
Guoying Bing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7472809/publications.pdf Version: 2024-02-01

CHOVING RING

#	Article	IF	CITATIONS
1	Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature, 2003, 424, 556-561.	27.8	412
2	p38 Kinase Is Activated in the Alzheimer's Disease Brain. Journal of Neurochemistry, 2008, 72, 2053-2058.	3.9	341
3	Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. Journal of Neurochemistry, 2007, 100, 1375-1386.	3.9	282
4	Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson's disease. Journal of Neuroinflammation, 2006, 3, 6.	7.2	202
5	P38 MAP kinase is activated at early stages in Alzheimer's disease brain. Experimental Neurology, 2003, 183, 394-405.	4.1	185
6	Trichloroethylene: Parkinsonism and complex 1 mitochondrial neurotoxicity. Annals of Neurology, 2008, 63, 184-192.	5.3	173
7	Up-regulation of inducible nitric oxide synthase in the substantia nigra by lipopolysaccharide causes microglial activation and neurodegeneration. Neurobiology of Disease, 2003, 12, 35-45.	4.4	172
8	Pioglitazone attenuates mitochondrial dysfunction, cognitive impairment, cortical tissue loss, and inflammation following traumatic brain injury. Experimental Neurology, 2011, 227, 128-135.	4.1	134
9	Comparative Analysis of an Improved Thioflavin-S Stain, Gallyas Silver Stain, and Immunohistochemistry for Neurofibrillary Tangle Demonstration on the Same Sections. Journal of Histochemistry and Cytochemistry, 2002, 50, 463-472.	2.5	124
10	Interleukin-10 protects against inflammation-mediated degeneration of dopaminergic neurons in substantia nigra. Neurobiology of Aging, 2007, 28, 894-906.	3.1	119
11	Lipopolysaccharide Animal Models for Parkinson's Disease. Parkinson's Disease, 2011, 2011, 1-7.	1.1	117
12	Striatal Neuroinflammation Promotes Parkinsonism in Rats. PLoS ONE, 2009, 4, e5482.	2.5	113
13	Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/Akt. Journal of Neuroinflammation, 2008, 5, 4.	7.2	107
14	Striatal GDNF administration increases tyrosine hydroxylase phosphorylation in the rat striatum and substantia nigra. Journal of Neurochemistry, 2004, 90, 245-254.	3.9	97
15	Locus coeruleus lesions potentiate neurotoxic effects of MPTP in dopaminergic neurons of the substantia nigra. Brain Research, 1994, 668, 261-265.	2.2	93
16	Noradrenergic activation of immediate early genes in rat cerebral cortex. Molecular Brain Research, 1991, 11, 43-46.	2.3	92
17	Protection of methamphetamine nigrostriatal toxicity by dietary selenium. Brain Research, 1999, 851, 76-86.	2.2	90
18	Trichloroethylene induces dopaminergic neurodegeneration in Fisher 344 rats. Journal of Neurochemistry, 2010, 112, 773-783.	3.9	87

