Naohiko Anzai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7470567/publications.pdf Version: 2024-02-01

Νλομικό Ανιζλι

#	Article	IF	CITATIONS
1	Plasma Urate Level Is Directly Regulated by a Voltage-driven Urate Efflux Transporter URATv1 (SLC2A9) in Humans. Journal of Biological Chemistry, 2008, 283, 26834-26838.	1.6	309
2	Mutations in SLC6A19, encoding BOAT1, cause Hartnup disorder. Nature Genetics, 2004, 36, 999-1002.	9.4	272
3	<scp>l</scp> â€Type amino acid transporter 1 inhibitors inhibit tumor cell growth. Cancer Science, 2010, 101, 173-179.	1.7	216
4	Identification of a Novel System L Amino Acid Transporter Structurally Distinct from Heterodimeric Amino Acid Transporters. Journal of Biological Chemistry, 2003, 278, 43838-43845.	1.6	203
5	Human Organic Anion Transporter 4 Is a Renal Apical Organic Anion/Dicarboxylate Exchanger in the Proximal Tubules. Journal of Pharmacological Sciences, 2004, 94, 297-304.	1.1	191
6	Organic Anion Transporter Family: Current Knowledge. Journal of Pharmacological Sciences, 2006, 100, 411-426.	1.1	186
7	Interactions of Human Organic Anion Transporters with Diuretics. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 1021-1029.	1.3	181
8	Interactions of Human Organic Anion Transporters and Human Organic Cation Transporters with Nonsteroidal Anti-Inflammatory Drugs. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 534-539.	1.3	169
9	Molecular Identification of a Novel Carnitine Transporter Specific to Human Testis. Journal of Biological Chemistry, 2002, 277, 36262-36271.	1.6	168
10	The Multivalent PDZ Domain-containing Protein PDZK1 Regulates Transport Activity of Renal Urate-Anion Exchanger URAT1 via Its C Terminus. Journal of Biological Chemistry, 2004, 279, 45942-45950.	1.6	166
11	New insights into renal transport of urate. Current Opinion in Rheumatology, 2007, 19, 151-157.	2.0	158
12	LAT1 Is a Critical Transporter of Essential Amino Acids for Immune Reactions in Activated Human T Cells. Journal of Immunology, 2013, 191, 4080-4085.	0.4	141
13	Human Sodium Phosphate Transporter 4 (hNPT4/SLC17A3) as a Common Renal Secretory Pathway for Drugs and Urate. Journal of Biological Chemistry, 2010, 285, 35123-35132.	1.6	128
14	Characterization of the system L amino acid transporter in T24 human bladder carcinoma cells. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1565, 112-122.	1.4	127
15	Novel liver-specific organic anion transporter OAT7 that operates the exchange of sulfate conjugates for short chain fatty acid butyrate. Hepatology, 2007, 45, 1046-1055.	3.6	116
16	High expression of Lâ€ŧype aminoâ€acid transporter 1 (LAT1) in gastric carcinomas: Comparison with non ancerous lesions. Pathology International, 2011, 61, 281-289.	0.6	106
17	Type 1 Sodium-dependent Phosphate Transporter (SLC17A1 Protein) Is a Clâ^'-dependent Urate Exporter. Journal of Biological Chemistry, 2010, 285, 26107-26113.	1.6	102
18	A role for the organic anion transporter OAT3 in renal creatinine secretion in mice. American Journal of Physiology - Renal Physiology, 2012, 302, F1293-F1299.	1.3	101

#	Article	IF	CITATIONS
19	Identification of a Novel Voltage-driven Organic Anion Transporter Present at Apical Membrane of Renal Proximal Tubule. Journal of Biological Chemistry, 2003, 278, 27930-27938.	1.6	99
20	Modulation of Renal Apical Organic Anion Transporter 4 Function by Two PDZ Domain–Containing Proteins. Journal of the American Society of Nephrology: JASN, 2005, 16, 3498-3506.	3.0	99
21	Novel single nucleotide polymorphisms of organic cation transporter 1 (SLC22A1) affecting transport functions. Biochemical and Biophysical Research Communications, 2004, 313, 789-793.	1.0	97
22	Expression of Human Organic Anion Transporters in the Choroid Plexus and Their Interactions With Neurotransmitter Metabolites. Journal of Pharmacological Sciences, 2003, 93, 430-436.	1.1	93
23	Interactions of urate transporter URAT1 in human kidney with uricosuric drugs. Nephrology, 2011, 16, 156-162.	0.7	90
24	Recent advances in renal urate transport: characterization of candidate transporters indicated by genome-wide association studies. Clinical and Experimental Nephrology, 2012, 16, 89-95.	0.7	88
