
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7472743/publications.pdf Version: 2024-02-01



HDENI R P RALASUDIVA

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Discovery of a small arterivirus gene that overlaps the GP5 coding sequence and is important for virus production. Journal of General Virology, 2011, 92, 1097-1106.                                                                             | 2.9 | 247       |
| 2  | SARS-CoV-2 infection, disease and transmission in domestic cats. Emerging Microbes and Infections, 2020, 9, 2322-2332.                                                                                                                           | 6.5 | 215       |
| 3  | Zoonotic encephalitides caused by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses. Clinical and Experimental Vaccine Research, 2014, 3, 58.                                                                          | 2.2 | 157       |
| 4  | Temporal detection of equine herpesvirus infections of a cohort of mares and their foals. Veterinary Microbiology, 2006, 116, 249-257.                                                                                                           | 1.9 | 99        |
| 5  | Identification of a Neutralization Site in the Major Envelope Glycoprotein (GL) of Equine Arteritis<br>Virus. Virology, 1995, 207, 518-527.                                                                                                      | 2.4 | 86        |
| 6  | Susceptibility of swine cells and domestic pigs to SARS-CoV-2. Emerging Microbes and Infections, 2020, 9, 2278-2288.                                                                                                                             | 6.5 | 84        |
| 7  | Neutralization Determinants of Laboratory Strains and Field Isolates of Equine Arteritis Virus:<br>Identification of Four Neutralization Sites in the Amino-Terminal Ectodomain of the GLEnvelope<br>Glycoprotein. Virology, 1997, 232, 114-128. | 2.4 | 80        |
| 8  | Genetic Divergence with Emergence of Novel Phenotypic Variants of Equine Arteritis Virus during<br>Persistent Infection of Stallions. Journal of Virology, 1999, 73, 3672-3681.                                                                  | 3.4 | 79        |
| 9  | Alphavirus replicon particles expressing the two major envelope proteins of equine arteritis virus induce high level protection against challenge with virulent virus in vaccinated horses. Vaccine, 2002, 20, 1609-1617.                        | 3.8 | 78        |
| 10 | Genomic characterization of equine coronavirus. Virology, 2007, 369, 92-104.                                                                                                                                                                     | 2.4 | 77        |
| 11 | Infection and transmission of ancestral SARS-CoV-2 and its alpha variant in pregnant white-tailed deer. Emerging Microbes and Infections, 2022, 11, 95-112.                                                                                      | 6.5 | 77        |
| 12 | Phylogenetic Analysis of Open Reading Frame 5 of Field Isolates of Equine Arteritis Virus and<br>Identification of Conserved and Nonconserved Regions in the GLEnvelope Glycoprotein. Virology,<br>1995, 214, 690-697.                           | 2.4 | 75        |
| 13 | The immune response to equine arteritis virus: potential lessons for other arteriviruses. Veterinary<br>Immunology and Immunopathology, 2004, 102, 107-129.                                                                                      | 1.2 | 74        |
| 14 | Detection of equine arteritis virus by real-time TaqMan® reverse transcription-PCR assay. Journal of Virological Methods, 2002, 101, 21-28.                                                                                                      | 2.1 | 72        |
| 15 | The increased prevalence of neuropathogenic strains of EHV-1 in equine abortions. Veterinary Microbiology, 2010, 141, 5-11.                                                                                                                      | 1.9 | 71        |
| 16 | Equine arteritis virus. Veterinary Microbiology, 2013, 167, 93-122.                                                                                                                                                                              | 1.9 | 71        |
| 17 | The NS3 proteins of global strains of bluetongue virus evolve into regional topotypes through negative (purifying) selection. Veterinary Microbiology, 2008, 126, 91-100.                                                                        | 1.9 | 67        |
| 18 | ICTV Virus Taxonomy Profile: Arteriviridae 2021. Journal of General Virology, 2021, 102, .                                                                                                                                                       | 2.9 | 64        |