#	Article	IF	CITATIONS
19	Selective Killing of Cholinergic Neurons by Microglial Activation in Basal Forebrain Mixed Neuronal/Glial Cultures. Biochemical and Biophysical Research Communications, 1995, 215, 572-577.	2.1	86
20	The Effects of the HIV-1 Envelope Protein gp120 on the Production of Nitric Oxide and Proinflammatory Cytokines in Mixed Glial Cell Cultures. Cellular Immunology, 1996, 172, 77-83.	3.0	85
21	Comparison of adrenal medullary, carotid body and PC12 cell grafts in 6-OHDA lesioned rats. Brain Research Bulletin, 1988, 20, 399-406.	3.0	82
22	Naloxone prevents microglia-induced degeneration of dopaminergic substantia nigra neurons in adult rats. Neuroscience, 2000, 97, 285-291.	2.3	79
23	Intrastriatal lipopolysaccharide injection induces parkinsonism in C57/B6 mice. Journal of Neuroscience Research, 2009, 87, 1913-1921.	2.9	76
24	Immunohistochemical studies of noradrenergic-induced expression of c-fos in the rat CNS. Brain Research, 1992, 592, 57-62.	2.2	71
25	Induction of NF-kB-like transcription factors in brain areas susceptible to kainate toxicity. Glia, 1996, 16, 306-315.	4.9	70
26	Neuroprotection with pioglitazone against LPS insult on dopaminergic neurons may be associated with its inhibition of NF-1ºB and JNK activation and suppression of COX-2 activity. Journal of Neuroimmunology, 2007, 192, 89-98.	2.3	70
27	Protective properties afforded by pioglitazone against intrastriatal LPS in Sprague–Dawley rats. Neuroscience Letters, 2008, 432, 198-201.	2.1	69
28	Selenium deficiency potentiates methamphetamine-induced nigral neuronal loss; comparison with MPTP model. Brain Research, 2000, 862, 247-252.	2.2	67
29	Phenidone prevents kainate-induced neurotoxicity via antioxidant mechanisms. Brain Research, 2000, 874, 15-23.	2.2	66
30	Endogenous dynorphin protects against neurotoxin-elicited nigrostriatal dopaminergic neuron damage and motor deficits in mice. Journal of Neuroinflammation, 2012, 9, 124.	7.2	65
31	PINK1/Parkin-mediated mitophagy alleviates chlorpyrifos-induced apoptosis in SH-SY5Y cells. Toxicology, 2015, 334, 72-80.	4.2	63
32	A single dose of kainic acid elevates the levels of enkephalins and activator protein-1 transcription factors in the hippocampus for up to 1 year. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 9422-9427.	7.1	62
33	Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cδ. Behavioural Brain Research, 2012, 232, 98-113.	2.2	61
34	Pioglitazone Attenuates Neuroinflammation and Promotes Dopaminergic Neuronal Survival in the Nigrostriatal System of Rats after Diffuse Brain Injury. Journal of Neurotrauma, 2017, 34, 414-422.	3.4	61
35	Analysis of regional brain mitochondrial bioenergetics and susceptibility to mitochondrial inhibition utilizing a microplate based system. Journal of Neuroscience Methods, 2011, 198, 36-43.	2.5	59
36	Agonism of Peroxisome Proliferator Receptor-Gamma may have Therapeutic Potential for Neuroinflammation and Parkinsons Disease. Current Neuropharmacology, 2007, 5, 35-46.	2.9	56

#	Article	IF	CITATIONS
37	Effect of locus coeruleus lesion on c-fos expression in the cerebral cortex caused by yohimbine injection or stress. Brain Research, 1993, 603, 181-185.	2.2	54
38	Intrapallidal lipopolysaccharide injection increases iron and ferritin levels in glia of the rat substantia nigra and induces locomotor deficits. Neuroscience, 2005, 135, 829-838.	2.3	54
39	Potentiation of methamphetamine neurotoxicity by intrastriatal lipopolysaccharide administration. Neurochemistry International, 2010, 56, 229-244.	3.8	54
40	Changes of hippocampal Cu/Zn-superoxide dismutase after kainate treatment in the rat. Brain Research, 2000, 853, 215-226.	2.2	53
41	Chapter 65 Paraneuronal grafts in unilateral 6-hydroxydopamine-lesioned rats: morphological aspects of adrenal chromaffin and carotid body glomus cell implants. Progress in Brain Research, 1988, 78, 507-511.	1.4	47
42	Neonatal chlorpyrifos exposure induces loss of dopaminergic neurons in young adult rats. Toxicology, 2015, 336, 17-25.	4.2	47
43	Oxidative damage causes formation of lipofuscin-like substances in the hippocampus of the senescence-accelerated mouse after kainate treatment. Behavioural Brain Research, 2002, 131, 211-220.	2.2	46
44	Kainate-induced mitochondrial oxidative stress contributes to hippocampal degeneration in senescence-accelerated mice. Cellular Signalling, 2008, 20, 645-658.	3.6	45
45	Cografts of adrenal medulla with C6 glioma cells in rats with 6-hydroxydopamine-induced lesions. Neuroscience, 1990, 34, 687-697.	2.3	44
46	Prodynorphin knockout mice demonstrate diminished age-associated impairment in spatial water maze performance. Behavioural Brain Research, 2005, 161, 254-262.	2.2	42
47	Aging enhances the neuroinflammatory response and α-synuclein nitration in rats. Neurobiology of Aging, 2010, 31, 1649-1653.	3.1	42
48	Trichloroethylene and Parkinson's Disease: Risk Assessment. Molecular Neurobiology, 2018, 55, 6201-6214.	4.0	42
49	Modulatory effects of [Met5]-enkephalin on interleukin-1β secretion from microglia in mixed brain cell cultures. Journal of Neuroimmunology, 1995, 62, 9-17.	2.3	41
50	Localization of Î ² -Secretase Memapsin 2 in the Brain of Alzheimer's Patients and Normal Aged Controls. Experimental Neurology, 2002, 175, 10-22.	4.1	40
51	Expression of microsomal epoxide hydrolase is elevated in Alzheimer's hippocampus and induced by exogenous β-amyloid and trimethyl-tin. European Journal of Neuroscience, 2006, 23, 2027-2034.	2.6	40
52	Dextromethorphan attenuates trimethyltin-induced neurotoxicity via $\ddot{l}f1$ receptor activation in rats. Neurochemistry International, 2007, 50, 791-799.	3.8	40
53	The effect of HMGB1 on sub-toxic chlorpyrifos exposure-induced neuroinflammation in amygdala of neonatal rats. Toxicology, 2015, 338, 95-103.	4.2	40
54	Effects of dimethyl sulfoxide on the morphology and viability of primary cultured neurons and astrocytes. Brain Research Bulletin, 2017, 128, 34-39.	3.0	39

