysis. Journal of Materials Chemistry A, 2020, 8, 13277-13284.	5.2	71
185	In situ monitoring of molecular aggregation using circular dichroism. Nature Communications, 2018, 9, 4961.	5.8	70
186	Chiral Nanoparticles with Full-Color and White CPL Properties Based on Optically Stable Helical Aromatic Imide Enantiomers. ACS Applied Materials & Interfaces, 2018, 10, 8225-8230.	4.0	69
187	Application of Au based nanomaterials in analytical science. Nano Today, 2017, 12, 64-97.	6.2	68
188	Bimetal–organic frameworks for functionality optimization: MnFe-MOF-74 as a stable and efficient catalyst for the epoxidation of alkenes with H ₂ O ₂ . Nanoscale, 2018, 10, 1591-1597.	2.8	68
189	Distinct Excitonic Circular Dichroism between Wurtzite and Zincblende CdSe Nanoplatelets. Nano Letters, 2018, 18, 6665-6671.	4.5	68
190	Delocalized electron effect on single metal sites in ultrathin conjugated microporous polymer nanosheets for boosting CO ₂ cycloaddition. Science Advances, 2020, 6, eaaz4824.	4.7	68
191	Multistate electrically controlled photoluminescence switching. Chemical Science, 2013, 4, 4371.	3.7	67
192	Metal-organic frameworks as emerging platform for supporting isolated single-site catalysts. Nano Today, 2019, 27, 178-197.	6.2	66
193	Feâ€O Clusters Anchored on Nodes of Metal–Organic Frameworks for Direct Methane Oxidation. Angewandte Chemie - International Edition, 2021, 60, 5811-5815.	7.2	66
194	Direct Evidence of Lipid Rafts by in situ Atomic Force Microscopy. Small, 2012, 8, 1243-1250.	5.2	65
195	Nanoscale Biocoordination Polymers: Novel Materials from an Old Topic. Chemistry - A European Journal, 2012, 18, 1030-1037.	1.7	65
196	Sandwichâ€Like Reduced Graphene Oxide/Carbon Black/Amorphous Cobalt Borate Nanocomposites as Bifunctional Cathode Electrocatalyst in Rechargeable Zincâ€Air Batteries. Advanced Energy Materials, 2018, 8, 1801495.	10.2	65
197	Two-dimensional material membranes for critical separations. Inorganic Chemistry Frontiers, 2020, 7, 2560-2581.	3.0	65
198	Supramolecular gelatin nanoparticles as matrix metalloproteinase responsive cancer cell imaging probes. Chemical Communications, 2013, 49, 4462.	2.2	64

#	Article	IF	CITATIONS
199	Olefin/paraffin separation through membranes: from mechanisms to critical materials. Journal of Materials Chemistry A, 2019, 7, 23489-23511.	5.2	63
200	Optical Activity of Chiral Metal Nanoclusters. Accounts of Materials Research, 2021, 2, 21-35.	5.9	62
201	Recent Advances in Nanosensors for Organophosphate Pesticide Detection. Advanced Powder Technology, 2008, 19, 419-441.	2.0	59
202	Facile Preparation of Ag ₂ S/Ag Semiconductor/Metal Heteronanostructures with Remarkable Antibacterial Properties. ChemPhysChem, 2012, 13, 2531-2535.	1.0	59
203	Bioapplication of nanosemiconductors. Materials Today, 2005, 8, 20-31.	8.3	58
204	Exquisite modulation of ZnO nanoparticle electron transporting layer for high-performance fullerene-free organic solar cell with inverted structure. Journal of Materials Chemistry A, 2019, 7, 3570-3576.	5.2	58
205	Chiral Photonic Cellulose Films Enabling Mechano/Chemo Responsive Selective Reflection of Circularly Polarized Light. Advanced Optical Materials, 2019, 7, 1801395.	3.6	57
206	Defects Enhance the Electrocatalytic Hydrogen Evolution Properties of MoS ₂ â€based Materials. Chemistry - an Asian Journal, 2020, 15, 3123-3134.	1.7	57
207	Vaporâ€Phase Hydrothermal Transformation of HTiOF ₃ Intermediates into {001} Faceted Anatase Singleâ€Crystalline Nanosheets. Small, 2012, 8, 3664-3673.	5.2	56
208	Geometry-Modulated Magnetoplasmonic Optical Activity of Au Nanorod-Based Nanostructures. Nano Letters, 2017, 17, 6083-6089.	4.5	55
209	A reconstructed porous copper surface promotes selectivity and efficiency toward C ₂ products by electrocatalytic CO ₂ reduction. Chemical Science, 2020, 11, 10698-10704.	3.7	55
210	Electrochemical synthesis of Ag nanoparticles on functional carbon surfaces. Journal of Electroanalytical Chemistry, 2001, 502, 146-151.	1.9	54
211	Cu ₂ O clusters grown on TiO ₂ nanoplates as efficient photocatalysts for hydrogen generation. Inorganic Chemistry Frontiers, 2016, 3, 488-493.	3.0	54
212	Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay. Nanoscale, 2017, 9, 7822-7829.	2.8	53
213	Facile Synthesis of Water-Stable Multicolor Carbonized Polymer Dots from a Single Unconjugated Glucose for Engineering White Light-Emitting Diodes with a High Color Rendering Index. ACS Applied Materials & Interfaces, 2021, 13, 30098-30105.	4.0	53
