
## Marco Masi

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7472846/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Terpestacin, a toxin produced by <i>Phoma exigua</i> var. <i>heteromorpha</i> , the causal agent of a<br>severe foliar disease of oleander ( <i>Nerium oleander</i> L.). Natural Product Research, 2022, 36,<br>1253-1259.                      | 1.0 | 4         |
| 2  | Phytotoxins produced by <i>Didymella glomerata</i> and <i>Truncatella angustata</i> , associated with grapevine trunk diseases (GTDs) in Iran. Natural Product Research, 2022, 36, 4316-4323.                                                   | 1.0 | 9         |
| 3  | Augmented phytotoxic effect of nanoencapsulated ophiobolin A. Natural Product Research, 2022, 36, 1143-1150.                                                                                                                                    | 1.0 | 3         |
| 4  | Polysaccharide Based Polymers Produced by Scabby Cankered Cactus Pear (Opuntia ficus-indica L.)<br>Infected by Neofusicoccum batangarum: Composition, Structure, and Chemico-Physical Properties.<br>Biomolecules, 2022, 12, 89.                | 1.8 | 4         |
| 5  | Untargeted and Targeted LC-MS/MS Based Metabolomics Study on In Vitro Culture of<br>Phaeoacremonium Species. Journal of Fungi (Basel, Switzerland), 2022, 8, 55.                                                                                | 1.5 | 3         |
| 6  | Cytotoxicity and Antiviral Properties of Alkaloids Isolated from Pancratium maritimum. Toxins, 2022, 14, 262.                                                                                                                                   | 1.5 | 9         |
| 7  | Bacterial Lipodepsipeptides and Some of Their Derivatives and Cyclic Dipeptides as Potential Agents for<br>Biocontrol of Pathogenic Bacteria and Fungi of Agrarian Plants. Journal of Agricultural and Food<br>Chemistry, 2022, , .             | 2.4 | 9         |
| 8  | Specialized Metabolites from the Allelopathic Plant Retama raetam as Potential Biopesticides. Toxins, 2022, 14, 311.                                                                                                                            | 1.5 | 4         |
| 9  | Complex Mixture of Arvensic Acids Isolated from Convolvulus arvensis Roots Identified as Inhibitors of Radicle Growth of Broomrape Weeds. Agriculture (Switzerland), 2022, 12, 585.                                                             | 1.4 | 2         |
| 10 | Anthraquinones and their analogues as potential biocontrol agents of rust and powdery mildew diseases of field crops. Pest Management Science, 2022, , .                                                                                        | 1.7 | 5         |
| 11 | (4Z)-Lachnophyllum Lactone, an Acetylenic Furanone from Conyza bonariensis, Identified for the First<br>Time with Allelopathic Activity against Cuscuta campestris. Agriculture (Switzerland), 2022, 12, 790.                                   | 1.4 | 8         |
| 12 | An Ecotoxicological Evaluation of Four Fungal Metabolites with Potential Application as Biocides for the Conservation of Cultural Heritage. Toxins, 2022, 14, 407.                                                                              | 1.5 | 2         |
| 13 | Cyclopaldic Acid, the Main Phytotoxic Metabolite of Diplodia cupressi, Induces Programmed Cell<br>Death and Autophagy in Arabidopsis thaliana. Toxins, 2022, 14, 474.                                                                           | 1.5 | 7         |
| 14 | In vitro characterization of iridoid and phenylethanoid glycosides from <i>Cistanche phelypaea</i> for nutraceutical and pharmacological applications. Phytotherapy Research, 2022, 36, 4155-4166.                                              | 2.8 | 5         |
| 15 | Diplofuranoxin, a disubstituted dihydrofuranone, was produced together with sphaeropsidin A and<br>epi-sphaeropsidone by Diplodia subglobosa, an emerging ash (Fraxinus excelsior L.) pathogen in Europe.<br>Phytochemistry, 2022, 202, 113302. | 1.4 | 3         |
| 16 | Phytotoxic metabolites produced by <i>Diaporthe eres</i> involved in cane blight of grapevine in Italy. Natural Product Research, 2021, 35, 2872-2880.                                                                                          | 1.0 | 15        |
| 17 | Phytotoxic metabolites from <i>Stilbocrea macrostoma,</i> a fungal pathogen of <i>Quercus<br/>brantii</i> in Iran. Natural Product Research, 2021, 35, 5857-5861.                                                                               | 1.0 | 8         |
| 18 | Massarilactones D and H, phytotoxins produced by <i>Kalmusia variispora</i> , associated with grapevine trunk diseases (GTDs) in Iran. Natural Product Research, 2021, 35, 5192-5198.                                                           | 1.0 | 9         |

| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Luteoethanones A and B, two phytotoxic 1-substituted ethanones produced by <i>Neofusicoccum<br/>luteum,</i> a causal agent of Botryosphaeria dieback on grapevine. Natural Product Research, 2021, 35,<br>4542-4549.                                                  | 1.0 | 7         |
| 20 | lsolation of 2,5-diketopiperazines from <i>Lysobacter capsici</i> AZ78 with activity against<br><i>Rhodococcus fascians</i> . Natural Product Research, 2021, 35, 4969-4977.                                                                                          | 1.0 | 11        |
| 21 | Secondary metabolites of <i>Thymelaea hirsuta</i> , a plant collected from the Sicilian Island of Lampedusa. Natural Product Research, 2021, 35, 3977-3984.                                                                                                           | 1.0 | 4         |
| 22 | Effect of cultural conditions on the production of radicinin, a specific fungal phytotoxin for<br>buffelgrass (Cenchrus ciliaris) biocontrol, by different Cochlioboulus australiensis strains. Natural<br>Product Research, 2021, 35, 99-107.                        | 1.0 | 10        |
| 23 | Biodegradable polymers as carriers for tuning the release and improve the herbicidal effectiveness of<br>Dittrichia viscosa plant organic extracts. Pest Management Science, 2021, 77, 646-658.                                                                       | 1.7 | 8         |
| 24 | ADMET profile and virtual screening of plant and microbial natural metabolites as SARS-CoV-2 S1<br>glycoprotein receptor binding domain and main protease inhibitors. European Journal of<br>Pharmacology, 2021, 890, 173648.                                         | 1.7 | 28        |
| 25 | <i>α</i> -Costic acid, a plant sesquiterpene with acaricidal activity against <i>Varroa destructor</i> parasitizing the honey bee. Natural Product Research, 2021, 35, 1428-1435.                                                                                     | 1.0 | 14        |