#	Article	IF	CITATIONS
55	Long-term expression of the 35,000 mol. wt fos-related antigen in rat brain after kainic acid treatment. Neuroscience, 1996, 73, 1159-1174.	2.3	38
56	Substantia nigra vulnerability after a single moderate diffuse brain injury in the rat. Experimental Neurology, 2012, 234, 8-19.	4.1	38
57	Dextromethorphan modulates the AP-1 DNA-binding activity induced by kainic acid. Brain Research, 1999, 824, 125-132.	2.2	37
58	PKCδ inhibition enhances tyrosine hydroxylase phosphorylation in mice after methamphetamine treatment. Neurochemistry International, 2011, 59, 39-50.	3.8	36
59	cDNA cloning and sequencing of Ca2+/calmodulin-dependent protein kinase IIalpha subunit and its mRNA expression in diisopropyl phosphorofluoridate (DFP)-treated hen central nervous system. Molecular and Cellular Biochemistry, 1998, 181, 29-39.	3.1	33
60	Metabolism to dextrorphan is not essential for dextromethorphan's anticonvulsant activity against kainate in mice. Life Sciences, 2003, 72, 769-783.	4.3	33
61	Glial cell line-derived neurotrophic factor protects midbrain dopaminergic neurons against lipopolysaccharide neurotoxicity. Journal of Neuroimmunology, 2010, 225, 43-51.	2.3	33
62	Traumatic brain injury and trichloroethylene exposure interact and produce functional, histological, and mitochondrial deficits. Experimental Neurology, 2012, 234, 85-94.	4.1	33
63	C-Fos response to administration of catecholamines into brain by microdialysis. Neuroscience Letters, 1991, 133, 33-35.	2.1	31
64	Longâ€Term Expression of Fosâ€Related Antigen and Transient Expression of ΔFosB Associated with Seizures in the Rat Hippocampus and Striatum. Journal of Neurochemistry, 1997, 68, 272-279.	3.9	27
65	Ginsenoside Re protects methamphetamine-induced dopaminergic neurotoxicity in mice via upregulation of dynorphin-mediated κ-opioid receptor and downregulation of substance P-mediated neurokinin 1 receptor. Journal of Neuroinflammation, 2018, 15, 52.	7.2	26
66	Phenidone protects the nigral dopaminergic neurons from LPS-induced neurotoxicity. Neuroscience Letters, 2008, 445, 1-6.	2.1	24
67	Lipopolysaccharide-induced functional and structural injury of the mitochondria in the nigrostriatal pathway. Neuroscience Research, 2017, 114, 62-69.	1.9	23
68	Studies on the cellular localization of biochemical responses to catecholamines in the brain. Brain Research Bulletin, 1992, 29, 285-288.	3.0	22
69	Noradrenergic-induced expression of c-fos in rat cortex: Neuronal localization. Neuroscience Letters, 1992, 140, 260-264.	2.1	22
70	Inflammation and Age-Related Iron Accumulation in F344 Rats. Current Aging Science, 2008, 1, 112-121.	1.2	22
71	Long-term increase of Sp-1 transcription factors in the hippocampus after kainic acid treatment. Molecular Brain Research, 1999, 69, 144-148.	2.3	21
72	Microsomal epoxide hydrolase deletion enhances tyrosine hydroxylase phosphorylation in mice after MPTP treatment. Journal of Neuroscience Research, 2008, 86, 2792-2801.	2.9	20