25	Renal expression of organic anion transporter OAT2 in rats and mice is regulated by sex hormones. American Journal of Physiology - Renal Physiology, 2007, 292, F361-F372.	1.3	86
26	Roles of Organic Anion Transporters in the Renal Excretion of Perfluorooctanoic Acid. Basic and Clinical Pharmacology and Toxicology, 2008, 103, 1-8.	1.2	84
27	Functional Characterization of Rat Organic Anion Transporter 5 (Slc22a19) at the Apical Membrane of Renal Proximal Tubules. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 534-544.	1.3	83
28	Interaction of human and rat organic anion transporter 2 with various cephalosporin antibiotics. European Journal of Pharmacology, 2003, 465, 1-7.	1.7	80
29	The genetic polymorphism of drug transporters: functional analysis approaches. Pharmacogenomics, 2004, 5, 67-99.	0.6	75
30	The Multivalent PDZ Domain-containing Protein CIPP Is a Partner of Acid-sensing Ion Channel 3 in Sensory Neurons. Journal of Biological Chemistry, 2002, 277, 16655-16661.	1.6	71
31	Renal Secretion of Uric Acid by Organic Anion Transporter 2 (OAT2/SLC22A7) in Human. Biological and Pharmaceutical Bulletin, 2010, 33, 498-503.	0.6	68
32	c-Myc is crucial for the expression of LAT1 in MIA Paca-2 human pancreatic cancer cells. Oncology Reports, 2012, 28, 862-866.	1.2	68
33	Uric Acid Elevation by Favipiravir, an Antiviral Drug. Tohoku Journal of Experimental Medicine, 2020, 251, 87-90.	0.5	64
34	Establishment and Characterization of Mammalian Cell Lines Stably Expressing Human L-Type Amino Acid Transporters. Journal of Pharmacological Sciences, 2008, 108, 505-516.	1.1	63
35	Sodium-dependent phosphate cotransporter type 1 sequence polymorphisms in male patients with gout. Annals of the Rheumatic Diseases, 2010, 69, 1232-1234.	0.5	61
36	Metabolism and Pharmacokinetic Studies of JPH203, an L-Amino Acid Transporter 1 (LAT1) Selective Compound. Drug Metabolism and Pharmacokinetics, 2012, 27, 155-161.	1.1	61

#	Article	IF	CITATIONS
37	Increased expression of system large amino acid transporter (LAT)-1 mRNA is associated with invasive potential and unfavorable prognosis of human clear cell renal cell carcinoma. BMC Cancer, 2013, 13, 509.	1.1	60
38	Renal urate handling: Clinical relevance of recent advances. Current Rheumatology Reports, 2005, 7, 227-234.	2.1	59
39	Molecular Mechanism of Ochratoxin A Transport in the Kidney. Toxins, 2010, 2, 1381-1398.	1.5	56
40	Altered expression of rat renal cortical OAT1 and OAT3 in response to bilateral ureteral obstruction. Kidney International, 2005, 68, 2704-2713.	2.6	55
41	Novel therapeutic approaches targeting L-type amino acid transporters for cancer treatment. World Journal of Gastrointestinal Oncology, 2017, 9, 21.	0.8	55
42	Expression of rat renal cortical OAT1 and OAT3 in response to acute biliary obstruction. Hepatology, 2006, 43, 1092-1100.	3.6	52
43	Inhibition of <scp>l</scp> -type amino acid transporter 1 activity as a new therapeutic target for cholangiocarcinoma treatment. Tumor Biology, 2017, 39, 101042831769454.	0.8	50
44	Renal elimination of p-aminohippurate (PAH) in response to three days of biliary obstruction in the rat. The role of OAT1 and OAT3. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 673-682.	1.8	49
45	Functional Analysis of Human Organic Cation Transporter OCT3 (SLC22A3) Polymorphisms. Journal of Pharmacological Sciences, 2010, 113, 263-266.	1.1	49
46	Developing Potent Human Uric Acid Transporter 1 (hURAT1) Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 2701-2713.	2.9	48
47	Clinical and Functional Characterization of URAT1 Variants. PLoS ONE, 2011, 6, e28641.	1.1	48
48	Functional cooperation of URAT1 (SLC22A12) and URATv1 (SLC2A9) in renal reabsorption of urate. Nephrology Dialysis Transplantation, 2013, 28, 603-611.	0.4	46
49	Interactions of Organic Anion Transporters and Organic Cation Transporters With Mycotoxins. Journal of Pharmacological Sciences, 2008, 106, 435-443.	1.1	45
50	Low doses of ochratoxin A upregulate the protein expression of organic anion transporters Oat1, Oat2, Oat3 and Oat5 in rat kidney cortex. Toxicology and Applied Pharmacology, 2009, 239, 284-296.	1.3	45
51	Altered renal elimination of organic anions in rats with chronic renal failure. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1740, 29-37.	1.8	44