214	A Temperatureâ€Driven Reversible Phase Transfer of 2â€(Diethylamino)ethanethiolâ€Stabilized CdTe Nanoparticles. Angewandte Chemie - International Edition, 2008, 47, 9875-9878.	7.2	52
215	Preparation, Structures, and Electrochemistry of a New Polyoxometalate-Based Organic/Inorganic Film on Carbon Surfaces. Langmuir, 2000, 16, 5806-5813.	1.6	51
216	Regioselective magnetization in semiconducting nanorods. Nature Nanotechnology, 2020, 15, 192-197.	15.6	51

#	Article	IF	CITATIONS
217	Controllable fabrication of redox-active conjugated microporous polymers on reduced graphene oxide for high performance faradaic energy storage. Journal of Materials Chemistry A, 2018, 6, 18827-18832.	5.2	50
218	Polyamino acid interlayer facilitates electron extraction in narrow band gap fullerene-free organic solar cells with an outstanding short-circuit current. Nano Energy, 2018, 50, 169-175.	8.2	50
219	Covalently anchoring cobalt phthalocyanine on zeolitic imidazolate frameworks for efficient carbon dioxide electroreduction. CrystEngComm, 2020, 22, 1619-1624.	1.3	48
220	Localization of Na ⁺ â^'K ⁺ ATPases in Quasi-Native Cell Membranes. Nano Letters, 2009, 9, 4489-4493.	4.5	47
221	Quantum-dot-modified microbubbles with bi-mode imaging capabilities. Nanotechnology, 2009, 20, 425105.	1.3	47
222	An in situ vapour phase hydrothermal surface doping approach for fabrication of high performance Co ₃ O ₄ electrocatalysts with an exceptionally high S-doped active surface. Chemical Communications, 2015, 51, 5695-5697.	2.2	47
223	The surface sulfur doping induced enhanced performance of cobalt catalysts in oxygen evolution reactions. Chemical Communications, 2016, 52, 9450-9453.	2.2	47
224	Quasi-amorphous and Hierarchical Fe ₂ O ₃ Supraparticles: Active <i>T</i> ₁ -Weighted Magnetic Resonance Imaging <i>in Vivo</i> and Renal Clearance. ACS Nano, 2020, 14, 4036-4044.	7.3	47
225	Monodisperse Hollow Supraparticles via Selective Oxidation. Advanced Functional Materials, 2012, 22, 2585-2593.	7.8	46
226	Interfacial coupling between noble metal nanoparticles and metal–organic frameworks for enhanced catalytic activity. Nanoscale, 2018, 10, 16425-16430.	2.8	46
227	Tuning the electronic structure of PtRu bimetallic nanoparticles for promoting the hydrogen oxidation reaction in alkaline media. Inorganic Chemistry Frontiers, 2019, 6, 2900-2905.	3.0	46
228	Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites. Nano Research, 2020, 13, 1928-1932.	5.8	46
229	Insight into atomically dispersed porous M–N–C single-site catalysts for electrochemical CO ₂ reduction. Nanoscale, 2020, 12, 16617-16626.	2.8	46
230	The initial attempt to reveal the emission processes of both mechanoluminescence and room temperature phosphorescence with the aid of circular dichroism in solid state. Science China Chemistry, 2021, 64, 445-451.	4.2	46
231	Computational Studies on Carbon Dots Electrocatalysis: A Review. Advanced Functional Materials, 2021, 31, 2107196.	7.8	46
232	Self-Assembled Monolayer of Polyoxometalate on Gold Surfaces:Â Quartz Crystal Microbalance, Electrochemistry, and in-Situ Scanning Tunneling Microscopy Study. Langmuir, 2000, 16, 4946-4952.	1.6	45
233	Investigation of Transversal Conductance in Semiconductor CdTe Nanowires with and without a Coaxial Silica Shell. Langmuir, 2004, 20, 1016-1020.	1.6	45
234	Resonance Tunneling Diode Structures on CdTe Nanowires Made by Conductive AFM. Nano Letters, 2004, 4, 1637-1641.	4.5	44

#	Article	IF	CITATIONS
235	Temperature-dependent charge transport in solution-processed perovskite solar cells with tunable trap concentration and charge recombination. Journal of Materials Chemistry C, 2017, 5, 9376-9382.	2.7	44
236	Facile development of CoAl-LDHs/RGO nanocomposites as photocatalysts for efficient hydrogen generation from water splitting under visible-light irradiation. Inorganic Chemistry Frontiers, 2019, 6, 1753-1760.	3.0	44
237	Photoelectric conversion switch based on quantum dots with i-motif DNA scaffolds. Chemical Communications, 2009, , 2293.	2.2	43
238	Selfâ€Assembly of Chiral Gold Clusters into Crystalline Nanocubes of Exceptional Optical Activity. Angewandte Chemie, 2017, 129, 15599-15603.	1.6	43
239	Interface Engineering in Solutionâ€Processed Nanocrystal Thin Films for Improved Thermoelectric Performance. Advanced Materials, 2017, 29, 1603444.	11.1	43
240	Ceriumâ€Based Metal–Organic Frameworks with UiO Architecture for Visible Lightâ€Induced Aerobic Oxidation of Benzyl Alcohol. Solar Rrl, 2020, 4, 1900449.	3.1	43