| 26 | Farnesane-Type Sesquiterpenoids with Antibiotic Activity from Chiliadenus lopadusanus. Antibiotics, 2021, 10, 148.                                                                                                                                                    | 1.5 | 10        |
| 27 | Fungal Metabolites with Antagonistic Activity against Fungi of Lithic Substrata. Biomolecules, 2021, 11, 295.                                                                                                                                                         | 1.8 | 6         |
| 28 | Plant Growth Promotion Function of Bacillus sp. Strains Isolated from Salt-Pan Rhizosphere and<br>Their Biocontrol Potential against Macrophomina phaseolina. International Journal of Molecular<br>Sciences, 2021, 22, 3324.                                         | 1.8 | 33        |
| 29 | Allelopathic Effect of Quercetin, a Flavonoid from Fagopyrum esculentum Roots in the Radicle<br>Growth of Phelipanche ramosa: Quercetin Natural and Semisynthetic Analogues Were Used for a<br>Structure-Activity Relationship Investigation. Plants, 2021, 10, 543.  | 1.6 | 17        |
| 30 | Production of Phytotoxic Metabolites by Botryosphaeriaceae in Naturally Infected and Artificially<br>Inoculated Grapevines. Plants, 2021, 10, 802.                                                                                                                    | 1.6 | 9         |
| 31 | Activity of Some Plant and Fungal Metabolites towards Aedes albopictus (Diptera, Culicidae). Toxins, 2021, 13, 285.                                                                                                                                                   | 1.5 | 2         |
| 32 | Effects of Benzoquinones on Radicles of Orobanche and Phelipanche Species. Plants, 2021, 10, 746.                                                                                                                                                                     | 1.6 | 7         |
| 33 | Epithelial-mesenchymal transition sensitizes breast cancer cells to cell death via the fungus-derived sesterterpenoid ophiobolin A. Scientific Reports, 2021, 11, 10652.                                                                                              | 1.6 | 9         |
| 34 | Bioactive secondary metabolites produced by the emerging pathogen Diplodia olivarum.<br>Phytopathologia Mediterranea, 2021, 60, 129-138.                                                                                                                              | 0.6 | 8         |
| 35 | Isolation and Characterization of an Endophytic Fungus Colletotrichum coccodes Producing Tyrosol<br>From Houttuynia cordata Thunb. Using ITS2 RNA Secondary Structure and Molecular Docking Study.<br>Frontiers in Bioengineering and Biotechnology, 2021, 9, 650247. | 2.0 | 28        |
| 36 | Sesquiterpene Lactones from Cotula cinerea with Antibiotic Activity against Clinical Isolates of Enterococcus faecalis. Antibiotics, 2021, 10, 819.                                                                                                                   | 1.5 | 8         |

| #  | Article                                                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Sphaeropsidin A: A Pimarane Diterpene with Interesting Biological Activities and Promising Practical Applications. ChemBioChem, 2021, 22, 3263-3269.                                                                                                                                                                         | 1.3 | 7         |
| 38 | Structural studies on the O-specific polysaccharide of the lipopolysaccharide from Pseudomonas<br>donghuensis strain SVBP6, with antifungal activity against the phytopathogenic fungus<br>Macrophomina phaseolina. International Journal of Biological Macromolecules, 2021, 182, 2019-2023.                                | 3.6 | 5         |
| 39 | Amaryllidaceae Alkaloid Cherylline Inhibits the Replication of Dengue and Zika Viruses. Antimicrobial<br>Agents and Chemotherapy, 2021, 65, e0039821.                                                                                                                                                                        | 1.4 | 21        |
| 40 | Isolation and Biological Characterization of Homoisoflavanoids and the Alkylamide<br>N-p-Coumaroyltyramine from Crinum biflorum Rottb., an Amaryllidaceae Species Collected in Senegal.<br>Biomolecules, 2021, 11, 1298.                                                                                                     | 1.8 | 8         |
| 41 | Pinofuranoxins A and B, Bioactive Trisubstituted Furanones Produced by the Invasive Pathogen <i>Diplodia sapinea</i> . Journal of Natural Products, 2021, 84, 2600-2605.                                                                                                                                                     | 1.5 | 4         |
| 42 | Argyrotoxins A-C, a trisubstituted dihydroisobenzofuranone, a tetrasubstituted<br>2-hydroxyethylbenzamide and a tetrasubstitutedphenyl trisubstitutedbutyl ether produced by<br>Alternaria argyroxiphii, the causal agent of leaf spot on African mahogany trees (Khaya senegalensis).<br>Phytochemistry, 2021, 191, 112921. | 1.4 | 4         |
| 43 | Phaseocyclopentenones A and B, Phytotoxic Penta- and Tetrasubstituted Cyclopentenones Produced by<br><i>Macrophomina phaseolina</i> , the Causal Agent of Charcoal Rot of Soybean in Argentina. Journal<br>of Natural Products, 2021, 84, 459-465.                                                                           | 1.5 | 15        |
| 44 | Phenazine-1-Carboxylic Acid (PCA), Produced for the First Time as an Antifungal Metabolite by<br><i>Truncatella angustata</i> , a Causal Agent of Grapevine Trunk Diseases (GTDs) in Iran. Journal of<br>Agricultural and Food Chemistry, 2021, 69, 12143-12147.                                                             | 2.4 | 5         |
| 45 | Polygodial and Ophiobolin A Analogues for Covalent Crosslinking of Anticancer Targets.<br>International Journal of Molecular Sciences, 2021, 22, 11256.                                                                                                                                                                      | 1.8 | 5         |
| 46 | Phytotoxins Produced by Two Biscogniauxia rosacearum Strains, Causal Agents of Grapevine Trunk<br>Diseases, and Charcoal Canker of Oak Trees in Iran. Toxins, 2021, 13, 812.                                                                                                                                                 | 1.5 | 3         |
| 47 | Pseudomonas fluorescens Showing Antifungal Activity against Macrophomina phaseolina, a Severe<br>Pathogenic Fungus of Soybean, Produces Phenazine as the Main Active Metabolite. Biomolecules, 2021,<br>11, 1728.                                                                                                            | 1.8 | 14        |