52	Roles of organic anion transporters (OATs) in renal proximal tubules and their localization. Anatomical Science International, 2017, 92, 200-206.	0.5	43
53	Urate Transport Across the Apical Membrane of Renal Proximal Tubules. Nucleosides, Nucleotides and Nucleic Acids, 2008, 27, 578-584.	0.4	40
54	Elimination of Organic Anions in Response to an Early Stage of Renal Ischemia-Reperfusion in the Rat: Role of Basolateral Plasma Membrane Transporters and Cortical Renal Blood Flow. Pharmacology, 2008, 81, 127-136.	0.9	40

#	Article	IF	CITATIONS
55	Effects of uric acid on vascular endothelial function from bedside to bench. Hypertension Research, 2018, 41, 923-931.	1.5	40
56	A Novel Transporter of SLC22 Family Specifically Transports Prostaglandins and Co-localizes with 15-Hydroxyprostaglandin Dehydrogenase in Renal Proximal Tubules. Journal of Biological Chemistry, 2010, 285, 22141-22151.	1.6	39
57	Integrated physiology of proximal tubular organic anion transport. Current Opinion in Nephrology and Hypertension, 2005, 14, 472-479.	1.0	38
58	Urate Transporters: An Evolving Field. Seminars in Nephrology, 2011, 31, 400-409.	0.6	38
59	A Human Immortalized Cell-Based Blood–Brain Barrier Triculture Model: Development and Characterization as a Promising Tool for Drugâ^Brain Permeability Studies. Molecular Pharmaceutics, 2019, 16, 4461-4471.	2.3	38
60	The PDZ domain protein PDZK1 interacts with human peptide transporter PEPT2 and enhances its transport activity. Kidney International, 2006, 70, 275-282.	2.6	36
61	Functional and Immunochemical Characterization of a Novel Organic Anion Transporter Oat8 (Slc22a9) in Rat Renal Collecting Duct. Cellular Physiology and Biochemistry, 2008, 21, 269-278.	1.1	35
62	Expression of L-type amino acid transporter 1 as a molecular target for prognostic and therapeutic indicators in bladder carcinoma. Scientific Reports, 2020, 10, 1292.	1.6	35
63	Association between GLUT9 and gout in Japanese men. Annals of the Rheumatic Diseases, 2010, 69, 932-933.	0.5	34
64	Receptor for activated Câ€kinase 1 regulates the cellular localization and function of <i>ABCB4</i> . Hepatology Research, 2009, 39, 1091-1107.	1.8	33
65	The Rho-kinase inhibitor HA-1077 suppresses proliferation/migration and induces apoptosis of urothelial cancer cells. BMC Cancer, 2014, 14, 412.	1.1	33
66	Characterization of the expression of LAT1 as a prognostic indicator and a therapeutic target in renal cell carcinoma. Scientific Reports, 2019, 9, 16776.	1.6	33
67	Distinct action of the α-glucosidase inhibitor miglitol on SGLT3, enteroendocrine cells, and GLP1 secretion. Journal of Endocrinology, 2015, 224, 205-214.	1.2	32
68	Sodium-Hydrogen Exchanger Regulatory Factor-1 Interacts with Mouse Urate Transporter 1 to Regulate Renal Proximal Tubule Uric Acid Transport. Journal of the American Society of Nephrology: JASN, 2007, 18, 1419-1425.	3.0	31
69	Concentration-Dependent Inhibitory Effect of Irbesartan on Renal Uric Acid Transporters. Journal of Pharmacological Sciences, 2010, 114, 115-118.	1.1	31
70	Apical Voltage-Driven Urate Efflux Transporter NPT4 in Renal Proximal Tubule. Nucleosides, Nucleotides and Nucleic Acids, 2011, 30, 1302-1311.	0.4	31
71	Sex-dependent expression of Oat3 (Slc22a8) and Oat1 (Slc22a6) proteins in murine kidneys. American Journal of Physiology - Renal Physiology, 2013, 304, F1114-F1126.	1.3	31
72	Distribution of organic anion transporters NaDC3 and OAT1-3 along the human nephron. American Journal of Physiology - Renal Physiology, 2016, 311, F227-F238.	1.3	31

#	Article	IF	CITATIONS
73	A New Conditionally Immortalized Human Fetal Brain Pericyte Cell Line: Establishment and Functional Characterization as a Promising Tool for Human Brain Pericyte Studies. Molecular Neurobiology, 2018, 55, 5993-6006.	1.9	31
74	A novel missense mutation of SLC7A9 frequent in Japanese cystinuria cases affecting the C-terminus of the transporter. Kidney International, 2006, 69, 1198-1206.	2.6	29
75	Interactions of Human Organic Anion Transporters With Aristolochic Acids. Journal of Pharmacological Sciences, 2010, 113, 192-196.	1.1	29
76	Different Response Profiles of Gastrointestinal Cancer Cells to an L-Type Amino Acid Transporter Inhibitor, JPH203. Anticancer Research, 2019, 39, 159-165.	0.5	29