241	Metalation of Catecholâ€Functionalized Defective Covalent Organic Frameworks for Lewis Acid Catalysis. Small, 2020, 16, e2001998.	5.2	43
242	Helical Magnetic Field-Induced Real-Time Plasmonic Chirality Modulation. ACS Nano, 2020, 14, 7152-7160.	7.3	43
243	Spontaneous CdTe → Alloy → CdS Transition of Stabilizer-Depleted CdTe Nanoparticles Induced by EDTA. Journal of the American Chemical Society, 2006, 128, 7036-7042.	6.6	42
244	Media Effect on CdTe Nanowire Growth:  Mechanism of Self-Assembly, Ostwald Ripening, and Control of NW Geometry. Journal of Physical Chemistry C, 2008, 112, 370-377.	1.5	42
245	Capping nanoparticles with graphene quantum dots for enhanced thermoelectric performance. Chemical Science, 2015, 6, 4103-4108.	3.7	42
246	Formation of Supraparticles and Their Application in Catalysis. , 2020, 2, 95-106.		42
247	Boosting CO2 Conversion with Terminal Alkynes by Molecular Architecture of Graphene Oxide-Supported Ag Nanoparticles. Matter, 2020, 3, 558-570.	5.0	42
248	Photodriven Active Ion Transport Through a Janus Microporous Membrane. Angewandte Chemie - International Edition, 2020, 59, 6244-6248.	7.2	42
249	Electrochemical Preparation and Characterization of Silicotungstic Heteropolyanion Monolayer Electrostatically Linked Aminophenyl on Carbon Electrode Surface. Langmuir, 1999, 15, 7268-7275.	1.6	41
250	Halogen bonding reduces intrinsic traps and enhances charge mobilities in halide perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 6840-6848.	5.2	41
251	Reordering d Orbital Energies of Singleâ€5ite Catalysts for CO ₂ Electroreduction. Angewandte Chemie, 2019, 131, 12841-12846.	1.6	40
252	A General Route to Prepare Lowâ€Rutheniumâ€Content Bimetallic Electrocatalysts for pHâ€Universal Hydrogen Evolution Reaction by Using Carbon Quantum Dots. Angewandte Chemie, 2020, 132, 1735-1743.	1.6	40

#	Article	IF	CITATIONS
253	Cobalt Catalysts Enable Selective Hydrogenation of CO ₂ toward Diverse Products: Recent Progress and Perspective. Journal of Physical Chemistry Letters, 2021, 12, 10486-10496.	2.1	40
254	Ultra-stable silica-coated chiral Au-nanorod assemblies: Core–shell nanostructures with enhanced chiroptical properties. Nano Research, 2016, 9, 451-457.	5.8	39
255	Emerging Chiral Materials. Advanced Materials, 2020, 32, e2005110.	11.1	39
256	Chirality-Discriminated Conductivity of Metal–Amino Acid Biocoordination Polymer Nanowires. ACS Nano, 2016, 10, 8564-8570.	7.3	38
257	Effective and Selective Catalysts for Cinnamaldehyde Hydrogenation: Hydrophobic Hybrids of Metal–Organic Frameworks, Metal Nanoparticles, and Micro―and Mesoporous Polymers. Angewandte Chemie, 2018, 130, 5810-5815.	1.6	38
258	Nanoporous materials for chiral resolution. Coordination Chemistry Reviews, 2020, 425, 213481.	9.5	38
259	Optimizing Energy Transfer in Nanostructures Enables In Vivo Cancer Lesion Tracking via Nearâ€Infrared Excited Hypoxia Imaging. Advanced Materials, 2020, 32, e1907718.	11.1	38
260	Insight into Structural Evolution, Active Sites, and Stability of Heterogeneous Electrocatalysts. Angewandte Chemie, 2022, 134, .	1.6	38
261	Rational Design of Multicolorâ€Emitting Chiral Carbonized Polymer Dots for Fullâ€Color and White Circularly Polarized Luminescence. Angewandte Chemie, 2021, 133, 14210-14218.	1.6	37
262	Growth Mechanism Deconvolution of Self-Limiting Supraparticles Based on Microfluidic System. ACS Nano, 2015, 9, 172-179.	7.3	36
263	Recording force events of single quantum-dot endocytosis. Chemical Communications, 2011, 47, 3377.	2.2	35
264	Controlled synthesis of non-epitaxially grown Pd@Ag core–shell nanocrystals of interesting optical performance. Chemical Communications, 2013, 49, 4379-4381.	2.2	35
265	First achieving highly selective oxidation of aliphatic alcohols to aldehydes over photocatalysts. Journal of Materials Chemistry A, 2018, 6, 13236-13243.	5.2	35
266	One pot synthesis of monodispersed L-glutathione stabilized gold nanoparticles for the detection of Pb2+ ions. Frontiers of Materials Science, 2011, 5, 322-328.	1.1	34
267	DNA induced intense plasmonic circular dichroism of highly purified gold nanobipyramids. Nanoscale, 2014, 6, 4498-4502.	2.8	34
268	Facile Synthesis of pHâ€sensitive Germanium Nanocrystals with High Quantum Yield for Intracellular Acidic Compartment Imaging. Small, 2015, 11, 1954-1961.	5.2	34