#	Article	IF	CITATIONS
73	Dextromethorphan blocks opioid peptide gene expression in the rat hippocampus induced by kainic acid. Neuropeptides, 1997, 31, 105-112.	2.2	19
74	Characterization of the long-lasting activator protein-1 complex induced by kainic acid treatment. Brain Research, 1997, 770, 53-59.	2.2	18
75	Prolonged exposure to cigarette smoke blocks the neurotoxicity induced by kainic acid in rats. Life Sciences, 1999, 66, 317-326.	4.3	17
76	Tyrosine hydroxylase-immunoreactive somata within the primate subfornical organ: species specificity. Brain Research, 1988, 461, 221-229.	2.2	16
77	Dextromethorphan affects cocaine-mediated behavioral pattern in parallel with a long-lasting Fos-related antigen-immunoreactivity. Life Sciences, 2001, 69, 615-624.	4.3	16
78	Kainate treatment alters TGF-β3 gene expression in the rat hippocampus. Molecular Brain Research, 2002, 108, 60-70.	2.3	14
79	Repeated intracerebroventricular infusion of nicotine prevents kainate-induced neurotoxicity by activating the α7 nicotinic acetylcholine receptor. Epilepsy Research, 2007, 73, 292-298.	1.6	14
80	Role of microsomal epoxide hydrolase in methamphetamineâ€induced drug dependence in mice. Journal of Neuroscience Research, 2009, 87, 3679-3686.	2.9	13
81	Fenbendazole treatment may influence lipopolysaccharide effects in rat brain. Comparative Medicine, 2007, 57, 487-92.	1.0	12
82	Kainic acid-induced sprouting of dynorphin- and enkephalin- containing mossy fibers in the dentate gyrus of the rat hippocampus. Brain Research, 1997, 747, 318-323.	2.2	11
83	Prenatal Exposure To Magnetic Field Increases Dopamine Levels In The Striatum Of Offspring. Clinical and Experimental Pharmacology and Physiology, 2001, 28, 884-886.	1.9	11
84	Adrenal chromaffin cells as transplants in animal models of parkinson's disease. Journal of Electron Microscopy Technique, 1989, 12, 308-315.	1.1	10
85	Methamphetamine-induced dopaminergic neurotoxicity as a model of Parkinson's disease. Archives of Pharmacal Research, 2021, 44, 668-688.	6.3	10
86	Evaluation of the effects of chlorpyrifos combined with lipopolysaccharide stress on neuroinflammation and spatial memory in neonatal rats. Toxicology, 2018, 410, 106-115.	4.2	9
87	Protein kinase Cl̂´ mediates methamphetamine-induced dopaminergic neurotoxicity in mice via activation of microsomal epoxide hydrolase. Food and Chemical Toxicology, 2019, 133, 110761.	3.6	9
88	GPx-1-encoded adenoviral vector attenuates dopaminergic impairments induced by methamphetamine in GPx-1 knockout mice through modulation of NF-κB transcription factor. Food and Chemical Toxicology, 2021, 154, 112313.	3.6	9
89	P53 knockout mice are protected from cocaine-induced kindling behaviors via inhibiting mitochondrial oxidative burdens, mitochondrial dysfunction, and proapoptotic changes. Neurochemistry International, 2019, 124, 68-81.	3.8	8
90	A novel fluorescent method for direct visualization of neurofibrillary pathology in Alzheimer's disease. Journal of Neuroscience Methods, 2001, 111, 17-27.	2.5	7

#	Article	IF	CITATIONS
91	Effects of prodynorphin deletion on striatal dopamine in mice during normal aging and in response to MPTP. Experimental Neurology, 2009, 219, 228-238.	4.1	7
92	Prodynorphin gene deficiency potentiates nalbuphine-induced behavioral sensitization and withdrawal syndrome in mice. Drug and Alcohol Dependence, 2009, 104, 175-184.	3.2	6
93	Induction of NFâ€kBâ€like transcription factors in brain areas susceptible to kainate toxicity. Clia, 1996, 16, 306-315.	4.9	5
94	Transient c-fos gene expression in cerebellar development and functional stimulation. Brain Research, 1998, 795, 87-97.	2.2	4
95	Biophysical and biochemical characterization of the intrinsic fluorescence from neurofibrillary tangles. Neurobiology of Aging, 2006, 27, 823-830.	3.1	4
96	Improving the specificity of immunological detection in aged human brain tissue samples. International Journal of Physiology, Pathophysiology and Pharmacology, 2009, 2, 29-35.	0.8	4
97	Chapter 72 Human organ donor adrenals: fine structure, plasticity and viability. Progress in Brain Research, 1988, 78, 559-565.	1.4	3
98	Induction of unspliced c-fos messenger RNA in rodent brain by kainic acid and lipopolysaccharide. Neuroscience Letters, 2001, 305, 17-20.	2.1	2
99	Cloning and expression of MP13 gene from rat hippocampus, a new factor related to guanosine triphosphate regulation. Neuroscience Letters, 2000, 296, 129-132.	2.1	0
100	Striatal neuroinflammation promotes parkinsonism in rats. Nature Precedings, 2008, , .	0.1	0
101	Microglia activation-induced mesencephalic dopaminergic neurodegeneration — an in vitro model for Parkinson's disease. Frontiers in Biology, 2012, 7, 404-411.	0.7	0