77	LAT1 acts as a crucial transporter of amino acids in human thymic carcinoma cells. Journal of Pharmacological Sciences, 2016, 132, 201-204.	1.1	28
78	Properties of L-Type Amino Acid Transporter 1 in Epidermal Ovarian Cancer. International Journal of Gynecological Cancer, 2010, 20, 329-336.	1.2	27
79	Identification of the multivalent PDZ protein PDZK1 as a binding partner of sodium–coupled monocarboxylate transporter SMCT1 (SLC5A8) and SMCT2 (SLC5A12). Journal of Physiological Sciences, 2019, 69, 399-408.	0.9	27
80	Identification of AR-V7 downstream genes commonly targeted by AR/AR-V7 and specifically targeted by AR-V7 in castration resistant prostate cancer. Translational Oncology, 2021, 14, 100915.	1.7	27
81	L-type amino acid transporter 1 is associated with chemoresistance in breast cancer via the promotion of amino acid metabolism. Scientific Reports, 2021, 11, 589.	1.6	27
82	Oat5 and NaDC1 Protein Abundance in Kidney and Urine After Renal Ischemic Reperfusion Injury. Journal of Histochemistry and Cytochemistry, 2009, 57, 17-27.	1.3	26
83	Membrane transport of sepiapterin and dihydrobiopterin by equilibrative nucleoside transporters: A plausible gateway for the salvage pathway of Tetrahydrobiopterin biosynthesis. Molecular Genetics and Metabolism, 2011, 102, 18-28.	0.5	26
84	Organic anion transporter OAT3 enhances the glucosuric effect of the SGLT2 inhibitor empagliflozin. American Journal of Physiology - Renal Physiology, 2018, 315, F386-F394.	1.3	26
85	Expression and function of Oat1 and Oat3 in rat kidney exposed to mercuric chloride. Archives of Toxicology, 2009, 83, 887-897.	1.9	25
86	Organic Anion Transporter 5 (Oat5) Urinary Excretion Is a Specific Biomarker of Kidney Injury: Evaluation of Urinary Excretion of Exosomal Oat5 after <i>N</i> -Acetylcysteine Prevention of Cisplatin Induced Nephrotoxicity. Chemical Research in Toxicology, 2015, 28, 1595-1602.	1.7	25
87	Recent approaches to gout drug discovery: an update. Expert Opinion on Drug Discovery, 2020, 15, 943-954.	2.5	25
88	Organic cation transporter 2 (SLC22A2), a low-affinity and high-capacity choline transporter, is preferentially enriched on synaptic vesicles in cholinergic neurons. Neuroscience, 2013, 252, 212-221.	1.1	23
89	Downregulation of transient receptor potential M6 channels as a cause of hypermagnesiuric hypomagnesemia in obese type 2 diabetic rats. American Journal of Physiology - Renal Physiology, 2015, 308, F1386-F1397.	1.3	23
90	Development and characterization of immobilized human organic anion transporter-based liquid chromatographic stationary phase: hOAT1 and hOAT2. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 859, 267-271.	1.2	22

#	Article	IF	CITATIONS
91	JPH203, a newly developed anti-cancer drug, shows a preincubation inhibitory effect on L-type amino acid transporter 1 function. Journal of Pharmacological Sciences, 2020, 144, 16-22.	1.1	22
92	Renal expression of organic anion transporter Oat5 in rats and mice exhibits the female-dominant sex differences. Histology and Histopathology, 2010, 25, 1385-402.	0.5	22
93	Mouse Organic Anion Transporter 2 (mOat2) Mediates the Transport of Short Chain Fatty Acid Propionate. Journal of Pharmacological Sciences, 2008, 106, 525-528.	1.1	21
94	Human urate transporter 1 (hURAT1) mediates the transport of orotate. Journal of Physiological Sciences, 2011, 61, 253-257.	0.9	21
95	The RING finger- and PDZ domain-containing protein PDZRN3 controls localization of the Mg2+ regulator claudin-16 in renal tube epithelial cells. Journal of Biological Chemistry, 2017, 292, 13034-13044.	1.6	21
96	Renal Solute Transporters and Their Relevance to Serum Urate Disorder. Current Hypertension Reviews, 2010, 6, 148-154.	0.5	21
97	Regulation of the human PDZK1 expression by peroxisome proliferatorâ€activated receptor alpha. FEBS Letters, 2008, 582, 3884-3888.	1.3	20
98	Posttranslational regulation of Abcc2 expression by SUMOylation system. American Journal of Physiology - Renal Physiology, 2009, 296, G406-G413.	1.6	20
99	Identification of a Novel Organic Anion Transporter Mediating Carnitine Transport in Mouse Liver and Kidney. Cellular Physiology and Biochemistry, 2010, 25, 511-522.	1.1	20
