Akira Funahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7470665/publications.pdf

Version: 2024-02-01

361296 175177 4,605 85 20 52 citations h-index g-index papers 101 101 101 5623 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A comprehensive pathway map of epidermal growth factor receptor signaling. Molecular Systems Biology, 2005, 1, 2005.0010.	3.2	902
2	The Systems Biology Graphical Notation. Nature Biotechnology, 2009, 27, 735-741.	9.4	828
3	CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. Biosilico, 2003, 1, 159-162.	0.5	562
4	Using process diagrams for the graphical representation of biological networks. Nature Biotechnology, 2005, 23, 961-966.	9.4	429
5	CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks. Proceedings of the IEEE, 2008, 96, 1254-1265.	16.4	380
6	Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project. IET Systems Biology, 2004, 1, 41-53.	2.0	187
7	<scp>SBML</scp> Level 3: an extensible format for the exchange and reuse of biological models. Molecular Systems Biology, 2020, 16, e9110.	3. 2	178
8	COVID-19 Disease Map, building a computational repository of SARS-CoV-2 virus-host interaction mechanisms. Scientific Data, 2020, 7, 136.	2.4	99
9	Detection of Temperature Difference in Neuronal Cells. Scientific Reports, 2016, 6, 22071.	1.6	93
10	Software support for SBGN maps: SBGN-ML and LibSBGN. Bioinformatics, 2012, 28, 2016-2021.	1.8	74
11	The principles of whole-cell modeling. Current Opinion in Microbiology, 2015, 27, 18-24.	2.3	66
12	Modeling and Simulation Using CellDesigner. Methods in Molecular Biology, 2014, 1164, 121-145.	0.4	60
13	Recursive diagonal torus: an interconnection network for massively parallel computers. IEEE Transactions on Parallel and Distributed Systems, 2001, 12, 701-715.	4.0	54
14	COVID19 Disease Map, a computational knowledge repository of virus–host interaction mechanisms. Molecular Systems Biology, 2021, 17, e10387.	3.2	53
15	L-turn routing: an adaptive routing in irregular networks. , 2001, , .		48
16	Integration of CellDesigner and SABIO-RK. In Silico Biology, 2007, 7, S81-90.	0.4	47
17	High-speed microscopy with an electrically tunable lens to image the dynamics ofin vivomolecular complexes. Review of Scientific Instruments, 2015, 86, 013707.	0.6	45
18	The DBCLS BioHackathon: standardization and interoperability for bioinformatics web services and workflows. Journal of Biomedical Semantics, 2010, 1, 8.	0.9	31

#	Article	IF	Citations
19	3D convolutional neural networks-based segmentation to acquire quantitative criteria of the nucleus during mouse embryogenesis. Npj Systems Biology and Applications, 2020, 6, 32.	1.4	30
20	A proteomic study of mitotic phase-specific interactors of EB1 reveals a role for SXIP-mediated protein interactions in anaphase onset. Biology Open, 2015, 4, 155-169.	0.6	29
21	The systems biology simulation core algorithm. BMC Systems Biology, 2013, 7, 55.	3.0	27
22	CellDesigner: A Graphical Biological Network Editor and Workbench Interfacing Simulator. , 2007, , 422-434.		25
23	Automated tracking of mitotic spindle pole positions shows that LGN is required for spindle rotation but not orientation maintenance. Cell Cycle, 2013, 12, 2643-2655.	1.3	22
24	Celldesigner: A Modeling Tool for Biochemical Networks. , 2006, , .		19
25	BioPAX support in CellDesigner. Bioinformatics, 2011, 27, 3437-3438.	1.8	18
26	Comparative studies of suppression of malignant cancer cell phenotype by antisense oligo DNA and small interfering RNA. Cancer Gene Therapy, 2006, 13, 7-12.	2.2	15
27	LibSBMLSim: a reference implementation of fully functional SBML simulator. Bioinformatics, 2013, 29, 1474-1476.	1.8	15
28	Acceleration of discrete stochastic biochemical simulation using GPGPU. Frontiers in Physiology, 2015, 6, 42.	1.3	14
29	Transcriptome analysis of the anhydrobiotic cell line Pv11 infers the mechanism of desiccation tolerance and recovery. Scientific Reports, 2018, 8, 17941.	1.6	14
30	Predicting the future direction of cell movement with convolutional neural networks. PLoS ONE, 2019, 14, e0221245.	1.1	13
31	FPGA Implementation of a Data-Driven Stochastic Biochemical Simulator with the Next Reaction Method. , 2007, , .		12
32	Physiological environment induces quick response – slow exhaustion reactions. Frontiers in Physiology, 2011, 2, 50.	1.3	12
33	Identification of a master transcription factor and a regulatory mechanism for desiccation tolerance in the anhydrobiotic cell line $Pv11$. PLoS ONE, 2020, 15, e0230218.	1.1	11
34	BioSimulators: a central registry of simulation engines and services for recommending specific tools. Nucleic Acids Research, 2022, 50, W108-W114.	6.5	11
35	Mathematical Modeling of Sustainable Synaptogenesis by Repetitive Stimuli Suggests Signaling Mechanisms In Vivo. PLoS ONE, 2012, 7, e51000.	1.1	10
36	ReCSiP: An FPGA-based general-purpose biochemical simulator. Electronics and Communications in Japan, 2007, 90, 1-10.	0.2	9

