Zheng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7472321/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Doubly fused <i>N</i> , <i>N</i> , <i>N</i> -iron ethylene polymerization catalysts appended with fluoride substituents; probing catalytic performance <i>via</i> a combined experimental and MLR study. Catalysis Science and Technology, 2021, 11, 4605-4618.	4.1	8
2	Recent progress of cobalt catalysts for homogeneous catalysis (de)hydrogenation. Scientia Sinica Chimica, 2021, 51, 995-1017.	0.4	1
3	Efficient base-free hydrodehalogenation of organic halides catalyzed by a well-defined diphosphine-ruthenium(II) complex. Molecular Catalysis, 2021, 516, 111953.	2.0	3
4	Direct synthesis of ring-fused quinolines and pyridines catalyzed by <i>NN</i> _{<i>H</i>} <i>Y</i> -ligated manganese complexes (Y = NR ₂ or SR). Catalysis Science and Technology, 2021, 11, 8026-8036.	4.1	9
5	Aza-crown compounds synthesised by the self-condensation of 2-amino-benzyl alcohol over a pincer ruthenium catalyst and applied in the transfer hydrogenation of ketones. Dalton Transactions, 2020, 49, 15821-15827.	3.3	3
6	Achieving strictly linear polyethylenes by the <i>NNN</i> â€Fe precatalysts finely tuned with different sizes of <i>ortho</i> â€cycloalkyl substituents. Applied Organometallic Chemistry, 2020, 34, e5937.	3.5	15
7	Ruthenium-catalyzed hydrogenation of CO ₂ as a route to methyl esters for use as biofuels or fine chemicals. Chemical Science, 2020, 11, 6766-6774.	7.4	13
8	Finely Tuned α,α′-Bis(arylimino)-2,3:5,6-bis(pentamethylene)pyridine-Based Practical Iron Precatalysts for Targeting Highly Linear and Narrow Dispersive Polyethylene Waxes with Vinyl Ends. Organometallics, 2019, 38, 4455-4470.	2.3	33
9	Plastomeric-like polyethylenes achievable using thermally robust <i>N</i> , <i>N</i> ′-nickel catalysts appended with electron withdrawing difluorobenzhydryl and nitro groups. Dalton Transactions, 2019, 48, 1878-1891.	3.3	30
10	Bis(imino)pyridines fused with 6- and 7-membered carbocylic rings as <i>N</i> , <i>N</i> , <i>N</i> ,Scaffolds for cobalt ethylene polymerization catalysts. Dalton Transactions, 2019, 48, 2582-2591.	3.3	42
11	Access to polyethylene elastomers via ethylene homo-polymerization using N,Nâ€2-nickel(II) catalysts appended with electron withdrawing difluorobenzhydryl group. European Polymer Journal, 2019, 117, 254-271.	5.4	27
12	Enhancing thermostability of iron ethylene polymerization catalysts through <i>N</i> , <i>N</i> , <i>N</i> -chelation of doubly fused α,αâ€2-bis(arylimino)-2,3:5,6-bis(hexamethylene)pyridines. Catalysis Science and Technology, 2019, 9, 1933-194	4.1 43.	37
13	Chromium ethylene polymerization catalysts bearing sterically enhanced α,α′-bis(imino)-2,3:5,6-bis(pentamethylene)pyridines: Tuning activity and molecular weight. Polymer, 2019, 171, 87-95.	3.8	9
14	Highly Linear Polyethylenes Achieved Using Thermo-Stable and Efficient Cobalt Precatalysts Bearing Carbocyclic-Fused NNN-Pincer Ligand. Molecules, 2019, 24, 1176.	3.8	30
15	Narrow dispersed linear polyethylene using cobalt catalysts bearing cycloheptyl-fused bis(imino)pyridines; probing the effects of ortho-benzhydryl substitution. European Polymer Journal, 2019, 110, 240-251.	5.4	32
16	Fusing Carbocycles of Inequivalent Ring Size to a Bis(imino)pyridine-Iron Ethylene Polymerization Catalyst: Distinctive Effects on Activity, PE Molecular Weight, and Dispersity. Research, 2019, 2019, 9426063.	5.7	11
17	Bis(imino)pyridines Incorporating Doubly Fused Eight-Membered Rings as Conformationally Flexible Supports for Cobalt Ethylene Polymerization Catalysts. Organometallics, 2018, 37, 380-389.	2.3	72
18	Carbocyclic-fused N,N,N-pincer ligands as ring-strain adjustable supports for iron and cobalt catalysts in ethylene oligo-/polymerization. Coordination Chemistry Reviews, 2018, 363, 92-108.	18.8	172

ZHENG WANG

#	Article	IF	CITATIONS
19	Strictly linear polyethylene using Co-catalysts chelated by fused bis(arylimino)pyridines: Probing ortho-cycloalkyl ring-size effects on molecular weight. Polymer, 2018, 149, 45-54.	3.8	47
20	An air and moisture tolerant iminotrihydroquinoline-ruthenium(ii) catalyst for the transfer hydrogenation of ketones. Dalton Transactions, 2018, 47, 8738-8745.	3.3	6
21	Cooperative interplay between a flexible PNN-Ru(<scp>ii</scp>) complex and a NaBH ₄ additive in the efficient catalytic hydrogenation of esters. Catalysis Science and Technology, 2017, 7, 1297-1304.	4.1	30
22	Recent advances in Ni-mediated ethylene chain growth: Nimine-donor ligand effects on catalytic activity, thermal stability and oligo-/polymer structure. Coordination Chemistry Reviews, 2017, 350, 68-83.	18.8	229
23	Achieving branched polyethylene waxes by aryliminocycloocta[<i>b</i>]pyridylnickel precatalysts: Synthesis, characterization, and ethylene polymerization. Journal of Polymer Science Part A, 2017, 55, 2601-2610.	2.3	19
24	Efficient acceptorless dehydrogenation of secondary alcohols to ketones mediated by a PNN-Ru(<scp>ii</scp>) catalyst. Catalysis Science and Technology, 2017, 7, 1654-1661.	4.1	42
25	Direct Hydrogenation of a Broad Range of Amides under Baseâ€free Conditions using an Efficient and Selective Ruthenium(II) Pincer Catalyst. ChemCatChem, 2017, 9, 4275-4281.	3.7	23
26	Molecular weight control of polyethylene waxes using a constrained imino yclopenta[<i>b</i>]pyridylâ€nickel catalyst. Journal of Polymer Science Part A, 2017, 55, 3494-3505.	2.3	10
27	Cycloheptylâ€fused NNOâ€ligands as electronically modifiable supports for M(II) (M = Co, Fe) chloride precatalysts; probing performance in ethylene oligoâ€lpolymerization. Journal of Polymer Science Part A, 2017, 55, 3980-3989.	2.3	23
28	Progress in Homogeneous Catalytic Hydrogenation of CO2. Chinese Journal of Organic Chemistry, 2017, 37, 1978.	1.3	11
29	A Ruthenium Catalyst with Unprecedented Effectiveness for the Coupling Cyclization of Î ³ -Amino Alcohols and Secondary Alcohols. ACS Catalysis, 2016, 6, 1247-1253.	11.2	111
30	Highly Efficient Rutheniumâ€Catalyzed Nâ€Formylation of Amines with H ₂ and CO ₂ . Angewandte Chemie - International Edition, 2015, 54, 6186-6189.	13.8	284
31	Catalytic Hydrogenation of Cyclic Carbonates: A Practical Approach from CO ₂ and Epoxides to Methanol and Diols. Angewandte Chemie - International Edition, 2012, 51, 13041-13045.	13.8	317