| #  | Article                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A 29K envelope glycoprotein of equine arteritis virus expresses neutralization determinants<br>recognized by murine monoclonal antibodies. Journal of General Virology, 1993, 74, 2525-2529.                                                                                                 | 2.9 | 61        |
| 20 | Genetic stability of equine arteritis virus during horizontal and vertical transmission in an outbreak of equine viral arteritis. Journal of General Virology, 1999, 80, 1949-1958.                                                                                                          | 2.9 | 61        |
| 21 | Expression of the Two Major Envelope Proteins of Equine Arteritis Virus as a Heterodimer Is Necessary<br>for Induction of Neutralizing Antibodies in Mice Immunized with Recombinant Venezuelan Equine<br>Encephalitis Virus Replicon Particles. Journal of Virology, 2000, 74, 10623-10630. | 3.4 | 59        |
| 22 | Experimental challenge of a North American bat species, big brown bat ( <i>Eptesicus fuscus</i> ), with SARSâ€CoVâ€2. Transboundary and Emerging Diseases, 2021, 68, 3443-3452.                                                                                                              | 3.0 | 54        |
| 23 | Fatal Experimental Equine Arteritis Virus Infection of a Pregnant Mare: Immunohistochemical Staining of Viral Antigens. Journal of Veterinary Diagnostic Investigation, 1996, 8, 367-374.                                                                                                    | 1.1 | 52        |
| 24 | Equine Arteritis Virus Derived from an Infectious cDNA Clone Is Attenuated and Genetically Stable in Infected Stallions. Virology, 1999, 260, 201-208.                                                                                                                                       | 2.4 | 52        |
| 25 | Serologic Response of Horses to the Structural Proteins of Equine Arteritis Virus. Journal of Veterinary Diagnostic Investigation, 1998, 10, 229-236.                                                                                                                                        | 1.1 | 50        |
| 26 | Genetic characterization of equine arteritis virus during persistent infection of stallions. Journal of<br>General Virology, 2004, 85, 379-390.                                                                                                                                              | 2.9 | 48        |
| 27 | First detection of equine coronavirus (ECoV) in Europe. Veterinary Microbiology, 2014, 171, 206-209.                                                                                                                                                                                         | 1.9 | 48        |
| 28 | Experimental re-infected cats do not transmit SARS-CoV-2. Emerging Microbes and Infections, 2021, 10, 638-650.                                                                                                                                                                               | 6.5 | 48        |
| 29 | Equine viral arteritis: Current status and prevention. Theriogenology, 2008, 70, 403-414.                                                                                                                                                                                                    | 2.1 | 47        |
| 30 | Fatal Neurodissemination and SARS-CoV-2 Tropism in K18-hACE2 Mice Is Only Partially Dependent on hACE2 Expression. Viruses, 2022, 14, 535.                                                                                                                                                   | 3.3 | 47        |
| 31 | Lateral transmission of equine arteritis virus among Lipizzaner stallions in South Africa. Equine<br>Veterinary Journal, 2003, 35, 596-600.                                                                                                                                                  | 1.7 | 45        |
| 32 | Development and characterization of an infectious cDNA clone of the virulent Bucyrus strain of<br>Equine arteritis virus. Journal of General Virology, 2007, 88, 918-924.                                                                                                                    | 2.9 | 44        |
| 33 | Phylogenetic analysis of the S10 gene of field and laboratory strains of bluetongue virus from the<br>United States. Virus Research, 1998, 55, 15-27.                                                                                                                                        | 2.2 | 43        |