100	Uric acid lowering in relation to HbA1c reductions with the SGLT2 inhibitor tofogliflozin. Diabetes, Obesity and Metabolism, 2018, 20, 1061-1065.	2.2	20
101	Role of Mouse Organic Anion Transporter 3 (mOat3) as a Basolateral Prostaglandin E2 Transport Pathway. Journal of Pharmacological Sciences, 2007, 103, 48-55.	1.1	19
102	Increase in L-type amino acid transporter 1 expression during cholangiocarcinogenesis caused by liver fluke infection and its prognostic significance. Parasitology International, 2017, 66, 471-478.	0.6	19
103	Functional analysis of LAT3 in prostate cancer: Its downstream target and relationship with androgen receptor. Cancer Science, 2021, 112, 3871-3883.	1.7	19
104	Drug discovery for hyperuricemia. Expert Opinion on Drug Discovery, 2007, 2, 1251-1261.	2.5	18
105	Atypical Leydig Cell Hyperplasia in Adult Rats with Low T and High LH Induced by Prenatal Di(<i>n</i> -butyl) Phthalate Exposure. Toxicologic Pathology, 2013, 41, 480-486.	0.9	18
106	Functional Analysis of Human Sodium-Phosphate Transporter 4 (NPT4/SLC17A3) Polymorphisms. Journal of Pharmacological Sciences, 2011, 115, 249-253.	1.1	17
107	Hypouricemia and Urate Transporters. Biomedicines, 2022, 10, 652.	1.4	17
108	LAT1â€specific inhibitor is effective against T cellâ€mediated allergic skin inflammation. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 463-467.	2.7	16

#	Article	IF	CITATIONS
109	Regulation of steroid hormone biosynthesis enzymes and organic anion transporters by forskolin and DHEA-S treatment in adrenocortical cells. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E1351-E1359.	1.8	15
110	Increased Expression of <i>SLC2A9</i> Decreases Urate Excretion From the Kidney. Nucleosides, Nucleotides and Nucleic Acids, 2011, 30, 1295-1301.	0.4	15
111	Mitochondrial metabolism in the noncancerous liver determine the occurrence of hepatocellular carcinoma: a prospective study. Journal of Gastroenterology, 2014, 49, 502-510.	2.3	15
112	Matrix-assisted laser desorption/ionization imaging mass spectrometry reveals changes of phospholipid distribution in induced pluripotent stem cell colony differentiation. Analytical and Bioanalytical Chemistry, 2017, 409, 1007-1016.	1.9	15
113	Contribution of Rare Variants of the <i>SLC22A12</i> Gene to the Missing Heritability of Serum Urate Levels. Genetics, 2020, 214, 1079-1090.	1.2	15
114	L-type amino acid transporter 1 as a target for inflammatory disease and cancer immunotherapy. Journal of Pharmacological Sciences, 2022, 148, 31-40.	1.1	15
115	Potassium Transport and Potassium Channels in the Kidney Tubules The Japanese Journal of Physiology, 1997, 47, 1-10.	0.9	15
116	A role for endogenous peptide YY in tachykinin NK ₂ receptorâ€ŧriggered 5â€HT release from guinea pig isolated colonic mucosa. British Journal of Pharmacology, 2012, 167, 1362-1368.	2.7	14
117	Human organic anion transporter 2 is an entecavir, but not tenofovir, transporter. Drug Metabolism and Pharmacokinetics, 2017, 32, 116-119.	1.1	14
118	Functional Expression of Organic Ion Transporters in Astrocytes and Their Potential as a Drug Target in the Treatment of Central Nervous System Diseases. Biological and Pharmaceutical Bulletin, 2017, 40, 1153-1160.	0.6	14
119	Global Comparison of Changes in the Number of Test-Positive Cases and Deaths by Coronavirus Infection (COVID-19) in the World. Journal of Clinical Medicine, 2020, 9, 1904.	1.0	14
120	Prognostic Value of High-Sensitivity Modified Glasgow Prognostic Score in Castration-Resistant Prostate Cancer Patients Who Received Docetaxel. Cancers, 2021, 13, 773.	1.7	13
121	Mechanisms underlying sensitization of P2X7 receptors in astrocytes for induction of ischemic tolerance. Glia, 2021, 69, 2100-2110.	2.5	13
122	Immunocytochemical characterization of the incubated rat renal cortical slices. Pflugers Archiv European Journal of Physiology, 2005, 450, 269-279.	1.3	12
123	Xenopus laevis oocytes expressing human P-glycoprotein: Probing trans- and cis-inhibitory effects on [3H]vinblastine and [3H]digoxin efflux. Pharmacological Research, 2010, 61, 76-84.	3.1	12
124	A kidney injury moleculeâ€1 (Kimâ€1) gene reporter in a mouse artificial chromosome: the responsiveness to cisplatin toxicity in immortalized mouse kidney S3 cells. Journal of Gene Medicine, 2016, 18, 273-281.	1.4	12
