
Gao Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/747078/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hierarchical Structure of CuO Nanowires Decorated with Ni(OH) ₂ Supported on Cu Foam for Hydrogen Production via Urea Electrocatalysis. Small Methods, 2022, 6, e2101017.	8.6	43
2	Methanol electro-oxidation to formate on iron-substituted lanthanum cobaltite perovskite oxides. EScience, 2022, 2, 87-94.	41.6	40
3	Electro-Oxidation of Glycerol to High-Value-Added C1–C3 Products by Iron-Substituted Spinel Zinc Cobalt Oxides. ACS Applied Materials & Interfaces, 2022, 14, 14293-14301.	8.0	23
4	A discussion on the possible involvement of singlet oxygen in oxygen electrocatalysis. JPhys Energy, 2021, 3, 031004.	5.3	31
5	Activating Both Basal Plane and Edge Sites of Layered Cobalt Oxides for Boosted Water Oxidation. Advanced Functional Materials, 2021, 31, 2103569.	14.9	28
6	SmCo ₅ with a Reconstructed Oxyhydroxide Surface for Spinâ€6elective Water Oxidation at Elevated Temperature. Angewandte Chemie - International Edition, 2021, 60, 25884-25890.	13.8	51
7	Emerging dynamic structure of electrocatalysts unveiled by <i>in situ</i> X-ray diffraction/absorption spectroscopy. Energy and Environmental Science, 2021, 14, 1928-1958.	30.8	179
8	Catalytically Influential Features in Transition Metal Oxides. ACS Catalysis, 2021, 11, 13947-13954.	11.2	38
9	Electrochemical Oxidation of Nitrogen towards Direct Nitrate Production on Spinel Oxides. Angewandte Chemie - International Edition, 2020, 59, 9418-9422.	13.8	108
10	A Selfâ€Assembled Heteroâ€Structured Inverseâ€Spinel and Antiâ€Perovskite Nanocomposite for Ultrafast Water Oxidation. Small, 2020, 16, e2002089.	10.0	40
11	Electrochemical Oxidation of Nitrogen towards Direct Nitrate Production on Spinel Oxides. Angewandte Chemie, 2020, 132, 9504-9508.	2.0	31
12	Morphology, crystal structure and electronic state one-step co-tuning strategy towards developing superior perovskite electrocatalysts for water oxidation. Journal of Materials Chemistry A, 2019, 7, 19228-19233.	10.3	39
13	Smart Control of Composition for Double Perovskite Electrocatalysts toward Enhanced Oxygen Evolution Reaction. ChemSusChem, 2019, 12, 5111-5116.	6.8	33
14	Rationally designed Water-Insertable Layered Oxides with Synergistic Effect of Transition-Metal Elements for High-Performance Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 25227-25235.	8.0	29
15	An Amorphous Nickel–Ironâ€Based Electrocatalyst with Unusual Local Structures for Ultrafast Oxygen Evolution Reaction. Advanced Materials, 2019, 31, e1900883.	21.0	243
16	Rationally Designed Hierarchically Structured Tungsten Nitride and Nitrogenâ€Rich Graphene‣ike Carbon Nanocomposite as Efficient Hydrogen Evolution Electrocatalyst. Advanced Science, 2018, 5, 1700603.	11.2	128
17	A Universal Strategy to Design Superior Water‧plitting Electrocatalysts Based on Fast In Situ Reconstruction of Amorphous Nanofilm Precursors. Advanced Materials, 2018, 30, e1804333.	21.0	108
18	Constructing self-standing and non-precious metal heterogeneous nanowire arrays as high-performance oxygen evolution electrocatalysts: Beyond the electronegativity effect of the substrate. Journal of Power Sources, 2018, 396, 421-428.	7.8	12

GAO CHEN

#	Article	IF	CITATIONS
19	Ultrahigh-performance tungsten-doped perovskites for the oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 9854-9859.	10.3	82
20	Molybdenum and Niobium Codoped B-Site-Ordered Double Perovskite Catalyst for Efficient Oxygen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2018, 10, 16939-16942.	8.0	39
21	AÂsurface-modified antiperovskite asÂan electrocatalyst for water oxidation. Nature Communications, 2018, 9, 2326.	12.8	87
22	Bâ€Site Cation Ordered Double Perovskites as Efficient and Stable Electrocatalysts for Oxygen Evolution Reaction. Chemistry - A European Journal, 2017, 23, 5722-5728.	3.3	61
23	Enhancing Electrocatalytic Activity for Hydrogen Evolution by Strongly Coupled Molybdenum Nitride@Nitrogen-Doped Carbon Porous Nano-Octahedrons. ACS Catalysis, 2017, 7, 3540-3547.	11.2	306
24	An extremely active and durable Mo 2 C/graphene-like carbon based electrocatalyst for hydrogen evolution reaction. Materials Today Energy, 2017, 6, 230-237.	4.7	18
25	Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â~î´} nanofilms with tunable oxidation state. Science Advances, 2017, 3, e1603206.	10.3	170
26	Highly Active Carbon/αâ€MnO ₂ Hybrid Oxygen Reduction Reaction Electrocatalysts. ChemElectroChem, 2016, 3, 1760-1767.	3.4	42
27	Cobalt Oxide and Cobaltâ€Graphitic Carbon Core–Shell Based Catalysts with Remarkably High Oxygen Reduction Reaction Activity. Advanced Science, 2016, 3, 1600060.	11.2	109
28	Surfactant-free self-assembly of reduced graphite oxide-MoO2 nanobelt composites used as electrode for lithium-ion batteries. Electrochimica Acta, 2016, 211, 972-981.	5.2	53
29	A hierarchical Zn ₂ Mo ₃ O ₈ nanodots–porous carbon composite as a superior anode for lithium-ion batteries. Chemical Communications, 2016, 52, 9402-9405.	4.1	29
30	Evaluation of the CO ₂ Poisoning Effect on a Highly Active Cathode SrSc _{0.175} Nb _{0.025} Co _{0.8} O _{3-δ} in the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 3003-3011.	8.0	99
31	SmCo5 with a reconstructed oxyhydroxide surface for spin selective water oxidation under elevated temperature. Angewandte Chemie, 0, , .	2.0	2