| 34 | Phylogenetic characterization of a highly attenuated strain of equine arteritis virus from the semen of a persistently infected Standardbred stallion. Archives of Virology, 1999, 144, 817-827.                                                                                             | 2.1 | 40        |
| 35 | Development and Evaluation of One-Step TaqMan Real-Time Reverse Transcription-PCR Assays Targeting<br>Nucleoprotein, Matrix, and Hemagglutinin Genes of Equine Influenza Virus. Journal of Clinical<br>Microbiology, 2009, 47, 3907-3913.                                                    | 3.9 | 39        |
| 36 | Genome-Wide Association Study among Four Horse Breeds Identifies a Common Haplotype Associated<br>with <i>In Vitro</i> CD3 <sup>+</sup> T Cell Susceptibility/Resistance to Equine Arteritis Virus<br>Infection. Journal of Virology, 2011, 85, 13174-13184.                                 | 3.4 | 39        |

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Rapid detection of equine influenza virus H3N8 subtype by insulated isothermal RT-PCR (iiRT-PCR) assay using the POCKITâ,,¢ Nucleic Acid Analyzer. Journal of Virological Methods, 2014, 207, 66-72.                                                            | 2.1 | 39        |
| 38 | Isolation of Equine Herpesvirus-5 from Blood Mononuclear Cells of a Gelding. Journal of Veterinary Diagnostic Investigation, 2006, 18, 472-475.                                                                                                                 | 1.1 | 38        |
| 39 | Description of the first recorded major occurrence of equine viral arteritis in France. Equine<br>Veterinary Journal, 2010, 42, 713-720.                                                                                                                        | 1.7 | 36        |
| 40 | Growth Characteristics of a Highly Virulent, a Moderately Virulent, and an Avirulent Strain of Equine<br>Arteritis Virus in Primary Equine Endothelial Cells Are Predictive of Their Virulence to Horses.<br>Virology, 2002, 298, 39-44.                        | 2.4 | 35        |
| 41 | Characterization of the neutralization determinants of equine arteritis virus using recombinant chimeric viruses and site-specific mutagenesis of an infectious cDNA clone. Virology, 2004, 321, 235-246.                                                       | 2.4 | 35        |
| 42 | Detection of Antibodies to West Nile Virus in Equine Sera Using Microsphere Immunoassay. Journal of<br>Veterinary Diagnostic Investigation, 2006, 18, 392-395.                                                                                                  | 1.1 | 35        |
| 43 | Molecular epidemiology and genetic characterization of equine arteritis virus isolates associated with the 2006-2007 multi-state disease occurrence in the USA. Journal of General Virology, 2010, 91, 2286-2301.                                               | 2.9 | 35        |
| 44 | Equine Viral Arteritis. Veterinary Clinics of North America Equine Practice, 2014, 30, 543-560.                                                                                                                                                                 | 0.7 | 35        |
| 45 | Coronavirus infections in horses in Saudi Arabia and Oman. Transboundary and Emerging Diseases, 2017, 64, 2093-2103.                                                                                                                                            | 3.0 | 35        |
| 46 | Evaluation and Clinical Validation of Two Field–Deployable Reverse Transcription-Insulated<br>Isothermal PCR Assays for the Detection of the Middle East Respiratory Syndrome–Coronavirus.<br>Journal of Molecular Diagnostics, 2017, 19, 817-827.              | 2.8 | 35        |
| 47 | Genetic variation in open reading frame 2 of field isolates and laboratory strains of equine arteritis virus. Virus Research, 1996, 42, 41-52.                                                                                                                  | 2.2 | 34        |
| 48 | Detection of SARS-CoV-2 by RNAscope® in situ hybridization and immunohistochemistry techniques.<br>Archives of Virology, 2020, 165, 2373-2377.                                                                                                                  | 2.1 | 33        |
| 49 | New Real-Time PCR Assay Using Allelic Discrimination for Detection and Differentiation of Equine<br>Herpesvirus-1 Strains with A <sub>2254</sub> and G <sub>2254</sub> Polymorphisms. Journal of<br>Clinical Microbiology, 2012, 50, 1981-1988.                 | 3.9 | 32        |
| 50 | A Pan-Dengue Virus Reverse Transcription-Insulated Isothermal PCR Assay Intended for Point-of-Need<br>Diagnosis of Dengue Virus Infection by Use of the POCKIT Nucleic Acid Analyzer. Journal of Clinical<br>Microbiology, 2016, 54, 1528-1535.                 | 3.9 | 32        |