269	A fluorescent quenching performance enhancing principle for carbon nanodot-sensitized aqueous solar cells. Nano Energy, 2015, 13, 124-130.	8.2	34
270	Mesoporous Au@ZnO flower-like nanostructure for enhanced formaldehyde sensing performance. Inorganic Chemistry Communication, 2019, 102, 203-209.	1.8	34

#	Article	IF	CITATIONS
271	Fabrication and characterization of heteropolyanion Langmuir–Blodgett films. Thin Solid Films, 1999, 339, 277-283.	0.8	33
272	Singleâ€Particle Tracking of Hepatitis B Virusâ€like Vesicle Entry into Cells. Small, 2011, 7, 1212-1218.	5.2	33
273	Preparation of Stable, Water-Soluble, Highly Luminescence Quantum Dots with Small Hydrodynamic Sizes. Journal of Nanoscience and Nanotechnology, 2011, 11, 1941-1949.	0.9	33
274	Oriented polyoxometalate–polycation multilayers on a carbon substrate. Journal of Materials Chemistry, 2000, 10, 2727-2733.	6.7	32
275	Research on Carbon-Based Electrode Materials for Supercapacitors. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 130-148.	2.2	32
276	Self-Assembled Monolayer Growth of Phospholipids on Hydrophobic Surface toward Mimetic Biomembranes:Â Scanning Probe Microscopy Study. Langmuir, 2000, 16, 1696-1702.	1.6	31
277	Fabrication of circular polarized luminescent helical fibers from chiral phenanthro[9,10]imidazole derivatives. Materials Chemistry Frontiers, 2017, 1, 646-653.	3.2	31
278	Self-Reorganization of CdTe Nanoparticles into Near-Infrared Hg _{1â^'<i>x</i>} Cd _{<i>x</i>} Te Nanowire Networks. Chemistry of Materials, 2009, 21, 3177-3182.	3.2	30
279	One-Pot Synthesis of Liquid Hg/Solid β-HgS Metalâ^'Semiconductor Heterostructures with Unique Electrical Properties. ACS Nano, 2011, 5, 2224-2230.	7.3	30
280	Multifunctional superhydrophobic composite films from a synergistic self-organization process. Journal of Materials Chemistry, 2012, 22, 109-114.	6.7	30
281	Electrochemistry of heteropolyanions in coulombically linked self-assembled monolayers. Journal of Electroanalytical Chemistry, 1998, 458, 87-97.	1.9	29
282	Enhanced electrochemical performance of La- and Zn-co-doped LiMn2O4 spinel as the cathode material for lithium-ion batteries. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	29
283	Self-assembled monolayer of ssDNA on Au(111) substrate. Surface Science, 2001, 480, L389-L394.	0.8	28
284	The Effect of Stabilizer Density on Transformation of CdTe Nanoparticles Induced by Ag Cations. Advanced Functional Materials, 2008, 18, 3801-3808.	7.8	28
285	Photoluminescence dynamics of ensemble and individual CdSe/ZnS quantum dots with an alloyed core/shell interface. Journal of Applied Physics, 2011, 109, 103509.	1.1	28
286	Massâ€Production of Singleâ€Crystalline Device Arrays of an Organic Chargeâ€Transfer Complex for its Memory Nature. Small, 2012, 8, 557-560.	5.2	28
287	Toward Understanding of Transfer Mechanism between Electrochemiluminescent Dyes and Luminescent Quantum Dots. Analytical Chemistry, 2014, 86, 3939-3946.	3.2	28
288	Surface growth of highly oriented covalent organic framework thin film with enhanced photoresponse speed. RSC Advances, 2015, 5, 92573-92576.	1.7	28

#	Article	IF	CITATIONS
289	Incorporating an Inert Polymer into the Interlayer Passivates Surface Defects in Methylammonium Lead Halide Perovskite Solar Cells. Chemistry - A European Journal, 2017, 23, 14650-14657.	1.7	28
290	Optically Active Inverse Opal Photonic Crystals. Journal of the American Chemical Society, 2018, 140, 16446-16449.	6.6	28
291	Engineering Nanoscale Metalâ€Organic Frameworks for Heterogeneous Catalysis. Small Structures, 2021, 2, 2000141.	6.9	28
292	Tunable Circularly Polarized Luminescence from Inorganic Chiral Photonic Crystals Doped with Quantum Dots. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
293	Recent advances in metal-organic frameworks for catalytic CO2 hydrogenation to diverse products. Nano Research, 2022, 15, 10110-10133.	5.8	28
294	Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions. Nano Research, 2017, 10, 3522-3533.	5.8	27
295	Recent progress in the design of analytical methods based on nanozymes. Journal of Materials Chemistry B, 2021, 9, 8174-8184.	2.9	27
296	Operando toolbox for heterogeneous interface in electrocatalysis. Chem Catalysis, 2021, 1, 509-522.	2.9	27
297	Electrocrystallized platinum nanoparticle on carbon substrate. Electrochemistry Communications, 2000, 2, 800-804.	2.3	26
298	Bioinspired Synthesis of Vertically Aligned ZnO Nanorod Arrays: Toward Greener Chemistry. Crystal Growth and Design, 2009, 9, 4793-4796.	1.4	26