| 48 | In Vitro and In Vivo Toxicity Evaluation of Natural Products with Potential Applications as Biopesticides. Toxins, 2021, 13, 805.                                                                                                                                                                                            | 1.5 | 5         |
| 49 | Natural Bioactive Cinnamoyltyramine Alkylamides and Co-Metabolites. Biomolecules, 2021, 11, 1765.                                                                                                                                                                                                                            | 1.8 | 6         |
| 50 | The Assignment of the Absolute Configuration of Non-Cyclic Sesquiterpenes by Vibrational and<br>Electronic Circular Dichroism: The Example of Chiliadenus lopadusanus Metabolites. Biomolecules,<br>2021, 11, 1902.                                                                                                          | 1.8 | 1         |
| 51 | Assessment of weed root extracts for allelopathic activity against Orobanche and Phelipanche species. Phytopathologia Mediterranea, 2021, 60, 455-466.                                                                                                                                                                       | 0.6 | 7         |
| 52 | Spencertoxin and spencer acid, new phytotoxic derivatives of diacrylic acid and dipyridinbutan-1,4-diol<br>produced by Spencermartinsia viticola, a causal agent of grapevine Botryosphaeria dieback in<br>Australia. Arabian Journal of Chemistry, 2020, 13, 1803-1808.                                                     | 2.3 | 14        |
| 53 | Antimicrobial secondary metabolites of an endolichenic <i>Aspergillus niger</i> isolated from lichen thallus of <i>Parmotrema ravum</i> . Natural Product Research, 2020, 34, 2573-2580.                                                                                                                                     | 1.0 | 30        |
| 54 | A comprehensive study on narcissus tazetta subsp. tazetta L.: Chemo-profiling, isolation,<br>anticholinesterase activity and molecular docking of amaryllidaceae alkaloids. South African Journal<br>of Botany, 2020, 130, 148-154.                                                                                          | 1.2 | 12        |

| #  | Article                                                                                                                                                                                                                              | IF                | CITATIONS      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|
| 55 | Thermoplastic starch and bioactive chitosan sub-microparticle biocomposites: Antifungal and chemico-physical properties of the films. Carbohydrate Polymers, 2020, 230, 115627.                                                      | 5.1               | 32             |
| 56 | Drophiobiolins A and B, Bioactive Ophiobolan Sestertepenoids Produced by Dreschslera gigantea.<br>Journal of Natural Products, 2020, 83, 3387-3396.                                                                                  | 1.5               | 8              |
| 57 | Pharmacophore-Directed Retrosynthesis Applied to Ophiobolin A: Simplified Bicyclic Derivatives<br>Displaying Anticancer Activity. Organic Letters, 2020, 22, 8307-8312.                                                              | 2.4               | 15             |
| 58 | Anti-Biofilm Activity of the Fungal Phytotoxin Sphaeropsidin A against Clinical Isolates of Antibiotic-Resistant Bacteria. Toxins, 2020, 12, 444.                                                                                    | 1.5               | 27             |
| 59 | Fungal Bioactive Anthraquinones and Analogues. Toxins, 2020, 12, 714.                                                                                                                                                                | 1.5               | 39             |
| 60 | Further secondary metabolites produced by the fungus <i>Pyricularia grisea</i> isolated from buffelgrass ( <scp><i>Cenchrus ciliaris</i></scp> ). Chirality, 2020, 32, 1234-1242.                                                    | 1.3               | 7              |
| 61 | Deciphering the chemical instability of sphaeropsidin A under physiological conditions – degradation studies and structural elucidation of the major metabolite. Organic and Biomolecular Chemistry, 2020, 18, 8147-8160.            | 1.5               | Ο              |
| 62 | Acaricidal activity of the plant sesquiterpenoids α-costic acid and inuloxin A against the cattle<br>ectoparasitic tick, Rhipicephalus (Boophilus) annulatus. International Journal of Acarology, 2020, 46,<br>409-413.              | 0.3               | 5              |
| 63 | Evaluation of Mugwort (Artemisia vulgaris L.) Aqueous Extract as a Potential Bioherbicide to Control<br>Amaranthus retroflexus L. in Maize. Agriculture (Switzerland), 2020, 10, 642.                                                | 1.4               | 16             |
| 64 | Advances in the Chemical and Biological Characterization of Amaryllidaceae Alkaloids and Natural<br>Analogues Isolated in the Last Decade. Molecules, 2020, 25, 5621.                                                                | 1.7               | 15             |
| 65 | Melleins—Intriguing Natural Compounds. Biomolecules, 2020, 10, 772.                                                                                                                                                                  | 1.8               | 33             |
| 66 | Stoechanones A and B, Phytotoxic Copaane Sesquiterpenoids Isolated from <i>Lavandula stoechas</i><br>with Potential Herbicidal Activity against <i>Amaranthus retroflexus</i> . Journal of Natural<br>Products, 2020, 83, 1658-1665. | 1.5               | 15             |
| 67 | Higginsianins D and E, Cytotoxic Diterpenoids Produced by <i>Colletotrichum higginsianum</i> .<br>Journal of Natural Products, 2020, 83, 1131-1138.                                                                                  | 1.5               | 4              |
| 68 | Phytotoxic Metabolites Isolated from Neufusicoccum batangarum, the Causal Agent of the Scabby<br>Canker of Cactus Pear (Opuntia ficus-indica L.). Toxins, 2020, 12, 126.                                                             | 1.5               | 20             |
| 69 | Absolute Configuration Assignment to Chiral Natural Products by Biphenyl Chiroptical Probes: The<br>Case of the Phytotoxins Colletochlorin A and Agropyrenol. Journal of Natural Products, 2020, 83,<br>1061-1068.                   | 1.5               | 18             |
| 70 | The incorporation and release of ungeremine, an antifungal Amaryllidaceae alkaloid, in poly(lactic) Tj ETQq0 0 0                                                                                                                     | rgBT /Ovei<br>1.3 | rlock 10 Tf 50 |