| 51 | Virulent and avirulent strains of equine arteritis virus induce different quantities of TNF-α and other proinflammatory cytokines in alveolar and blood-derived equine macrophages. Virology, 2003, 314, 662-670.                                               | 2.4 | 31        |
| 52 | Comparison of two real-time reverse transcription polymerase chain reaction assays for the detection of <i>Equine arteritis virus</i> nucleic acid in equine semen and tissue culture fluid. Journal of Veterinary Diagnostic Investigation, 2008, 20, 147-155. | 1.1 | 31        |
| 53 | Relationship between equine herpesvirusâ€1 myeloencephalopathy and viral genotype. Equine Veterinary<br>Journal, 2010, 42, 672-674.                                                                                                                             | 1.7 | 31        |
| 54 | The Open Reading Frame 3 of Equine Arteritis Virus Encodes an Immunogenic Glycosylated, Integral<br>Membrane Protein. Virology, 1999, 264, 92-98.                                                                                                               | 2.4 | 30        |

| #  | Article                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Reproductive effects of arteriviruses: equine arteritis virus and porcine reproductive and respiratory syndrome virus infections. Current Opinion in Virology, 2017, 27, 57-70.                                                                                                      | 5.4 | 30        |
| 56 | Emergence of novel equine arteritis virus (EAV) variants during persistent infection in the stallion:<br>Origin of the 2007 French EAV outbreak was linked to an EAV strain present in the semen of a<br>persistently infected carrier stallion. Virology, 2012, 423, 165-174.       | 2.4 | 29        |
| 57 | Detection of antibodies to equine arteritis virus by enzyme linked immunosorbant assays utilizing GL,<br>M and N proteins expressed from recombinant baculoviruses. Journal of Virological Methods, 1998, 76,<br>127-137.                                                            | 2.1 | 27        |
| 58 | The serologic response of horses to equine arteritis virus as determined by competitive enzyme-linked immunosorbent assays (c-ELISAs) to structural and non-structural viral proteins. Comparative Immunology, Microbiology and Infectious Diseases, 2003, 26, 251-260.              | 1.6 | 27        |
| 59 | Complex Interactions between the Major and Minor Envelope Proteins of Equine Arteritis Virus<br>Determine Its Tropism for Equine CD3 <sup>+</sup> T Lymphocytes and CD14 <sup>+</sup> Monocytes.<br>Journal of Virology, 2010, 84, 4898-4911.                                        | 3.4 | 27        |
| 60 | Genetic heterogeneity and variation in viral load during equid herpesvirus-2 infection of foals.<br>Veterinary Microbiology, 2011, 147, 253-261.                                                                                                                                     | 1.9 | 26        |
| 61 | Development and evaluation of a reverse transcription-insulated isothermal polymerase chain<br>reaction (RT-iiPCR) assay for detection of equine arteritis virus in equine semen and tissue samples<br>using the POCKITâ,,¢ system. Journal of Virological Methods, 2016, 234, 7-15. | 2.1 | 26        |
| 62 | A review of traditional and contemporary assays for direct and indirect detection of <i>Equid herpesvirus 1</i> in clinical samples. Journal of Veterinary Diagnostic Investigation, 2015, 27, 673-687.                                                                              | 1.1 | 25        |
| 63 | Differentiation of strains of equine arteritis virus of differing virulence to horses by growth in equine endothelial cells. American Journal of Veterinary Research, 2003, 64, 779-784.                                                                                             | 0.6 | 24        |
| 64 | Genetic variation and phylogenetic analysis of 22 French isolates of equine arteritis virus. Archives of<br>Virology, 2007, 152, 1977-1994.                                                                                                                                          | 2.1 | 24        |
| 65 | Equine viral arteritis: A respiratory and reproductive disease of significant economic importance to the equine industry. Equine Veterinary Education, 2018, 30, 497-512.                                                                                                            | 0.6 | 24        |
| 66 | Isolation of a gammaherpesvirus similar to asinine herpesvirus-2 (AHV-2) from a mule and a survey of<br>mules and donkeys for AHV-2 infection by real-time PCR. Veterinary Microbiology, 2008, 130, 176-183.                                                                         | 1.9 | 23        |