#	Article	IF	Citations
37	Software Infrastructure for Effective Communication and Reuse of Computational Models., 2006,, 355-378.		9
38	An FPGA Implementation of High Throughput Stochastic Simulator for Large-Scale Biochemical Systems. , 2006, , .		8
39	Deduction of intracellular sub-systems from a topological description of the network. Molecular BioSystems, 2007, 3, 523.	2.9	8
40	Routing algorithms based on 2D turn model for irregular networks. , 0, , .		7
41	Efficient scheduling of rate law functions for ODE-based multimodal biochemical simulation on an FPGA. , 0, , .		7
42	From microscopy data to in silico environments for in vivo-oriented simulations. Eurasip Journal on Bioinformatics and Systems Biology, 2012, 2012, 7.	1.4	7
43	Genome-Wide Role of HSF1 in Transcriptional Regulation of Desiccation Tolerance in the Anhydrobiotic Cell Line, Pv11. International Journal of Molecular Sciences, 2021, 22, 5798.	1.8	6
44	High quality genome assembly of theÂanhydrobiotic midgeÂprovides insights on a single chromosome-based emergenceÂof extreme desiccation tolerance. NAR Genomics and Bioinformatics, 2022, 4, lqac029.	1.5	6
45	Activation of cell migration via morphological changes in focal adhesions depends on shear stress in MYCN-amplified neuroblastoma cells. Journal of the Royal Society Interface, 2019, 16, 20180934.	1.5	5
46	Direct Cell Counting Using Macro-Scale Smartphone Images of Cell Aggregates. IEEE Access, 2020, 8, 170033-170043.	2.6	5
47	Cas9-mediated genome editing reveals a significant contribution of calcium signaling pathways to anhydrobiosis in Pv11 cells. Scientific Reports, 2021, 11, 19698.	1.6	5
48	An FPGA-Based, Multi-model Simulation Method for Biochemical Systems. , 0, , .		4
49	Framework for ode-based multimodel biochemical simulations on an FPGA. , 0, , .		4
50	Performance Evaluation of an Fpga-Based Biochemical Simulator ReCSip., 2006,,.		4
51	Practical implementation of a network-based stochastic biochemical simulation system on an FPGA. , 2008, , .		4
52	The design of scalable stochastic biochemical simulator on FPGA., 0,,.		3
53	Editorial: Quantitative Biology: Dynamics of Living Systems. Frontiers in Physiology, 2016, 7, 196.	1.3	3
54	XitoSBML: A Modeling Tool for Creating Spatial Systems Biology Markup Language Models From Microscopic Images. Frontiers in Genetics, 2019, 10, 1027.	1.1	3