299	Largeâ€Area Singleâ€Crystalline Nanocone Arrays of an Organic Chargeâ€Transfer Complex: Controlling Growth, Characterization, and Applications. Small, 2011, 7, 1412-1415.	5.2	26
300	High Hole Mobility in Longâ€Range Ordered 2D Lead Sulfide Nanocrystal Monolayer Films. Advanced Functional Materials, 2016, 26, 5182-5188.	7.8	25
301	Unexpected aggregation induced circular dichroism, circular polarized luminescence and helical assembly from achiral hexaphenylsilole (HPS). RSC Advances, 2017, 7, 24841-24847.	1.7	25
302	Surface-enhanced Raman scattering substrates of high-density and high-homogeneity hot spots by magneto–metal nanoprobe assembling. Optics Letters, 2010, 35, 3297.	1.7	24
303	Multiple Au cores in CeO2 hollow spheres for the superior catalytic reduction of p-nitrophenol. Chinese Journal of Catalysis, 2015, 36, 261-267.	6.9	24
304	Potential-induced transformation for surfactant aggregates on a metal surface. Journal of Electroanalytical Chemistry, 2001, 496, 82-87.	1.9	23
305	Development of a conjugated polymer-based fluorescent probe for selective detection of HOCl. Journal of Materials Chemistry C, 2015, 3, 5136-5140.	2.7	23
306	Gold Nanowire Chiral Ultrathin Films with Ultrastrong and Broadband Optical Activity. Angewandte Chemie, 2017, 129, 5137-5142.	1.6	23

#	Article	IF	CITATIONS
307	Enhancing hot-electron generation and transfer from metal to semiconductor in a plasmonic absorber. Nano Energy, 2019, 63, 103873.	8.2	23
308	Wet-chemistry grafted active pyridinic nitrogen sites on holey graphene edges as high performance ORR electrocatalyst for Zn-AirAbatteries. Materials Today Energy, 2019, 11, 24-29.	2.5	23
309	A high-performance and flexible thermoelectric generator based on the solution-processed composites of reduced graphene oxide nanosheets and bismuth telluride nanoplates. Nanoscale Advances, 2020, 2, 3244-3251.	2.2	23
310	Metal-organic framework nanosheets and their composites for heterogeneous thermal catalysis: Recent progresses and challenges. Chinese Chemical Letters, 2021, 32, 3307-3321.	4.8	23
311	Zone-Folded Longitudinal Acoustic Phonons Driving Self-Trapped State Emission in Colloidal CdSe Nanoplatelet Superlattices. Nano Letters, 2021, 21, 4137-4144.	4.5	22
312	Second Harmonic Generation Covering the Entire Visible Range from a 2D Material–Plasmon Hybrid Metasurface. Advanced Optical Materials, 2021, 9, 2100625.	3.6	22
313	Single site catalyst with enzyme-mimic micro-environment for electroreduction of CO2. Nano Research, 2022, 15, 1817-1823.	5.8	22
314	Controlled synthesis of highly active Au/CeO ₂ nanotubes for CO oxidation. Materials Chemistry Frontiers, 2017, 1, 1629-1634.	3.2	21
315	Biomimetic Chiral Photonic Crystals. Angewandte Chemie, 2019, 131, 7865-7869.	1.6	21
316	Photocatalytic hot-carrier chemistry. MRS Bulletin, 2020, 45, 20-25.	1.7	21
317	Self-Organization of Te Nanorods into V-Shaped Assemblies: A Brownian Dynamics Study and Experimental Insights. ACS Nano, 2007, 1, 126-132.	7.3	20
318	Progress of nanoscience in China. Frontiers of Physics, 2014, 9, 257-288.	2.4	20
319	Facile synthesis of homochiral compounds integrating circularly polarized luminescence and two-photon excited fluorescence. Chemical Communications, 2019, 55, 2210-2213.	2.2	20
320	Allâ€5olutionâ€Processed Ultrahigh Broadband and Wideâ€Angle Perfect Absorber Based on Mxene–Gold Nanoparticles. Advanced Optical Materials, 2020, 8, 2000447.	3.6	20
321	An efficient lithium extraction pathway in covalent organic framework membranes. Matter, 2021, 4, 2666-2668.	5.0	20
322	One-step template-free synthesis of monoporous polymer microspheres with uniform sizes via microwave-mediated dispersion polymerization. Nanoscale, 2011, 3, 4608.	2.8	19
323	Role of self-assembly in construction of inorganic nanostructural materials. Science China Chemistry, 2012, 55, 2272-2282.	4.2	19
324	Crucial Role of Anions on Arrangement of Cu ₂ S Nanocrystal Superstructures. Small, 2014, 10, 1523-1528.	5.2	19

#	Article	IF	CITATIONS
325	Ultrathin Chiral Metal–Organicâ€Framework Nanosheets for Efficient Enantioselective Separation. Angewandte Chemie, 2018, 130, 6989-6993.	1.6	18
326	Hot electron assisted photoelectrochemical water splitting from Au-decorated ZnO@TiO2 nanorods array. Nano Research, 2022, 15, 5824-5830.	5.8	18
327	Electrical and optical properties of colloidal semiconductor nanocrystals in aqueous environments. Superlattices and Microstructures, 2006, 40, 38-44.	1.4	17