| 67 | Equine herpesvirus-1 suppresses type-I interferon induction in equine endothelial cells. Veterinary<br>Immunology and Immunopathology, 2015, 167, 122-129.                                                                                                                           | 1.2 | 23        |
| 68 | Amino acid substitutions in the structural or nonstructural proteins of a vaccine strain of equine arteritis virus are associated with its attenuation. Virology, 2008, 378, 355-362.                                                                                                | 2.4 | 22        |
| 69 | Infection of embryos following insemination of donor mares with equine arteritis virus infective semen. Theriogenology, 2011, 76, 47-60.                                                                                                                                             | 2.1 | 22        |
| 70 | Evaluation of the safety of vaccinating mares against equine viral arteritis during mid or late<br>gestation or during the immediate postpartum period. Journal of the American Veterinary Medical<br>Association, 2011, 238, 741-750.                                               | 0.5 | 22        |
| 71 | Evidence that <i>In Vitro</i> Susceptibility of CD3 <sup>+</sup> T Lymphocytes to Equine Arteritis<br>Virus Infection Reflects Genetic Predisposition of Naturally Infected Stallions To Become Carriers of<br>the Virus. Journal of Virology, 2012, 86, 12407-12410.                | 3.4 | 21        |
| 72 | Assessment of correlation between in vitro CD3+ T cell susceptibility to EAV infection and clinical outcome following experimental infection. Veterinary Microbiology, 2012, 157, 220-225.                                                                                           | 1.9 | 21        |

| #  | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Evaluation of a field-deployable reverse transcription-insulated isothermal PCR for rapid and sensitive on-site detection of Zika virus. BMC Infectious Diseases, 2017, 17, 778.                                                                                                 | 2.9 | 21        |
| 74 | Susceptibility of sheep to experimental co-infection with the ancestral lineage of SARS-CoV-2 and its alpha variant. Emerging Microbes and Infections, 2022, 11, 662-675.                                                                                                        | 6.5 | 21        |
| 75 | Persistent Equine Arteritis Virus Infection in HeLa Cells. Journal of Virology, 2008, 82, 8456-8464.                                                                                                                                                                             | 3.4 | 20        |
| 76 | Equine arteritis virus long-term persistence is orchestrated by CD8+ T lymphocyte transcription factors, inhibitory receptors, and the CXCL16/CXCR6 axis. PLoS Pathogens, 2019, 15, e1007950.                                                                                    | 4.7 | 20        |
| 77 | Evaluation of Two Magnetic-Bead-Based Viral Nucleic Acid Purification Kits and Three Real-Time<br>Reverse Transcription-PCR Reagent Systems in Two TaqMan Assays for Equine Arteritis Virus Detection<br>in Semen. Journal of Clinical Microbiology, 2011, 49, 3694-3696.        | 3.9 | 19        |
| 78 | Equine Arteritis Virus Uses Equine CXCL16 as an Entry Receptor. Journal of Virology, 2016, 90,<br>3366-3384.                                                                                                                                                                     | 3.4 | 19        |
| 79 | Equine Arteritis Virus Has Specific Tropism for Stromal Cells and CD8 <sup>+</sup> T and<br>CD21 <sup>+</sup> B Lymphocytes but Not for Glandular Epithelium at the Primary Site of Persistent<br>Infection in the Stallion Reproductive Tract. Journal of Virology, 2017, 91, . | 3.4 | 18        |
| 80 | Allelic Variation in CXCL16 Determines CD3+ T Lymphocyte Susceptibility to Equine Arteritis Virus<br>Infection and Establishment of Long-Term Carrier State in the Stallion. PLoS Genetics, 2016, 12,<br>e1006467.                                                               | 3.5 | 18        |
| 81 | Development of a Fluorescent-Microsphere Immunoassay for Detection of Antibodies Specific to<br>Equine Arteritis Virus and Comparison with the Virus Neutralization Test. Vaccine Journal, 2008, 15,<br>76-87.                                                                   | 3.1 | 17        |
| 82 | Chimeric viruses containing the N-terminal ectodomains of GP5 and M proteins of porcine<br>reproductive and respiratory syndrome virus do not change the cellular tropism of equine arteritis<br>virus. Virology, 2012, 432, 99-109.                                             | 2.4 | 17        |