125	Expression of basolateral organic anion and cation transporters in experimental cadmium nephrotoxicity in rat kidney. Archives of Toxicology, 2016, 90, 525-541.	1.9	12
126	Toxic Shock Syndrome after Staphylococcal Pneumonia Treated with Intravenous Immunoglobulin. Vox Sanguinis, 1995, 68, 59-60.	0.7	11

#	Article	IF	CITATIONS
127	Association Between Pulse Wave Velocity and a Marker of Renal Tubular Damage (<scp>N</scp> â€Acetylâ€Î²â€ <scp>D</scp> â€Glucosaminidase) in Patients Without Diabetes. Journal of Clinical Hypertension, 2015, 17, 290-297.	1.0	11
128	HOXB9 acts as a negative regulator of activated human T cells in response to amino acid deficiency. Immunology and Cell Biology, 2016, 94, 612-617.	1.0	11
129	Differentiated HASTR/ci35 cells: A promising inÂvitro human astrocyte model for facilitating CNS drug development studies. Journal of Pharmacological Sciences, 2018, 137, 350-358.	1.1	11
130	A Novel Human Organic Anion Transporter NPT4 Mediates the Transport of Ochratoxin A. Journal of Pharmacological Sciences, 2011, 116, 392-396.	1.1	10
131	LAT1 Is a Central Transporter of Essential Amino Acids in Human Umbilical Vein Endothelial Cells. Journal of Pharmacological Sciences, 2014, 124, 511-513.	1.1	10
132	Cancer-Type OATP1B3 mRNA in Extracellular Vesicles as a Promising Candidate for a Serum-Based Colorectal Cancer Biomarker. Biological and Pharmaceutical Bulletin, 2018, 41, 445-449.	0.6	10
133	The uricosuric effects of dihydropyridine calcium channel blockers inÂvivo using urate under-excretion animal models. Journal of Pharmacological Sciences, 2018, 136, 196-202.	1.1	10
134	The heavy chain of 4F2 antigen promote prostate cancer progression via SKP-2. Scientific Reports, 2021, 11, 11478.	1.6	10
135	Urate Transport: Regulators of Serum Urate Levels in Humans. Current Rheumatology Reviews, 2011, 7, 123-131.	0.4	10
136	Potent human uric acid transporter 1 inhibitors: in vitro and in vivo metabolism and pharmacokinetic studies. Drug Design, Development and Therapy, 2012, 6, 323.	2.0	9
137	Optimal Methods of Antigen Retrieval for Organic Anion Transporters in Cryosections of the Rat Kidney. Arhiv Za Higijenu Rada I Toksikologiju, 2009, 60, 7-17.	0.4	8
138	Receptor for Activated C-Kinase 1 Regulates the Cell Surface Expression and Function of ATP Binding Cassette G2. Drug Metabolism and Disposition, 2010, 38, 2320-2328.	1.7	8
139	Analysis of different complexes of type IIa sodium-dependent phosphate transporter in rat renal cortex using blue-native polyacrylamide gel electrophoresis. Journal of Medical Investigation, 2011, 58, 140-147.	0.2	8
140	The Involvement of L-Type Amino Acid Transporters in Theanine Transport. Bioscience, Biotechnology and Biochemistry, 2012, 76, 2230-2235.	0.6	8
141	Catalytic asymmetric synthesis of α-methyl-p-boronophenylalanine. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1915-1918.	1.0	8
142	Cancer-type organic anion transporting polypeptide 1B3 is a target for cancer suicide gene therapy using RNA trans -splicing technology. Cancer Letters, 2018, 433, 107-116.	3.2	8
143	Role of LAT1 in the Promotion of Amino Acid Incorporation in Activated T Cells. Critical Reviews in Immunology, 2014, 34, 467-479.	1.0	8
144	Associations of fibroblast growth factor 23 with urate metabolism in patients with chronic kidney disease. Metabolism: Clinical and Experimental, 2016, 65, 1498-1507.	1.5	7

#	Article	IF	CITATIONS
145	Cancer-type OATP1B3 mRNA has the potential to become a detection and prognostic biomarker for human colorectal cancer. Biomarkers in Medicine, 2017, 11, 629-639.	0.6	7
146	Synthesis of novel benzbromarone derivatives designed to avoid metabolic activation. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3708-3711.	1.0	7
147	An Endogenous Tachykinergic NK2/NK3 Receptor Cascade System Controlling the Release of Serotonin from Colonic Mucosa. Current Neuropharmacology, 2015, 13, 830-835.	1.4	7
148	Interaction of green tea catechins with renal organic cation transporter 2. Xenobiotica, 2016, 46, 641-650.	0.5	6
149	Reproducible insulin secretion from isolated rat pancreas preparations using an organ bath. Experimental Animals, 2018, 67, 15-22.	0.7	6