|    | Phytotoxic Metabolites from Three <i>Neofusicoccum</i> Species Causal Agents of Botryosphaeria                                                                                                                                       |                   |                |

| 71 | Phytotoxic Metabolites from Three <i>Neofusicoccum</i> Species Causal Agents of Botryosphaeria<br>Dieback in Australia, Luteopyroxin, Neoanthraquinone, and Luteoxepinone, a Disubstituted<br>Furo-α-pyrone, a Hexasubstituted Anthraquinone, and a Trisubstituted Oxepi-2-one from<br><i>Neofusicoccum luteum</i> . lournal of Natural Products. 2020. 83. 453-460. | 1.5 | 16 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 72 | 7â€hydroxytropolone is the main metabolite responsible for the fungal antagonism of <i>Pseudomonas donghuensis</i> strain SVBP6. Environmental Microbiology, 2020, 22, 2550-2563.                                                                                                                                                                                    | 1.8 | 37 |

| #  | Article                                                                                                                                                                                                                                                             | IF                | CITATIONS            |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|
| 73 | Rabenchromenone and Rabenzophenone, Phytotoxic Tetrasubstituted Chromenone and<br>Hexasubstituted Benzophenone Constituents Produced by the Oak-Decline-Associated Fungus<br><i>Fimetariella rabenhorstii</i> . Journal of Natural Products, 2020, 83, 447-452.     | 1.5               | 17                   |
| 74 | Gigantelline, gigantellinine and gigancrinine, cherylline- and crinine-type alkaloids isolated from<br>Crinum jagus with anti-acetylcholinesterase activity. Phytochemistry, 2020, 175, 112390.                                                                     | 1.4               | 28                   |
| 75 | Secondary metabolites produced by <i>Colletotrichum lupini</i> , the causal agent of anthachnose of lupin ( <i>Lupinus</i> spp.). Mycologia, 2020, 112, 533-542.                                                                                                    | 0.8               | 11                   |
| 76 | α-costic acid, a plant sesquiterpenoid from Dittrichia viscosa, as modifier of Poly (lactic acid)<br>properties: a novel exploitation of the autochthone biomass metabolite for a wholly biodegradable<br>system. Industrial Crops and Products, 2020, 146, 112134. | 2.5               | 18                   |
| 77 | Have lichenized fungi delivered promising anticancer small molecules?. Phytochemistry Reviews, 2019, 18, 1-36.                                                                                                                                                      | 3.1               | 19                   |
| 78 | Secondary metabolites produced by <i>Sardiniella urbana</i> , a new emerging pathogen on European hackberry. Natural Product Research, 2019, 33, 1862-1869.                                                                                                         | 1.0               | 10                   |
| 79 | Phytotoxic Activity and Structure–Activity Relationships of Radicinin Derivatives against the Invasive<br>Weed Buffelgrass (Cenchrus ciliaris). Molecules, 2019, 24, 2793.                                                                                          | 1.7               | 13                   |
| 80 | Phytotoxins produced by pathogenic fungi of agrarian plants. Phytochemistry Reviews, 2019, 18, 843-870.                                                                                                                                                             | 3.1               | 38                   |
| 81 | The fungal sesquiterpenoid pyrenophoric acid B uses the plant ABA biosynthetic pathway to inhibit seed germination. Journal of Experimental Botany, 2019, 70, 5487-5494.                                                                                            | 2.4               | 7                    |
| 82 | Laboratory Evaluation of Natural and Synthetic Aromatic Compounds as Potential Attractants for<br>Male Mediterranean fruit Fly, Ceratitis capitata. Molecules, 2019, 24, 2409.                                                                                      | 1.7               | 7                    |
| 83 | Assignment Through Chiroptical Methods of The Absolute Configuration of Fungal<br>Dihydropyranpyran-4-5-Diones Phytotoxins, Potential Herbicides for Buffelgrass (Cenchrus ciliaris)<br>Biocontrol. Molecules, 2019, 24, 3022.                                      | 1.7               | 13                   |
| 84 | Hyfraxinic Acid, a Phytotoxic Tetrasubstituted Octanoic Acid, Produced by the Ash ( <i>Fraxinus) Tj ETQq0 0 0 rg<br/>Analogues. Journal of Agricultural and Food Chemistry, 2019, 67, 13617-13623.</i>                                                              | BT /Overlo<br>2.4 | ock 10 Tf 50 3<br>12 |
| 85 | Inuloxin E, a New Seco-Eudesmanolide Isolated from Dittrichia viscosa, Stimulating Orobanche cumana Seed Germination. Molecules, 2019, 24, 3479.                                                                                                                    | 1.7               | 7                    |
| 86 | Synthesis and Herbicidal Activity Against Buffelgrass (Cenchrus ciliaris) of (±)-3-deoxyradicinin.<br>Molecules, 2019, 24, 3193.                                                                                                                                    | 1.7               | 12                   |
| 87 | A Brief Up-to-Date Overview of Amaryllidaceae Alkaloids: Phytochemical Studies of <i>Narcissus<br/>tazetta</i> subsp. <i>tazetta</i> L., Collected in Turkey. Natural Product Communications, 2019, 14,<br>1934578X1987290.                                         | 0.2               | 3                    |
| 88 | Higginsianins A and B, two fungal diterpenoid α-pyrones with cytotoxic activity against human cancer<br>cells. Toxicology in Vitro, 2019, 61, 104614.                                                                                                               | 1.1               | 15                   |
| 89 | Unbiased Determination of Absolute Configurations by vis-Ã-vis Comparison of Experimental and<br>Simulated Spectra: The Challenging Case of Diplopyrone. Journal of Physical Chemistry B, 2019, 123,<br>9230-9237.                                                  | 1.2               | 29                   |
| 90 | Impact of fungal and plant metabolites application on early development stages of pea powdery mildew. Pest Management Science, 2019, 75, 2464-2473.                                                                                                                 | 1.7               | 9                    |