| 83 | Detection of equine arteritis virus by two chromogenic RNA in situ hybridization assays<br>(conventional and RNAscope®) and assessment of their performance in tissues from aborted equine<br>fetuses. Archives of Virology, 2016, 161, 3125-3136.                               | 2.1 | 17        |
| 84 | Semen quality of stallions challenged with the Kentucky 84 strain of equine arteritis virus.<br>Theriogenology, 2014, 82, 1068-1079.                                                                                                                                             | 2.1 | 16        |
| 85 | Characterization of Equine Humoral Antibody Response to the Nonstructural Proteins of Equine<br>Arteritis Virus. Vaccine Journal, 2011, 18, 268-279.                                                                                                                             | 3.1 | 15        |
| 86 | Equine Arteritis Virus Does Not Induce Interferon Production in Equine Endothelial Cells:<br>Identification of Nonstructural Protein 1 as a Main Interferon Antagonist. BioMed Research<br>International, 2014, 2014, 1-13.                                                      | 1.9 | 14        |
| 87 | Experiences with infectious cDNA clones of equine arteritis virus: Lessons learned and insights gained. Virology, 2014, 462-463, 388-403.                                                                                                                                        | 2.4 | 14        |
| 88 | Downregulation of MicroRNA eca-mir-128 in Seminal Exosomes and Enhanced Expression of CXCL16 in<br>the Stallion Reproductive Tract Are Associated with Long-Term Persistence of Equine Arteritis Virus.<br>Journal of Virology, 2018, 92, .                                      | 3.4 | 14        |
| 89 | Diagnostic Application of H3N8-Specific Equine Influenza Real-Time Reverse Transcription Polymerase<br>Chain Reaction Assays for the Detection of Canine Influenza Virus in Clinical Specimens. Journal of<br>Veterinary Diagnostic Investigation, 2010, 22, 942-945.            | 1.1 | 13        |
| 90 | Development and Characterization of an Infectious cDNA Clone of the Modified Live Virus Vaccine<br>Strain of Equine Arteritis Virus. Vaccine Journal, 2012, 19, 1312-1321.                                                                                                       | 3.1 | 12        |

| #   | Article                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Equid Herpesvirus 1 Targets the Sensitization and Induction Steps To Inhibit the Type I Interferon<br>Response in Equine Endothelial Cells. Journal of Virology, 2019, 93, .                                                                                                      | 3.4 | 12        |
| 92  | Type A Influenza Virus Detection from Horses by Real-Time RT-PCR and Insulated Isothermal RT-PCR.<br>Methods in Molecular Biology, 2014, 1161, 393-402.                                                                                                                           | 0.9 | 12        |
| 93  | Translation of a laboratory-validated equine herpesvirus-1 specific real-time PCR assay into an insulated isothermal polymerase chain reaction (iiPCR) assay for point-of-need diagnosis using POCKITâ"¢ nucleic acid analyzer. Journal of Virological Methods, 2017, 241, 58-63. | 2.1 | 11        |
| 94  | Curing of HeLa cells persistently infected with equine arteritis virus by a peptide-conjugated morpholino oligomer. Virus Research, 2010, 150, 138-142.                                                                                                                           | 2.2 | 10        |
| 95  | Validation of an improved competitive enzyme-linked immunosorbent assay to detect Equine arteritis virus antibody. Journal of Veterinary Diagnostic Investigation, 2013, 25, 727-735.                                                                                             | 1.1 | 10        |
| 96  | In vivo assessment of equine arteritis virus vaccine improvement by disabling the deubiquitinase activity of papain-like protease 2. Veterinary Microbiology, 2015, 178, 132-137.                                                                                                 | 1.9 | 10        |
| 97  | Host Factors that Contribute to Equine Arteritis Virus Persistence in the Stallion: an Update. Journal of Equine Veterinary Science, 2016, 43, S11-S17.                                                                                                                           | 0.9 | 10        |
| 98  | Equine herpesvirus-1 infection disrupts interferon regulatory factor-3 (IRF-3) signaling pathways in equine endothelial cells. Veterinary Immunology and Immunopathology, 2016, 173, 1-9.                                                                                         | 1.2 | 10        |