150	Fluvastatin is effective against thymic carcinoma. Life Sciences, 2020, 240, 117110.	2.0	6
151	Metabolic Acidosis Alters Expression of Slc22 Transporters in Mouse Kidney. Kidney and Blood Pressure Research, 2020, 45, 263-274.	0.9	6
152	Development of a New Conditionally Immortalized Human Liver Sinusoidal Endothelial Cells. Biological and Pharmaceutical Bulletin, 2018, 41, 440-444.	0.6	6
153	Contribution of LAT1-4F2hc in Urological Cancers via Toll-like Receptor and Other Vital Pathways. Cancers, 2022, 14, 229.	1.7	6
154	Molecular mechanism of urate-lowering effects of anserine nitrate . Gout and Nucleic Acid Metabolism, 2016, 40, 137-143.	0.0	5
155	Down-regulation of magnesium transporting molecule, claudin-16, as a possible cause of hypermagnesiuria with the development of tubulo-interstitial nephropathy. Magnesium Research, 2018, 31, 11-23.	0.4	5
156	Sodium-coupled monocarboxylate transporter 1 interacts with the RING finger- and PDZ domain-containing protein PDZRN3. Journal of Physiological Sciences, 2019, 69, 635-642.	0.9	5
157	Roles of Vasopressin and Hypertonicity in Basolateral Na/K/2Cl Cotransporter Expression in Rat Kidney Inner Medullary Collecting Duct Cells The Japanese Journal of Physiology, 1999, 49, 201-206.	0.9	5
158	Electrophysiological analyses of transgenic mice overexpressing KCNJ8 with S422L mutation in cardiomyocytes. Journal of Pharmacological Sciences, 2017, 135, 37-43.	1.1	4
159	Drug Transport in the Kidney. , 0, , 463-493.		4
160	Developing selective L-Amino Acid Transport 1 (LAT1) inhibitors: A Structure-Activity Relationship overview. Medical Research Archives, 2019, 7, .	0.1	4
161	Renal Basis of Hyperuricemia. , 2012, , 51-58.		3
162	Effects of islatravir (4′-ethynyl-2-fluoro-2′-deoxyadenosine or EFdA) on renal tubular cells and islatravir's interactions with organic anion transporters. Journal of Pharmacological Sciences, 2021, 146, 82-87.	1.1	3

#	Article	IF	CITATIONS
163	Development of Renal Potassium Excretion Capacity in the Neonatal Rat The Japanese Journal of Physiology, 2001, 51, 745-752.	0.9	2
164	Characterization of an L-Carnitine Transport System in Murine Photoreceptor Cell Line. Biological and Pharmaceutical Bulletin, 2017, 40, 2110-2116.	0.6	2
165	Development of an organ bath technique for isolated rat pancreas preparations to assess the effect of 1,5-AG on insulin secretion. Experimental Animals, 2020, 69, 127-134.	0.7	2
166	Orotic acid transport via organic anion transporters OATs Gout and Nucleic Acid Metabolism, 2008, 32, 141-146.	0.0	2
167	Evidence for Urate Uptake Through Monocarboxylate Transporter 9 Expressed in Mammalian Cells and Its Enhancement by Heat Shock. Circulation Reports, 2020, 2, 425-432.	0.4	2
168	Decrease of Urine Protein after Treatment with Probucol in Patients with Mild Glomerulonephritis and Arteriolosclerosis. Nephron, 1995, 70, 376-377.	0.9	1
169	Evidence for tachykinin NK3 receptors-triggered peptide YY release from isolated guinea-pig distal colon. European Journal of Pharmacology, 2014, 740, 121-126.	1.7	1
170	Protein kinase C activation upregulates human L-type amino acid transporter 2 function. Journal of Physiological Sciences, 2021, 71, 11.	0.9	1
171	Functional characterization and tissue localization of a novel liverâ€specific organic anion transporter OAT7. FASEB Journal, 2006, 20, A840.	0.2	1
172	Renal Compensation for Body Water Loss during Dehydration in Neonatal Rats The Japanese Journal of Physiology, 1998, 48, 181-187.	0.9	1
173	LAT1-specific inhibitor ameliorates severe autoimmune arthritis in SKG mouse. International Immunopharmacology, 2022, 109, 108817.	1.7	1
174	Stevens-Johnson syndrome in a patient with systemic lupus erythematosus. Journal of the European Academy of Dermatology and Venereology, 1995, 4, 113-114.	1.3	0
175	Intravenous Fluid Therapy Successfully Prevents Renal Injury by Gemcitabine in Patients With Pancreatic Cancer. Pancreas, 2011, 40, 784-786.	0.5	0
176	Investigation of fluorometric analysis for characterization of urate transporters. Gout and Nucleic Acid Metabolism, 2012, 36, 87-94.	0.0	0
177	Editorial (Hot Topic: Organic Solute Transporters and Diseases: Potential Therapeutic Targets). Current Molecular Pharmacology, 2013, 6, 65-65.	0.7	0
