Samantha M Solon-Biet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7472395/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Ratio of Macronutrients, Not Caloric Intake, Dictates Cardiometabolic Health, Aging, and Longevity in Ad Libitum-Fed Mice. Cell Metabolism, 2014, 19, 418-430.	7.2	768
2	Branched-chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nature Metabolism, 2019, 1, 532-545.	5.1	207
3	Macronutrient balance, reproductive function, and lifespan in aging mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3481-3486.	3.3	194
4	Dietary Protein to Carbohydrate Ratio and Caloric Restriction: Comparing Metabolic Outcomes in Mice. Cell Reports, 2015, 11, 1529-1534.	2.9	169
5	Defining the Nutritional and Metabolic Context of FGF21ÂUsing the Geometric Framework. Cell Metabolism, 2016, 24, 555-565.	7.2	164
6	The impact of low-protein high-carbohydrate diets on aging and lifespan. Cellular and Molecular Life Sciences, 2016, 73, 1237-1252.	2.4	164
7	Diet-Microbiome Interactions in Health Are Controlled by Intestinal Nitrogen Source Constraints. Cell Metabolism, 2017, 25, 140-151.	7.2	148
8	FGF21 Signals Protein Status to the Brain and Adaptively Regulates Food Choice and Metabolism. Cell Reports, 2019, 27, 2934-2947.e3.	2.9	143
9	Dietary protein, aging and nutritional geometry. Ageing Research Reviews, 2017, 39, 78-86.	5.0	120
10	Macronutrients and caloric intake in health and longevity. Journal of Endocrinology, 2015, 226, R17-R28.	1.2	110
11	Branched chain amino acids, aging and age-related health. Ageing Research Reviews, 2020, 64, 101198.	5.0	105
12	Comparing the Effects of Low-Protein and High-Carbohydrate Diets and Caloric Restriction on Brain Aging in Mice. Cell Reports, 2018, 25, 2234-2243.e6.	2.9	102
13	Aging, lifestyle and dementia. Neurobiology of Disease, 2019, 130, 104481.	2.1	97
14	Nutritional strategies to optimise cognitive function in the aging brain. Ageing Research Reviews, 2016, 31, 80-92.	5.0	93
15	Cognitive and behavioral evaluation of nutritional interventions in rodent models of brain aging and dementia. Clinical Interventions in Aging, 2017, Volume 12, 1419-1428.	1.3	82
16	The Geometric Framework for Nutrition as a tool in precision medicine. Nutrition and Healthy Aging, 2017, 4, 217-226.	0.5	76
17	Restriction of essential amino acids dictates the systemic metabolic response to dietary protein dilution. Nature Communications, 2020, 11, 2894.	5.8	71
18	New Horizons: Dietary protein, ageing and the Okinawan ratio. Age and Ageing, 2016, 45, 443-447.	0.7	64

2

SAMANTHA M SOLON-BIET

#	Article	IF	CITATIONS
19	Liver Aging and Pseudocapillarization in a Werner Syndrome Mouse Model. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, 1076-1086.	1.7	45
20	Defining the impact of dietary macronutrient balance on PCOS traits. Nature Communications, 2020, 11, 5262.	5.8	44
21	Impact of dietary carbohydrate type and protein–carbohydrate interaction on metabolic health. Nature Metabolism, 2021, 3, 810-828.	5.1	42
22	Ingestion of resistant starch by mice markedly increases microbiomeâ€derived metabolites. FASEB Journal, 2019, 33, 8033-8042.	0.2	39
23	Nutritional ecology and the evolution of aging. Experimental Gerontology, 2016, 86, 50-61.	1.2	36
24	The nutritional geometry of liver disease including non-alcoholic fatty liver disease. Journal of Hepatology, 2018, 68, 316-325.	1.8	35
25	The Influence of Macronutrients on Splanchnic and Hepatic Lymphocytes in Aging Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 1499-1507.	1.7	30
26	Nutritional reprogramming of mouse liver proteome is dampened by metformin, resveratrol, and rapamycin. Cell Metabolism, 2021, 33, 2367-2379.e4.	7.2	30
27	Nutritional geometry of paternal effects on embryo mortality. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171492.	1.2	28
28	The Relationship Between Dietary Macronutrients and Hepatic Telomere Length in Aging Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 446-449.	1.7	25
29	Dietary macronutrient content, age-specific mortality and lifespan. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190393.	1.2	25
30	Of Older Mice and Men: Branched-Chain Amino Acids and Body Composition. Nutrients, 2019, 11, 1882.	1.7	17
31	Long-term Dietary Macronutrients and Hepatic Gene Expression in Aging Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 1618-1625.	1.7	16
32	Sexâ€specific metabolic responses to 6 hours of fasting during the active phase in young mice. Journal of Physiology, 2020, 598, 2081-2092.	1.3	15
33	Effects of temperature on macronutrient selection, metabolic and swimming performance of the Indo-Pacific Damselfish (Abudefduf vaigiensis). Marine Biology, 2018, 165, 1.	0.7	14
34	Macronutrient Determinants of Obesity, Insulin Resistance and Metabolic Health. Biology, 2021, 10, 336.	1.3	14
35	An integrative approach to dietary balance across the life course. IScience, 2022, 25, 104315.	1.9	14
36	The contribution of dietary restriction to extended longevity in the malaria vector Anopheles coluzzii. Parasites and Vectors, 2017, 10, 156.	1.0	13

#	Article	IF	CITATIONS
37	The Effects of Dietary Macronutrient Balance on Skin Structure in Aging Male and Female Mice. PLoS ONE, 2016, 11, e0166175.	1.1	10
38	The interplay between PCOS pathology and diet on gut microbiota in a mouse model. Gut Microbes, 2022, 14, .	4.3	9
39	Central nervous system SIRT1 expression is required for cued and contextual fear conditioning memory responses in aging mice. Nutrition and Healthy Aging, 2019, 5, 111-117.	0.5	8
40	Sucrose and starch intake contribute to reduced alveolar bone height in a rodent model of naturally occurring periodontitis. PLoS ONE, 2019, 14, e0212796.	1.1	8
41	Meta-analysis links dietary branched-chain amino acids to metabolic health in rodents. BMC Biology, 2022, 20, 19.	1.7	8
42	Kidney disease risk factors do not explain impacts of low dietary protein on kidney function and structure. IScience, 2021, 24, 103308.	1.9	6
43	The geometric framework: An approach for studying the impact of nutrition on healthy aging. Drug Discovery Today: Disease Models, 2018, 27, 61-68.	1.2	5
44	Geometric framework reveals that a moderate protein, high carbohydrate intake is optimal for severe burn injury in mice. British Journal of Nutrition, 2020, 123, 1056-1067.	1.2	3
45	Low-protein diet accelerates wound healing in mice post-acute injury. Burns and Trauma, 2021, 9, tkab010.	2.3	3
46	LC-N2G: a local consistency approach for nutrigenomics data analysis. BMC Bioinformatics, 2020, 21, 530.	1.2	2
47	A Framework for Uncovering the Roles of Calories and Macronutrients in Health and Aging. , 2018, , 93-108.		0

48 Modeling nutrition and brain aging in rodents. , 2021, , 517-526.

0