| #   | Article                                                                                                                                                                                                                                                                                                                    | IF                  | CITATIONS    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|
| 91  | Radicinin, a Fungal Phytotoxin as a Target-Specific Bioherbicide for Invasive Buffelgrass (Cenchrus) Tj ETQq1 I                                                                                                                                                                                                            | l 0.784314 r<br>1.7 | gBT_{0verloc |
| 92  | Alkaloids isolated from Haemanthus humilis Jacq., an indigenous South African Amaryllidaceae:<br>Anticancer activity of coccinine and montanine. South African Journal of Botany, 2019, 126, 277-281.                                                                                                                      | 1.2                 | 25           |
| 93  | Encapsulation of inuloxin A, a plant germacrane sesquiterpene with potential herbicidal activity, in<br>β-cyclodextrins. Organic and Biomolecular Chemistry, 2019, 17, 2508-2515.                                                                                                                                          | 1.5                 | 25           |
| 94  | Chemistry and biology of ophiobolin A and its congeners. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 859-869.                                                                                                                                                                                                    | 1.0                 | 42           |
| 95  | Funiculosone, a substituted dihydroxanthene-1,9-dione with two of its analogues produced by an<br>endolichenic fungus Talaromyces funiculosus and their antimicrobial activity. Phytochemistry, 2019,<br>157, 175-183.                                                                                                     | 1.4                 | 36           |
| 96  | Phytotoxic metabolites by nine species of Botryosphaeriaceae involved in grapevine dieback in<br>Australia and identification of those produced by <i>Diplodia mutila</i> , <i>Diplodia seriata</i> ,<br><i>Neofusicoccum australe</i> and <i>Neofusicoccum luteum</i> . Natural Product Research, 2019, 33,<br>2223-2229. | 1.0                 | 30           |
| 97  | Antifeedant activity of long-chain alcohols, and fungal and plant metabolites against pea aphid<br>( <i>Acyrthosiphon pisum</i> ) as potential biocontrol strategy. Natural Product Research, 2019, 33,<br>2471-2479.                                                                                                      | 1.0                 | 20           |
| 98  | Lathyroxins A and B, Phytotoxic Monosubstituted Phenols Isolated from <i>Ascochyta lentis</i> var.<br><i>lathyri</i> , a Fungal Pathogen of Grass Pea ( <i>Lathyrus sativus</i> ). Journal of Natural Products,<br>2018, 81, 1093-1097.                                                                                    | 1.5                 | 14           |
| 99  | Advances on Fungal Phytotoxins and Their Role in Grapevine Trunk Diseases. Journal of Agricultural and Food Chemistry, 2018, 66, 5948-5958.                                                                                                                                                                                | 2.4                 | 52           |
| 100 | Synthetic analogues of the montanine-type alkaloids with activity against apoptosis-resistant cancer cells. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 589-593.                                                                                                                                                 | 1.0                 | 19           |
| 101 | The main phytotoxic metabolite produced by a strain of <i>Fusarium oxysporum</i> inducing grapevine plant declining in Italy. Natural Product Research, 2018, 32, 2398-2407.                                                                                                                                               | 1.0                 | 15           |
| 102 | Synthesis and mode of action studies of N -[(-)-jasmonyl]- S -tyrosin and ester seiridin jasmonate.<br>Phytochemistry, 2018, 147, 132-139.                                                                                                                                                                                 | 1.4                 | 6            |
| 103 | Effect of pH and TPP concentration on chemico-physical properties, release kinetics and antifungal activity of Chitosan-TPP-Ungeremine microbeads. Carbohydrate Polymers, 2018, 195, 631-641.                                                                                                                              | 5.1                 | 55           |
| 104 | Phytotoxic Metabolites Produced by <i>Diaporthella cryptica</i> , the Causal Agent of Hazelnut<br>Branch Canker. Journal of Agricultural and Food Chemistry, 2018, 66, 3435-3442.                                                                                                                                          | 2.4                 | 20           |
| 105 | The fungal phytotoxin lasiojasmonate A activates the plant jasmonic acid pathway. Journal of<br>Experimental Botany, 2018, 69, 3095-3102.                                                                                                                                                                                  | 2.4                 | 41           |
| 106 | Development of a rapid and sensitive HPLC method for the identification and quantification of cavoxin and cavoxone in Phoma cava culture filtrates. Natural Product Research, 2018, 32, 1611-1615.                                                                                                                         | 1.0                 | 5            |
| 107 | Antimould microbial and plant metabolites with potential use in intelligent food packaging. Natural<br>Product Research, 2018, 32, 1605-1610.                                                                                                                                                                              | 1.0                 | 21           |
| 108 | On the metabolites produced by <i>Colletotrichum gloeosporioides</i> a fungus proposed for the<br><i>Ambrosia artemisiifolia</i> biocontrol; spectroscopic data and absolute configuration assignment<br>of colletochlorin A. Natural Product Research, 2018, 32, 1537-1547.                                               | 1.0                 | 13           |