178	è¨,æ£ï¼šMolecular mechanism of urate-lowering effects of anserine nitrate. Gout and Nucleic Acid Metabolism, 2017, 40, Err40_2.	0.0	0
179	Effect of a LAT1-inhibitor on T cell-mediated allergic inflammation. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2021, 94, 2-O-C2-1.	0.0	0
180	Summary of the Symposium Organizer. Japanese Journal of Clinical Pharmacology and Therapeutics, 2021, 52, 29-29.	0.1	0

#	Article	IF	CITATIONS
181	Effects of trypsin inhibition on endocrine function in isolated rat pancreas. FASEB Journal, 2021, 35, .	0.2	0
182	Proposals for future efforts of academic societies for pharmacological education. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2021, 94, 2-S19-1.	0.0	0
183	Tissue distribution and intrarenal localization of IKEPP/NHERF4 of a member of the NHERF family. FASEB Journal, 2007, 21, A544.	0.2	0
184	Transporters: Toward the renal control of the body. Japanese Journal of Pediatric Nephrology, 2013, 26, 14-19.	0.0	0
185	Interaction of zotepine and chlorprothixene with URAT1-mediated urate transport . Gout and Nucleic Acid Metabolism, 2015, 39, 147-153.	0.0	0
186	Transport of 4â€Boronophenylalanine, a BNCT Delivery Agent, by Lâ€Type Amino Acid Transporters 1 and 2. FASEB Journal, 2015, 29, 785.3.	0.2	0
187	Different antitumor effects of JPH 203 in gastrointestinal cancer cells. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-10-12.	0.0	0
188	Development and characterization of human immortalized cell-based <i>in vitro</i> BBB tri-culture model. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-1-44.	0.0	0
189	Cancer-type organic anion transporting polypeptide 1B3 is a promising target for spliceosome-mediated RNA trans-splicing based suicide gene therapy. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-6-19.	0.0	0
190	Regulation of sodium-coupled monocarboxylate transporter 1 function by PDZ domain-containing RING finger 3. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-4-19.	0.0	0
191	Development and characterization of human immortalized cell-based multicellular spheroidal blood-brain barrier model. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-14-33.	0.0	0
192	Suppressive effects of LAT1 specific inhibitor on allergy disease. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-3-43.	0.0	0
193	Renal tubular urate transporters as targets of drug development. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, JKL-02.	0.0	0
194	Horizontal relay lecture among anatomy, pathology and pharmacology: experience and problems. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 1-ES1-4.	0.0	0
195	Development of human immortalized cell-based multicellular spheroidal blood-brain barrier model for CNS drug development studies. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 1-P-039.	0.0	0
196	Assessing cell viability for physiological concentration of uric acid in normal cells. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 2-0-46.	0.0	0
197	Inhibitory effects of SGLT2 inhibitor tofogliflozin on urate and glucose transport mediated by renal urate transporters. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 2-O-10.	0.0	0
198	Characterization of pre-incubation inhibitory effects of JPH203 on L-type amino acid transporter 1 function Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 1-P-105.	0.0	0

#	Article	IF	CITATIONS
199	MP51-04 AN L-TYPE AMINO ACID TRANSPORTER 1 INHIBITOR: JPH203 SUPPRESSES BLADDER CANCER GROW AND INVASION VIA IGFBP-5. Journal of Urology, 2019, 201, .	/TH 0.2	0
200	Transport of Methylmercury through the Epithelial Type Amino Acid Transporter System B0. Journal of National Institute of Neurosciences Bangladesh, 2019, 5, 127-136.	0.0	0
201	Toward the creation of a researcher database and succession of research techniques: From the first questionnaire survey. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2020, 93, 1-S09-1.	0.0	0
202	Neuroprotection against cerebral ischemic injury via VNUT-mediated pathway. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2020, 93, 2-O-044.	0.0	0
203	Inhibition of renal tubular cells by novel anti-HIV therapeutic agents and interaction with organic anion transporters. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2020, 93, 3-P-300.	0.0	0