328	Interfacial engineering of metal–organic frameworks/graphene oxide composite membrane by polyethyleneimine for efficient H ₂ /CH ₄ gas separation. Inorganic Chemistry Frontiers, 2019, 6, 2043-2049.	3.0	17
329	Integration and Synergy of Organic Single Crystals and Metal–Organic Frameworks in Core–Shell Heterostructures Enables Outstanding Gas Selectivity for Detection. Advanced Functional Materials, 2020, 30, 2005727.	7.8	17
330	Ligand effects on electronic and optoelectronic properties of two-dimensional PbS necking percolative superlattices. Nano Research, 2017, 10, 1249-1257.	5.8	16
331	Bottom Up Chalcogenide Thermoelectric Materials from Solutionâ€Processed Nanostructures. Advanced Materials Interfaces, 2017, 4, 1700517.	1.9	16
332	Enantioseparation of Au ₂₀ (PP ₃) ₄ Cl ₄ Clusters with Intrinsically Chiral Cores. Angewandte Chemie, 2018, 130, 9197-9201.	1.6	16
333	Air-stable formamidinium/methylammonium mixed lead iodide perovskite integral microcrystals with low trap density and high photo-responsivity. Physical Chemistry Chemical Physics, 2019, 21, 3106-3113.	1.3	16
334	Conductive 2D MOF Coupled with Superprotonic Conduction and Interfacial Pseudo-capacitance. Matter, 2020, 2, 798-800.	5.0	16
335	Enhanced Photoelectrochemical Detection of Bioaffinity Reactions by Vertically Oriented Au Nanobranches Complexed with a Biotinylated Polythiophene Derivative. Sensors, 2009, 9, 1094-1107.	2.1	15
336	Hollow TiO ₂ submicrospheres assembled by tiny nanocrystals as superior anode for lithium ion battery. Journal of Materials Chemistry A, 2019, 7, 23733-23738.	5.2	15
337	Tuning Surface Lattice Strain toward a Pt–Skin CoPt _{<i>x</i>} Truncated Octahedron for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2019, 123, 29722-29728.	1.5	15
338	Fast and Selective Semihydrogenation of Alkynes by Palladium Nanoparticles Sandwiched in Metal–Organic Frameworks. Angewandte Chemie, 2020, 132, 3679-3686.	1.6	15
339	Metal-organic frameworks enable regio- and stereo-selective functionalization of aldehydes and ketones. CheM, 2022, 8, 1688-1704.	5.8	15
340	Onâ€Demand Circularly Polarized Roomâ€Temperature Phosphorescence in Chiral Nematic Nanoporous Silica Films. Advanced Optical Materials, 2022, 10, .	3.6	14
341	Single atomic Fe–N ₄ active sites and neighboring graphitic nitrogen for efficient and stable electrochemical CO ₂ reduction. Nanoscale Horizons, 2022, 7, 916-923.	4.1	14
342	Self-reorganization of CdTe nanoparticles into two-dimensional Bi2Te3/CdTe nanosheets and their thermoelectrical properties. Physical Chemistry Chemical Physics, 2010, 12, 11900.	1.3	13

#	Article	IF	CITATIONS
343	Locating the Band III protein in quasi-native cell membranes. Analytical Methods, 2010, 2, 805.	1.3	13
344	Bioinspired Synthesis of ZnS Supraparticles toward Photoinduced Dechlorination of 2,2′,4,4′,5,5′â€Hexachlorobiphenyl. Chemistry - an Asian Journal, 2013, 8, 1765-1767.	1.7	13
345	Towards In Vivo Tumor Detection Using Polarization and Wavelength Characteristics of Selfâ€Assembled Gold Nanorods. ChemNanoMat, 2017, 3, 736-739.	1.5	13
346	Understanding the temperature-dependent charge transport, structural variation and photoluminescent properties in methylammonium lead halide perovskite single crystals. Journal of Materials Chemistry C, 2018, 6, 6556-6564.	2.7	13
347	Covalent organic framework membrane for size selective release of small molecules and peptide <i>in vitro</i> . Journal of Materials Chemistry B, 2020, 8, 7899-7903.	2.9	13
348	Single Atom Rutheniumâ€Doped CoP/CDs Nanosheets via Splicing of Carbonâ€Dots for Robust Hydrogen Production. Angewandte Chemie, 2021, 133, 7310-7320.	1.6	13
349	Continuous Gas–Liquid–Solid Slug Flow for Sustainable Heterogeneously Catalyzed PET-RAFT Polymerization. Industrial & Engineering Chemistry Research, 2021, 60, 5451-5462.	1.8	13
350	Recent advances in hollow metal-organic frameworks and their composites for heterogeneous thermal catalysis. Science China Chemistry, 2021, 64, 1854-1874.	4.2	13
351	Metal–Organic Frameworks for Electrocatalysis: Beyond Their Derivatives. Small Science, 2021, 1, .	5.8	13
352	One-dimensional self-assembly of inorganic nanoparticles. Frontiers of Physics in China, 2009, 4, 487-496.	1.0	12
353	Easy patterning of silver nanoparticle superstructures on silicon surfaces. Journal of Materials Chemistry, 2010, 20, 9608.	6.7	12
354	Facile Solvothermal Strategy to Construct Core–Shell Al ₂ O ₃ @CuO Submicrospheres with Improved Catalytic Activity for CO Oxidation. Chemistry - an Asian Journal, 2013, 8, 694-699.	1.7	12