| #   | Article                                                                                                                                                                                                                                                 | IF                            | CITATIONS         |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|
| 109 | First isolation of acetovanillone and piceol from Crinum buphanoides and Crinum graminicola (l.) Tj ETQq1 1 0.784                                                                                                                                       | 4314 rgBT<br>1.2              | /Overlock         |
| 110 | Allelopathy for Parasitic Plant Management. Natural Product Communications, 2018, 13, 1934578X1801300.                                                                                                                                                  | 0.2                           | 6                 |
| 111 | Lentiquinones A, B, and C, Phytotoxic Anthraquinone Derivatives Isolated from <i>Ascochyta<br/>lentis</i> , a Pathogen of Lentil. Journal of Natural Products, 2018, 81, 2700-2709.                                                                     | 1.5                           | 20                |
| 112 | (+)-epi-Epoformin, a Phytotoxic Fungal Cyclohexenepoxide: Structure Activity Relationships.<br>Molecules, 2018, 23, 1529.                                                                                                                               | 1.7                           | 13                |
| 113 | Diploquinones A and B, Two New Phytotoxic Tetrasubstituted 1,4-Naphthoquinones from <i>Diplodia<br/>mutila</i> , a Causal Agent of Grapevine Trunk Disease. Journal of Agricultural and Food Chemistry,<br>2018, 66, 11968-11973.                       | 2.4                           | 10                |
| 114 | Pimarane diterpenes: Natural source, stereochemical configuration, and biological activity. Chirality, 2018, 30, 1115-1134.                                                                                                                             | 1.3                           | 36                |
| 115 | Asymmetric synthesis and structure-activity studies of the fungal metabolites colletorin A, colletochlorin A and their halogenates analogues. Tetrahedron, 2018, 74, 3912-3923.                                                                         | 1.0                           | 8                 |
| 116 | Absolute configuration assignment to anticancer Amaryllidaceae alkaloid jonquailine. Fìtoterapìâ,<br>2018, 129, 78-84.                                                                                                                                  | 1.1                           | 25                |
| 117 | Phytotoxic Activity of Metabolites Isolated from Rutstroemia sp.n., the Causal Agent of Bleach Blonde<br>Syndrome on Cheatgrass (Bromus tectorum). Molecules, 2018, 23, 1734.                                                                           | 1.7                           | 16                |
| 118 | Fungal Metabolites Antagonists towards Plant Pests and Human Pathogens: Structure-Activity<br>Relationship Studies. Molecules, 2018, 23, 834.                                                                                                           | 1.7                           | 26                |
| 119 | Alkaloids isolated from indigenous South African Amaryllidaceae: Crinum buphanoides (Welw. ex) Tj ETQq1 1 0.78<br>South African Journal of Botany, 2018, 118, 188-191.                                                                                  | 34314 rg₿ <sup>-</sup><br>1.2 | T /Overlock<br>12 |
| 120 | Novel Topologically Complex Scaffold Derived from Alkaloid Haemanthamine. Molecules, 2018, 23, 255.                                                                                                                                                     | 1.7                           | 11                |
| 121 | The Fungal Metabolite Eurochevalierine, a Sequiterpene Alkaloid, Displays Anti-Cancer Properties through Selective Sirtuin 1/2 Inhibition. Molecules, 2018, 23, 333.                                                                                    | 1.7                           | 10                |
| 122 | Bioactive Metabolites from Pathogenic and Endophytic Fungi of Forest Trees. Current Medicinal Chemistry, 2018, 25, 208-252.                                                                                                                             | 1.2                           | 53                |
| 123 | Colletochlorins E and F, New Phytotoxic Tetrasubstituted Pyran-2-one and Dihydrobenzofuran,<br>Isolated from <i>Colletotrichum higginsianum</i> with Potential Herbicidal Activity. Journal of<br>Agricultural and Food Chemistry, 2017, 65, 1124-1130. | 2.4                           | 39                |
| 124 | Phytotoxic Lipophilic Metabolites Produced by Grapevine Strains of <i>Lasiodiplodia</i> Species in Brazil. Journal of Agricultural and Food Chemistry, 2017, 65, 1102-1107.                                                                             | 2.4                           | 39                |
| 125 | Application of Mosher's method for absolute configuration assignment to bioactive plants and fungi metabolites. Journal of Pharmaceutical and Biomedical Analysis, 2017, 144, 59-89.                                                                    | 1.4                           | 45                |
| 126 | Phytotoxic activity against <i>Bromus tectorum</i> for secondary metabolites of a seed-pathogenic<br><i>Fusarium</i> strain belonging to the <i>F. tricinctum</i> species complex. Natural Product<br>Research, 2017, 31, 2768-2777.                    | 1.0                           | 10                |

Marco Masi

| #   | ARTICLE                                                                                                                                                                                                                                                        | IF                  | CITATIONS             |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|
| 127 | Cochliotoxin, a Dihydropyranopyran-4,5-dione, and Its Analogues Produced byCochliobolus<br>australiensisDisplay Phytotoxic Activity against Buffelgrass (Cenchrus ciliaris). Journal of Natural<br>Products, 2017, 80, 1241-1247.                              | 1.5                 | 24                    |
| 128 | Computed determination of the in vitro optimal chemocombinations of sphaeropsidin A with chemotherapeutic agents to combat melanomas. Cancer Chemotherapy and Pharmacology, 2017, 79, 971-983.                                                                 | 1.1                 | 10                    |
| 129 | An ELISA method to identify the phytotoxic Pseudomonas syringae pv. actinidiae exopolysaccharides: A<br>tool for rapid immunochemical detection of kiwifruit bacterial canker. Phytochemistry Letters, 2017,<br>19, 136-140.                                   | 0.6                 | 13                    |