#	Article	IF	CITATIONS
55	Neural Differentiation Dynamics Controlled by Multiple Feedback Loops in a Comprehensive Molecular Interaction Network. Processes, 2020, 8, 166.	1.3	3
56	SBML Models and MathSBML. , 2007, , 395-421.		3
57	Adaptive routing on the Recursive Diagonal Torus. Lecture Notes in Computer Science, 1997, , 171-182.	1.0	2
58	Configuring area and performance: Empirical evaluation on an FPGA-based biochemical simulator. , 2009, , .		2
59	Automatic Pipeline Construction Focused on Similarity of Rate Law Functions for an FPGA-based Biochemical Simulator. IPSJ Transactions on System LSI Design Methodology, 2010, 3, 244-256.	0.5	2
60	Deep Learning for Non-Invasive Determination of the Differentiation Status of Human Neuronal Cells by Using Phase-Contrast Photomicrographs. Applied Sciences (Switzerland), 2019, 9, 5503.	1.3	2
61	Kinetics of Dimension-Restricted Conditions. , 2007, , 261-281.		2
62	Pipeline Scheduling with Input Port Constraints for an FPGA-Based Biochemical Simulator. Lecture Notes in Computer Science, 2009, , 368-373.	1.0	2
63	Temperature elevation detection in migrating cells. , 2022, 1, 1085.		2
64	A Combining Technique of Rate Law Functions for a Cost-Effective Reconfigurable Biological Simulator., 2007,,.		1
65	A Framework for Implementing a Network-Based Stochastic Biochemical Simulator on an FPGA. , 2007, ,		1
66	A Modular Approach to Heterogeneous Biochemical Model Simulation on an FPGA. , 2009, , .		1
67	In vivo oriented modeling with consideration of intracellular crowding. , 2013, 2013, 2716-9.		1
68	Assessing uncertainty in model parameters based on sparse and noisy experimental data. Frontiers in Physiology, 2014, 5, 128.	1.3	1
69	Quantitative analysis of sensitivity to a Wnt3a gradient in determination of the poleâ€toâ€pole axis of mitotic cells by using a microfluidic device. FEBS Open Bio, 2018, 8, 1920-1935.	1.0	1
70	Symbolic Integration by Integrating Learning Models With Different Strengths and Weaknesses. IEEE Access, 2022, 10, 47000-47010.	2.6	1
71	3P-239 Effect of molecular crowding on in vivo macromolecular reactions(Mathematical biology,The) Tj ETQq $1\ 1$	0.784314	rgBT /Overlo
72	LibSBGN: Electronic Processing of SBGN maps. Nature Precedings, 2010, , .	0.1	0

#	Article	IF	CITATIONS
73	A datapath classification method for FPGA-based scientific application accelerator systems. , 2010, , .		O
74	LibSBGN: Electronic Processing of SBGN maps. Nature Precedings, 2011, , .	0.1	0
75	Physiological Intracellular Crowdedness is Defined by the Perimeter-to-Area Ratio of Sub-Cellular Compartments. Frontiers in Physiology, 2012, 3, 293.	1.3	O
76	Meeting report of the International Workshop on Quantitative Biology 2012: mesoscopic and microscopic worlds meet. Frontiers in Physiology, 2012, 3, 479.	1.3	0
77	Fabrication method to a high resolution control in the space of cell culturing environment with microfluidic system. , 2014, , .		0
78	Requirement of spatiotemporal resolution for imaging intracellular temperature distribution. , 2017, , .		0
79	Electrical Field Chamber with Dinamically Adaptable Stimuli for Myocyte Orientation During Cultivation. , 2021, , .		0
80	SBMLWebApp: Web-Based Simulation, Steady-State Analysis, and Parameter Estimation of Systems Biology Models. Processes, 2021, 9, 1830.	1.3	0
81	Coarse grain parallelization and acceleration of biochemical ODE simulation using GPGPU. IEICE Proceeding Series, 2014, 1, 29-32.	0.0	0
82	Title is missing!. , 2020, 15, e0230218.		0
83	Title is missing!. , 2020, 15, e0230218.		0
84	Title is missing!. , 2020, 15, e0230218.		0
85	Title is missing!. , 2020, 15, e0230218.		O