Charles G Trick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7472303/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. Harmful Algae, 2012, 14, 271-300.	2.2	429
2	Global changeâ€driven effects on dissolved organic matter composition: Implications for food webs of northern lakes. Global Change Biology, 2018, 24, 3692-3714.	4.2	229
3	Future HAB science: Directions and challenges in a changing climate. Harmful Algae, 2020, 91, 101632.	2.2	223
4	Photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria based on characteristic Fe(III) binding groups. Limnology and Oceanography, 2003, 48, 1069-1078.	1.6	217
5	Domoic acid: The synergy of iron, copper, and the toxicity of diatoms. Limnology and Oceanography, 2005, 50, 1908-1917.	1.6	165
6	Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5887-5892.	3.3	104
7	Possible physiological mechanisms for production of hydrogen peroxide by the ichthyotoxic flagellate Heterosigma akashiwo. Journal of Plankton Research, 2000, 22, 1961-1975.	0.8	80
8	Evidence for the grazing hypothesis: Grazing reduces phytoplankton responses of the HNLC ecosystem to iron enrichment in the western subarctic pacific (SEEDS II). Journal of Oceanography, 2007, 63, 983-994.	0.7	80
9	Variability of Pseudo- <i>nitzschia</i> and domoic acid in the Juan de Fuca eddy region and its adjacent shelves. Limnology and Oceanography, 2009, 54, 289-308.	1.6	76
10	Toxic effects of <i>Heterosigma akashiw</i> o do not appear to be mediated by hydrogen peroxide. Limnology and Oceanography, 2001, 46, 1400-1405.	1.6	70
11	An ecological study of a massive bloom of toxigenic Pseudoâ€nitzschia cuspidata off the Washington State coast. Limnology and Oceanography, 2009, 54, 1461-1474.	1.6	67
12	Controlling iron availability to phytoplankton in iron-replete coastal waters. Marine Chemistry, 2004, 86, 1-13.	0.9	57
13	Impacts on phytoplankton biomass and productivity in the Pacific Northwest during the warm ocean conditions of 2005. Geophysical Research Letters, 2006, 33, .	1.5	41
14	Expression and standardized measurement of hemolytic activity in Heterosigma akashiwo. Harmful Algae, 2010, 9, 522-529.	2.2	40
15	Isolation and purification of siderophores produced by cyanobacteria,Synechococcus sp. PCC 7942 andAnabaena variabilis ATCC 29413. Current Microbiology, 1992, 24, 241-245.	1.0	38
16	Extracellular organic compounds from the ichthyotoxic red tide alga Heterosigma akashiwo elevate cytosolic calcium and induce apoptosis in Sf9 cells. Harmful Algae, 2005, 4, 789-800.	2.2	38
17	Evidence for ironâ€regulated cyanobacterial predominance in oligotrophic lakes. Freshwater Biology, 2014, 59, 679-691.	1.2	38
18	Lake browning may fuel phytoplankton biomass and trigger shifts in phytoplankton communities in temperate lakes. Aquatic Sciences, 2021, 83, 1.	0.6	33

CHARLES G TRICK

#	Article	IF	CITATIONS
19	Responses to iron limitation in two colonies of <i>Stylophora pistillata</i> exposed to high temperature: Implications for coral bleaching. Limnology and Oceanography, 2011, 56, 813-828.	1.6	29
20	Extracellular organics from specific cultures of Heterosigma akashiwo (Raphidophyceae) irreversibly alter respiratory activity in mammalian cells. Harmful Algae, 2004, 3, 173-182.	2.2	28
21	Iron and ironâ€binding ligands as cofactors that limit cyanobacterial biomass across a lake trophic gradient. Freshwater Biology, 2016, 61, 146-157.	1.2	23
22	The influence of iron, siderophores and refractory <scp>DOM</scp> on cyanobacterial biomass in oligotrophic lakes. Freshwater Biology, 2014, 59, 1423-1436.	1.2	22
23	PLASTICITY OF THE PSYCHROPHILIC GREEN ALGA <i>CHLAMYDOMONAS RAUDENSIS</i> (UWO 241) (CHLOROPHYTA) TO SUPRAOPTIMAL TEMPERATURE STRESS ¹ . Journal of Phycology, 2011, 47, 1098-1109.	1.0	20
24	Persistence of iron limitation in the western subarctic Pacific SEEDS II mesoscale fertilization experiment. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 2810-2821.	0.6	17
25	Harmonizing science and management options to reduce risks of cyanobacteria. Harmful Algae, 2022, 116, 102264.	2.2	17
26	A sea-going continuous culture system for investigating phytoplankton community response to macro- and micro-nutrient manipulations. Limnology and Oceanography: Methods, 2009, 7, 21-32.	1.0	15
27	Sinking of Heterosigma akashiwo results in increased toxicity of this harmful algal bloom species. Harmful Algae, 2012, 13, 95-104.	2.2	14
28	The successional formation and release of domoic acid in a Pseudo-nitzschia bloom in the Juan de Fuca Eddy: A drifter study. Harmful Algae, 2018, 79, 105-114.	2.2	14
29	Suitability of a cytotoxicity assay for detection of potentially harmful compounds produced by freshwater bloom-forming algae. Harmful Algae, 2014, 31, 177-187.	2.2	11
30	The effects of salinity on the cellular permeability and cytotoxicity of <i>Heterosigma akashiwo</i> . Journal of Phycology, 2016, 52, 745-760.	1.0	11
31	Multiple-stressor design-of-experiment (DOE) and one-factor-at-a-time (OFAT) observations defining Heterosigma akashiwo growth and cell permeability. Journal of Applied Phycology, 2019, 31, 3515-3526.	1.5	8
32	Performance and competitiveness of red vs. green phenotypes of a cyanobacterium grown under artificial lake browning. Algae, 2021, 36, 195-206.	0.9	7
33	Cyanobacteria biomass in shallow eutrophic lakes is linked to the presence of iron-binding ligands. Canadian Journal of Fisheries and Aquatic Sciences, 2019, 76, 1728-1739.	0.7	4
34	Yeast Cell as a Bio-Model for Measuring the Toxicity of Fish-Killing Flagellates. Toxins, 2021, 13, 821.	1.5	4