| 130 | Chloromonilinic Acids C and D, Phytotoxic Tetrasubstituted 3-Chromanonacrylic Acids Isolated from<br><i>Cochliobolus australiensis</i> with Potential Herbicidal Activity against Buffelgrass ( <i>Cenchrus) Tj ETQq0 0</i>                                    | 0 <b>ng:B</b> T /Ov | ve <b>dø</b> ck 10 Tf |
| 131 | Colletopyrandione, a new phytotoxic tetrasubstituted indolylidenepyra n -2,4-dione, and colletochlorins G and H, new tetrasubstituted chroman- and isochroman-3,5-diols isolated from Colletotrichum higginsianum. Tetrahedron, 2017, 73, 6644-6650.           | 1.0                 | 14                    |
| 132 | Fraxitoxin, a New Isochromanone Isolated from <i>Diplodia fraxini</i> . Chemistry and Biodiversity, 2017, 14, e1700325.                                                                                                                                        | 1.0                 | 13                    |
| 133 | Pyriculins A and B, two monosubstituted hexâ€4â€eneâ€2,3â€diols and other phytotoxic metabolites produced by <i>Pyricularia grisea</i> isolated from buffelgrass ( <scp><i>Cenchrus ciliaris</i></scp> ). Chirality, 2017, 29, 726-736.                        | 1.3                 | 17                    |
| 134 | Importance and Difficulties in the Use of Chiroptical Methods to Assign the Absolute Configuration of Natural Products: The Case of Phytotoxic Pyrones and Furanones Produced by <i>Diplodia corticola</i> . Journal of Natural Products, 2017, 80, 2406-2415. | 1.5                 | 33                    |
| 135 | Cover Image, Volume 29, Issue 9. Chirality, 2017, 29, i.                                                                                                                                                                                                       | 1.3                 | 0                     |
| 136 | Amaryllidaceae alkaloids: Absolute configuration and biological activity. Chirality, 2017, 29, 486-499.                                                                                                                                                        | 1.3                 | 56                    |
| 137 | A survey of bacterial, fungal and plant metabolites against Aedes aegypti (Diptera: Culicidae), the<br>vector of yellow and dengue fevers and Zika virus. Open Chemistry, 2017, 15, 156-166.                                                                   | 1.0                 | 28                    |
| 138 | Chemico-physical and antifungal properties of poly(butylene succinate)/cavoxin blend: Study of a novel bioactive polymeric based system. European Polymer Journal, 2017, 94, 230-247.                                                                          | 2.6                 | 33                    |
| 139 | Influence of light on the biosynthesis of ophiobolin A by <i>Bipolaris maydis</i> . Natural Product<br>Research, 2017, 31, 909-917.                                                                                                                            | 1.0                 | 6                     |
| 140 | Sarniensine, a mesembrine-type alkaloid isolated from Nerine sarniensis, an indigenous South African<br>Amaryllidaceae, with larvicidal and adulticidal activities against Aedes aegypti. FA¬toterapA¬A¢, 2017, 116,<br>34-38.                                 | 1.1                 | 32                    |
| 141 | Inhibition of early development stages of rust fungi by the two fungal metabolites cyclopaldic acid<br>and <i>epi</i> â€epoformin. Pest Management Science, 2017, 73, 1161-1168.                                                                               | 1.7                 | 18                    |
| 142 | Phytotoxic Fungal Exopolysaccharides Produced by Fungi Involved in Grapevine Trunk Diseases.<br>Natural Product Communications, 2016, 11, 1934578X1601101.                                                                                                     | 0.2                 | 4                     |
| 143 | Inhibition of Spore Germination and Appressorium Formation of Rust Species by Plant and Fungal<br>Metabolites. Natural Product Communications, 2016, 11, 1934578X1601100.                                                                                      | 0.2                 | 5                     |
| 144 | Alkaloids with Activity against the Zika Virus Vector Aedes aegypti (L.)—Crinsarnine and Sarniensinol,<br>Two New Crinine and Mesembrine Type Alkaloids Isolated from the South African Plant Nerine<br>sarniensis. Molecules, 2016, 21, 1432.                 | 1.7                 | 32                    |

| #   | Article                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Fusaproliferin, Terpestacin and Their Derivatives Display Variable Allelopathic Activity Against Some<br>Ascomycetous Fungi. Chemistry and Biodiversity, 2016, 13, 1593-1600.                                                                                                                   | 1.0 | 14        |
| 146 | Further secondary metabolites produced by Diplodia corticola, a fungal pathogen involved in cork<br>oak decline. Tetrahedron, 2016, 72, 6788-6793.                                                                                                                                              | 1.0 | 26        |
| 147 | Crystal structure and absolute configuration of sphaeropsidin A and its 6-O-p-bromobenzoate.<br>Tetrahedron Letters, 2016, 57, 4592-4594.                                                                                                                                                       | 0.7 | 7         |
| 148 | Chenopodolans E and F, two new furopyrans produced by Phoma chenopodiicola and absolute configuration determination of chenopodolan B. Tetrahedron, 2016, 72, 8502-8507.                                                                                                                        | 1.0 | 10        |
| 149 | Induction of Haustorium Development by Sphaeropsidones in Radicles of the Parasitic Weeds<br><i>Striga</i> and <i>Orobanche</i> . A Structure–Activity Relationship Study. Journal of Agricultural<br>and Food Chemistry, 2016, 64, 5188-5196.                                                  | 2.4 | 29        |
| 150 | Saponaroxins A–C, a new 19-oxa-tricyclohenicosatetraenone and, a new<br>dioxacyclopropacycloundecene-10-carboaldehyde and its 6,7-dihydro derivative, produced by<br>Alternaria saponariae, a pathogen of a medicinal plant Saponaria officinalis. Tetrahedron Letters, 2016,<br>57, 1702-1705. | 0.7 | 3         |
| 151 | Glanduliferins A and B, two new glucosylated steroids from Impatiens glandulifera, with in vitro<br>growth inhibitory activity in human cancer cells. Fìtoterapìâ, 2016, 109, 138-145.                                                                                                          | 1.1 | 25        |