| 99  | Detection, molecular characterization and phylogenetic analysis of G3P[12] and G14P[12] equine rotavirus strains co-circulating in central Kentucky. Virus Research, 2018, 255, 39-54.                                                                                            | 2.2 | 10        |
| 100 | Uterine responses and equine chorionic gonadotropin concentrations after two intrauterine infusions with kerosene post early fetal loss in mares. Theriogenology, 2020, 147, 202-210.                                                                                             | 2.1 | 10        |
| 101 | Pathologic and immunohistochemical findings in an outbreak of systemic toxoplasmosis in a mob of red kangaroos. Journal of Veterinary Diagnostic Investigation, 2021, 33, 554-565.                                                                                                | 1.1 | 10        |
| 102 | Genetic Variation of ORFs 3 and 4 of Equine Arteritis Virus. Advances in Experimental Medicine and<br>Biology, 2001, 494, 69-72.                                                                                                                                                  | 1.6 | 10        |
| 103 | The neuropathogenic T953 strain of equine herpesvirus-1 inhibits type-I IFN mediated antiviral activity in equine endothelial cells. Veterinary Microbiology, 2016, 183, 110-118.                                                                                                 | 1.9 | 9         |
| 104 | Viral Diseases that Affect Donkeys and Mules. Animals, 2020, 10, 2203.                                                                                                                                                                                                            | 2.3 | 9         |
| 105 | Identification of an additional neutralization determinant of equine arteritis virus. Virus Research, 2008, 138, 150-153.                                                                                                                                                         | 2.2 | 8         |
| 106 | Equine Arteritis Virus Elicits a Mucosal Antibody Response in the Reproductive Tract of Persistently<br>Infected Stallions. Vaccine Journal, 2017, 24, .                                                                                                                          | 3.1 | 8         |
| 107 | Development and evaluation of a one-step multiplex real-time TaqMan® RT-qPCR assay for the<br>detection and genotyping of equine G3 and G14 rotaviruses in fecal samples. Virology Journal, 2019, 16,<br>49.                                                                      | 3.4 | 8         |
| 108 | Equine Viral Arteritis. Clinical Techniques in Equine Practice, 2006, 5, 233-238.                                                                                                                                                                                                 | 0.5 | 7         |

| #   | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Rapid detection of equine infectious anaemia virus nucleic acid by insulated isothermal<br><scp>RT</scp> â€ <scp>PCR</scp> assay to aid diagnosis under field conditions. Equine Veterinary<br>Journal, 2019, 51, 489-494.                                  | 1.7 | 7         |
| 110 | Type A Influenza Virus Detection from Horses by Real-Time RT-qPCR and Insulated Isothermal RT-PCR.<br>Methods in Molecular Biology, 2020, 2123, 383-392.                                                                                                    | 0.9 | 7         |
| 111 | Conserved arginine residues in the carboxyl terminus of the equine arteritis virus E protein may play a role in heparin binding but may not affect viral infectivity in equine endothelial cells. Archives of Virology, 2016, 161, 873-886.                 | 2.1 | 6         |
| 112 | Development and characterization of a synthetic infectious cDNA clone of the virulent Bucyrus strain of equine arteritis virus expressing mCherry (red fluorescent protein). Archives of Virology, 2016, 161, 821-832.                                      | 2.1 | 6         |
| 113 | Intrahost Selection Pressure Drives Equine Arteritis Virus Evolution during Persistent Infection in the Stallion Reproductive Tract. Journal of Virology, 2019, 93, .                                                                                       | 3.4 | 6         |
| 114 | Development and validation of a one-step reverse transcription loop-mediated isothermal<br>amplification (RT-LAMP) for rapid detection of ZIKV in patient samples from Brazil. Scientific Reports,<br>2021, 11, 4111.                                       | 3.3 | 6         |
| 115 | Animal Arterivirus Infections. BioMed Research International, 2014, 2014, 1-2.                                                                                                                                                                              | 1.9 | 5         |