355	Twoâ€Dimensional Architecture at Nanojunctions for Photocatalytic Hydrogen Generation. ChemCatChem, 2015, 7, 904-906.	1.8	12
356	Subâ€10 nm Polyamide Nanofiltration Membrane for Molecular Separation. Chemistry - an Asian Journal, 2020, 15, 2341-2345.	1.7	12
357	Synthesis of Uniform CdSe Quantum Wires via Oriented Attachment. Journal of Nanoscience and Nanotechnology, 2015, 15, 5798-5806.	0.9	11
358	Screening Commercial Semiconductors for Visible Light Driven Asymmetric Catalysis. Particle and Particle Systems Characterization, 2018, 35, 1700280.	1.2	11
359	C-doping into h-BN at low annealing temperature by alkaline earth metal borate for photoredox activity. RSC Advances, 2018, 8, 42109-42115.	1.7	11
360	Poly-phenylenediamine-derived atomically dispersed Ni sites for the electroreduction of CO ₂ to CO. Inorganic Chemistry Frontiers, 2019, 6, 1729-1734.	3.0	11

#	Article	IF	CITATIONS
361	Design of flexible inorganic thermoelectric devices for decrease of heat loss. Nano Research, 2021, 14, 2090-2104.	5.8	11
362	Superparamagnetic nano-immunobeads toward food safety insurance. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	10
363	Controlling micro-phase separation in semi-crystalline/amorphous conjugated block copolymers. Polymer Chemistry, 2014, 5, 4400-4404.	1.9	10
364	Hybrid fluorescent nanoparticles fabricated from pyridine-functionalized polyfluorene-based conjugated polymer as reversible pH probes over a broad range of acidity-alkalinity. Mikrochimica Acta, 2014, 181, 1529-1539.	2.5	10
365	Integration of inherent and induced chirality into subphthalocyanine analogue. Scientific Reports, 2016, 6, 28026.	1.6	10
366	Visible light catalyzed anti-markovnikov hydration of styrene to 2-phenylethanol: From batch to continuous. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 392, 112340.	2.0	10
367	Helical silver(I)-glutathione biocoordination polymer nanofibres. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120307.	1.6	9
368	Non-noble metal anode based dual-ion batteries: promising high-energy and low-cost energy storage devices. Science China Materials, 2017, 60, 368-370.	3.5	9
369	A reassembled nanoporous gold leaf electrocatalyst for efficient CO ₂ reduction towards CO. Inorganic Chemistry Frontiers, 2018, 5, 1207-1212.	3.0	9
370	Encapsulation of live cells by metal-organic frameworks for viability protection. Science China Materials, 2019, 62, 885-891.	3.5	9
371	Biomineralized coordinated metal polymers in epoxy for high mechanical and tribological properties. Composites Part A: Applied Science and Manufacturing, 2019, 123, 37-45.	3.8	9
372	Melamineâ€Doped Covalent Organic Framework Membranes for Enhanced Hydrogen Purification. Chemistry - an Asian Journal, 2021, 16, 3624-3629.	1.7	9
373	Carbon Doping Triggered Efficient Electrochemical Hydrogen Evolution of Crossâ€Linked Porous <scp>Ruâ€MoO₂</scp> Via Solidâ€Phase Reaction Strategy. Energy and Environmental Materials, 2023, 6, .	7.3	9
374	Copper-tetracyanoquinodimethane-derived copper electrocatalysts for highly selective carbon dioxide reduction to ethylene. Nano Research, 2022, 15, 7910-7916.	5.8	9
375	Photodriven Active Ion Transport Through a Janus Microporous Membrane. Angewandte Chemie, 2020, 132, 6303-6307.	1.6	8
376	Photoluminescence enhancement of MoS ₂ /CdSe quantum rod heterostructures induced by energy transfer and exciton–exciton annihilation suppression. Nanoscale Horizons, 2020, 5, 971-977.	4.1	8
377	Enhancing Electrocatalytic Production of <scp>H₂O₂</scp> by Modulating Coordination Environment of Cobalt Center. Bulletin of the Korean Chemical Society, 2021, 42, 1155-1160.	1.0	8
378	Photocatalytic Carboxylation of Phenyl Halides with <scp>CO₂</scp> by <scp>Metalâ€Organic</scp> Frameworks Materials. Chinese Journal of Chemistry, 2021, 39, 312-316.	2.6	8

#	Article	IF	CITATIONS
379	Powerful Dual Metal–Organic Framework Heterointerface for Wound Healing. ACS Central Science, 2019, 5, 1488-1489.	5.3	7
380	Remarkably Enhanced Hydrogen Oxidation Reaction Activity of Carbon-supported Pt by Facile Nickel Modification. Chemical Research in Chinese Universities, 2020, 36, 105-109.	1.3	7
381	Lightâ€Driven Active Ion Transport. Chemistry - A European Journal, 2020, 26, 13748-13753.	1.7	7
382	Nanotechnology and Nanomedicine: A Promising Avenue for Lung Cancer Diagnosis and Therapy. Engineering, 2021, 7, 1577-1585.	3.2	7