| 152 | Bioactive Secondary Metabolites Produced by the Oak Pathogen <i>Diplodia corticola</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 217-225.                                                                                                                                         | 2.4 | 33        |
| 153 | Higginsianins A and B, Two Diterpenoid α-Pyrones Produced by <i>Colletotrichum higginsianum</i> ,<br>with <i>in Vitro</i> Cytostatic Activity. Journal of Natural Products, 2016, 79, 116-125.                                                                                                  | 1.5 | 38        |
| 154 | Phytotoxic Fungal Exopolysaccharides Produced by Fungi Involved in Grapevine Trunk Diseases.<br>Natural Product Communications, 2016, 11, 1481-1484.                                                                                                                                            | 0.2 | 3         |
| 155 | Inhibition of Spore Germination and Appressorium Formation of Rust Species by Plant and Fungal<br>Metabolites. Natural Product Communications, 2016, 11, 1343-1347.                                                                                                                             | 0.2 | 8         |
| 156 | Mycelial growth rate and toxin production in the seed pathogen <i>Pyrenophora semeniperda</i> :<br>resource tradeâ€offs and temporally varying selection. Plant Pathology, 2015, 64, 1450-1460.                                                                                                 | 1.2 | 13        |
| 157 | Fungal Phytotoxins with Potential Herbicidal Activity to Control Chenopodium album. Natural<br>Product Communications, 2015, 10, 1934578X1501000.                                                                                                                                               | 0.2 | 7         |
| 158 | Phytotoxins produced by Phoma chenopodiicola, a fungal pathogen of Chenopodium album.<br>Phytochemistry, 2015, 117, 482-488.                                                                                                                                                                    | 1.4 | 37        |
| 159 | Jonquailine, a new pretazettine-type alkaloid isolated from Narcissus jonquilla quail, with activity<br>against drug-resistant cancer. Fìtoterapìâ, 2015, 102, 41-48.                                                                                                                           | 1.1 | 23        |
| 160 | Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization.<br>Natural Product Reports, 2015, 32, 1629-1653.                                                                                                                                               | 5.2 | 141       |
| 161 | Fungal metabolite ophiobolin A as a promising anti-glioma agent: In vivo evaluation,<br>structure–activity relationship and unique pyrrolylation of primary amines. Bioorganic and Medicinal<br>Chemistry Letters, 2015, 25, 4544-4548.                                                         | 1.0 | 36        |
| 162 | Papyracillic acid and its derivatives as biting deterrents against Aedes aegypti (Diptera: Culicidae):<br>structure–activity relationships. Medicinal Chemistry Research, 2015, 24, 3981-3989.                                                                                                  | 1.1 | 8         |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Fungal Phytotoxins with Potential Herbicidal Activity to Control Chenopodium album. Natural<br>Product Communications, 2015, 10, 1119-26.                                                                                                 | 0.2 | 6         |
| 164 | Effect of strain and cultural conditions on the production of cytochalasin B by the potential<br>mycoherbicide <i>Pyrenophora semeniperda</i> (Pleosporaceae, Pleosporales). Biocontrol Science and<br>Technology, 2014, 24, 53-64.       | 0.5 | 25        |
| 165 | C1,C2-ether derivatives of the Amaryllidaceae alkaloid lycorine: Retention of activity of highly lipophilic analogues against cancer cells. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 923-927.                                | 1.0 | 38        |
| 166 | Pyrenophoric Acids B and C, Two New Phytotoxic Sesquiterpenoids Produced byPyrenophora semeniperda. Journal of Agricultural and Food Chemistry, 2014, 62, 10304-10311.                                                                    | 2.4 | 26        |
| 167 | Pyrenophoric Acid, a Phytotoxic Sesquiterpenoid Penta-2,4-dienoic Acid Produced by a Potential<br>Mycoherbicide, <i>Pyrenophora semeniperda</i> . Journal of Natural Products, 2014, 77, 925-930.                                         | 1.5 | 29        |
| 168 | Spirostaphylotrichin W, a spirocyclic γ-lactam isolated from liquid culture of Pyrenophora<br>semeniperda, a potential mycoherbicide for cheatgrass (Bromus tectorum) biocontrol. Tetrahedron,<br>2014, 70, 1497-1501.                    | 1.0 | 29        |
| 169 | Fischerindoline, a pyrroloindole sesquiterpenoid isolated from Neosartorya pseudofischeri, with<br>inÂvitro growth inhibitory activity inÂhuman cancer cell lines. Tetrahedron, 2013, 69, 7466-7470.                                      | 1.0 | 34        |
| 170 | Insights on the susceptibility of plant pathogenic fungi to phenazine-1-carboxylic acid and its chemical derivatives. Natural Product Research, 2013, 27, 956-966.                                                                        | 1.0 | 44        |
| 171 | (2S,3R,4S,4aR)-2,3,4,7-Tetrahydroxy-3,4,4a,5-tetrahydro[1,3]dioxolo[4,5-j]phenanthridin-6(2H)-one<br>hemihydrate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o9-o10.                                           | 0.2 | 1         |
| 172 | Structure and stereochemical assignment of spheropsidone, a phytotoxin from Diplodia cupressi.<br>Journal of Structural Chemistry, 2012, 53, 786-792.                                                                                     | 0.3 | 1         |
| 173 | Evaluation of in vitro anticancer activity of sphaeropsidins A–C, fungal rearranged pimarane<br>diterpenes, and semisynthetic derivatives. Phytochemistry Letters, 2012, 5, 770-775.                                                      | 0.6 | 27        |
| 174 | Afritoxinones A and B, dihydrofuropyran-2-ones produced by Diplodia africana the causal agent of branch dieback on Juniperus phoenicea. Phytochemistry, 2012, 77, 245-250.                                                                | 1.4 | 29        |
| 175 | <i>In Vitro</i> Antibacterial Activity of Sphaeropsidins and Chemical Derivatives toward<br><i>Xanthomonas oryzae</i> pv. <i>oryzae</i> , the Causal Agent of Rice Bacterial Blight. Journal of<br>Natural Products, 2011, 74, 2520-2525. | 1.5 | 39        |
| 176 | Sphaeropsidones, Phytotoxic Dimedone Methyl Ethers Produced by <i>Diplodia cupressi</i> : A<br>Structureâ´'Activity Relationship Study. Journal of Natural Products, 2011, 74, 757-763.                                                   | 1.5 | 24        |