| 116 | Complete Genome Sequences of Three Laboratory Strains of Dengue Virus (Serotypes 2, 3, and 4)<br>Available in South Korea. Genome Announcements, 2015, 3, .                                                                                                 | 0.8 | 5         |
| 117 | Absence of relationship between type-I interferon suppression and neuropathogenicity of EHV-1.<br>Veterinary Immunology and Immunopathology, 2018, 197, 24-30.                                                                                              | 1.2 | 5         |
| 118 | Genomeâ€wide association study for host genetic factors associated with equine herpesvirus typeâ€₁<br>induced myeloencephalopathy. Equine Veterinary Journal, 2020, 52, 794-798.                                                                            | 1.7 | 5         |
| 119 | Paternally expressed retrotransposon Gag-like 1 gene, RTL1, is one of the crucial elements for placental angiogenesis in horses. Biology of Reproduction, 2021, 104, 1386-1399.                                                                             | 2.7 | 5         |
| 120 | Further evaluation and validation of a commercially available competitive ELISA (cELISA) for the detection of antibodies specific to equine arteritis virus (EAV). Veterinary Record, 2016, 178, 95-95.                                                     | 0.3 | 4         |
| 121 | Equine Viral Arteritis. , 2014, , 169-181.e5.                                                                                                                                                                                                               |     | 3         |
| 122 | Complete Genome Sequence of Noncytopathic Bovine Viral Diarrhea Virus 1 Contaminating a<br>High-Passage RK-13 Cell Line. Genome Announcements, 2015, 3, .                                                                                                   | 0.8 | 3         |
| 123 | An outbreak of visna-maedi in a flock of sheep in Southern Brazil. Brazilian Journal of Microbiology, 2022, , .                                                                                                                                             | 2.0 | 3         |
| 124 | Complete Genome Sequences of Three Clinical Isolates of Dengue Virus Serotype 1 from South Korean<br>Travelers. Genome Announcements, 2015, 3, .                                                                                                            | 0.8 | 2         |
| 125 | Enhanced sensitivity of an antibody competitive blocking enzyme-linked immunosorbent assay using<br><i>Equine arteritis virus</i> purified by anion-exchange membrane chromatography. Journal of<br>Veterinary Diagnostic Investigation, 2015, 27, 728-738. | 1.1 | 2         |
| 126 | The effect of equine herpesvirus type 4 on type-I interferon signaling molecules. Veterinary<br>Immunology and Immunopathology, 2020, 219, 109971.                                                                                                          | 1.2 | 2         |

| #   | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Systemic equid alphaherpesvirus 9 in a Grant's zebra. Journal of Veterinary Diagnostic Investigation, 2018, 30, 580-583.                                                                                                                                          | 1.1 | 1         |
| 128 | RNA Extraction from Equine Samples for Equine Influenza Virus. Methods in Molecular Biology, 2020, 2123, 369-382.                                                                                                                                                 | 0.9 | 1         |
| 129 | Development of a TaqMan® Allelic Discrimination qPCR Assay for Rapid Detection of Equine CXCL16<br>Allelic Variants Associated With the Establishment of Long-Term Equine Arteritis Virus Carrier State<br>in Stallions. Frontiers in Genetics, 2022, 13, 871875. | 2.3 | 1         |
| 130 | Clinical, virological, imaging and pathological findings in a SARS CoV-2 antibody positive cat. Journal of Veterinary Science, 0, 23, .                                                                                                                           | 1.3 | 1         |
| 131 | RNA Extraction from Equine Samples for Equine Influenza Virus. Methods in Molecular Biology, 2014, 1161, 379-392.                                                                                                                                                 | 0.9 | 0         |
| 132 | Development and Characterization of an Infectious cDNA Clone of Equine Arteritis Virus. Methods in<br>Molecular Biology, 2017, 1602, 11-28.                                                                                                                       | 0.9 | 0         |