383	Detecting electronic structure evolution of semiconductor nanocrystals by magnetic circular dichroism spectroscopy. Nanoscale, 2019, 11, 19380-19386.	2.8	6
384	Endowing Zeolite LTA Superballs with the Ability to Manipulate Light in Multiple Ways. Angewandte Chemie - International Edition, 2020, 59, 19684-19690.	7.2	6
385	Conjugated microporous polymer Janus membrane for dye rejection from water. Journal of Membrane Science, 2022, 644, 120096.	4.1	6
386	Microwave-Controlled Facile Synthesis of Well-Defined PbS Hexapods. Journal of Nanoscience and Nanotechnology, 2011, 11, 7807-7812.	0.9	5
387	Configuration-Modulated Hot Electron Dynamics of Gold Nanorod Assemblies. Journal of Physical Chemistry Letters, 2019, 10, 6578-6583.	2.1	5
388	Fractal Reactor in Micro-Scale for Process Intensification. International Journal of Chemical Reactor Engineering, 2019, 17, .	0.6	5
389	Gas–Liquid Taylor Flow Characteristics in a Fractal Microchannel Network during Numbering-up and Sizing-up. Industrial & Engineering Chemistry Research, 2021, 60, 7935-7949.	1.8	5
390	Functional Nanomaterials and Their Applications: From Origins to Unanswered Questions. ChemPhysChem, 2012, 13, 2423-2425.	1.0	4
391	Broadband Surfaceâ€Enhanced Photoluminescence Based on Gold Nanocubic Selfâ€Assembly. Advanced Optical Materials, 2017, 5, 1700551.	3.6	4
392	Electron highways. Nature Energy, 2018, 3, 543-544.	19.8	4
393	Nanoscale Chirality. Particle and Particle Systems Characterization, 2019, 36, 1900129.	1.2	3
394	Molecular Nitrogen as an Extraordinary Accelerator for Hydrodeoxygenation. CheM, 2020, 6, 16-18.	5.8	3
395	Feâ€O Clusters Anchored on Nodes of Metal–Organic Frameworks for Direct Methane Oxidation. Angewandte Chemie, 2021, 133, 5875-5879.	1.6	3

Colloidal quantum dots as optoelectronic elements. , 2006, 6127, 131.

#	Article	IF	CITATIONS
397	Plasmonic Particles - Now Tailored to Your Needs. Particle and Particle Systems Characterization, 2017, 34, 1700103.	1.2	2
398	Synthesis of Two-dimensional Hydrophobic Copper-based Nanosheets and Their Application in Catalytic Oxidation of Sulfides. Acta Chimica Sinica, 2020, 78, 980.	0.5	2
399	Organization of Nanoparticles and Nanowires in Electronic Devices. , 2005, , 3-73.		2
400	Adenosine Triphosphate Disodium Modified Hole Transport Layer for Efficient Inverted Perovskite Solar Cells. ChemNanoMat, 2022, 8, .	1.5	2
401	Tunable Circularly Polarized Luminescence from Inorganic Chiral Photonic Crystals Doped with Quantum Dots. Angewandte Chemie, 0, , .	1.6	2
402	An Introduction to Chiral Nanomaterials: Origin, Construction, and Optical Application. , 0, , 1-28.		1
403	The Chemistry of 2D Materials Membranes. Chemistry - an Asian Journal, 2020, 15, 2240-2240.	1.7	1
404	Frontispiece: Lightâ€Driven Active Ion Transport. Chemistry - A European Journal, 2020, 26, .	1.7	1
405	A New Eye Re-looking at Single-Site Catalysts. CheM, 2021, 7, 5-7.	5.8	1
406	Upsurge in the construction of chiral nanomaterials. Chemical Science, 2022, 13, 593-594.	3.7	1
407	Integration of electrical conductivity and high strength in a SWNT polymeric nanocomposite. , 2007, , .		0
408	ONE-AND TWO-DIMENSIONAL ASSEMBLIES OF NANOPARTICLES: MECHANISMS OF FORMATION AND FUNCTIONALITY. Annual Review of Nano Research, 2008, , 345-375.	0.2	0
409	Growth mechanism of liquid Hg/solid β-HgS metal-semiconductor heterostructures. Science Bulletin, 2014, 59, 3894-3903.	1.7	0
410	Self-assembly of near-unity helical Ce _{1â^'x} M _x O ₂ (<i>x</i> = 0.1, M =) Tj	ЕТQ <u>q</u> 0 0 0	rgBT /Overloo
411	Research Activities in Advanced Materials at National Center for Nanoscience and Technology of China. Advanced Materials, 2019, 31, e1901327.	11.1	0
412	Endowing Zeolite LTA Superballs with the Ability to Manipulate Light in Multiple Ways. Angewandte Chemie, 2020, 132, 19852-19858.	1.6	0
413	Fabrication of Core–Shell Structured Metal Nanoparticles@Metal–Organic Frameworks for Heterogeneous Thermal Catalysis. Nanostructure Science and Technology, 2021, , 83-103.	0.1	0
414	Coordination-Responsive Drug Release inside Gold Nanorod@MOF for NIR-Induced Synergistic Chemo-Photothermal Therapy. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
415	Graphene Speeds up Growth of Strain-free AlN Film. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2019, 35, 557-558.	2.2	0
416	Precise Synthesis of Nanomaterials. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	0
417	Synthesis of chiral nanomaterials. , 2022, , .		0