Wenjie Zang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7470496/publications.pdf

Version: 2024-02-01

159585 265206 4,158 41 30 citations h-index papers

g-index 42 42 42 4948 all docs docs citations times ranked citing authors

42

#	Article	IF	CITATIONS
1	Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy, 2018, 48, 73-80.	16.0	608
2	Single Co Atoms Anchored in Porous N-Doped Carbon for Efficient Zincâ~Air Battery Cathodes. ACS Catalysis, 2018, 8, 8961-8969.	11.2	364
3	Copper Single Atoms Anchored in Porous Nitrogen-Doped Carbon as Efficient pH-Universal Catalysts for the Nitrogen Reduction Reaction. ACS Catalysis, 2019, 9, 10166-10173.	11.2	284
4	Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries. Energy Storage Materials, 2019, 16, 243-250.	18.0	244
5	Efficient Hydrogen Evolution of Oxidized Niâ€N ₃ Defective Sites for Alkaline Freshwater and Seawater Electrolysis. Advanced Materials, 2021, 33, e2003846.	21.0	198
6	Integrated Hierarchical Carbon Flake Arrays with Hollow Pâ€Doped CoSe ₂ Nanoclusters as an Advanced Bifunctional Catalyst for Zn–Air Batteries. Advanced Functional Materials, 2018, 28, 1804846.	14.9	192
7	Synergizing Mo Single Atoms and Mo ₂ C Nanoparticles on CNTs Synchronizes Selectivity and Activity of Electrocatalytic N ₂ Reduction to Ammonia. Advanced Materials, 2020, 32, e2002177.	21.0	190
8	Ni-Doped Cobalt–Cobalt Nitride Heterostructure Arrays for High-Power Supercapacitors. ACS Energy Letters, 2018, 3, 2462-2469.	17.4	182
9	Nanoframes of Co ₃ O ₄ –Mo ₂ N Heterointerfaces Enable Highâ€Performance Bifunctionality toward Both Electrocatalytic HER and OER. Advanced Functional Materials, 2022, 32, 2107382.	14.9	153
10	Sizeâ€Dependent Activity and Selectivity of Atomicâ€Level Copper Nanoclusters during CO/CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2021, 60, 466-472.	13.8	130
11	Synergizing in-grown Ni3N/Ni heterostructured core and ultrathin Ni3N surface shell enables self-adaptive surface reconfiguration and efficient oxygen evolution reaction. Nano Energy, 2020, 78, 105355.	16.0	126
12	Conformal dispersed cobalt nanoparticles in hollow carbon nanotube arrays for flexible Zn-air and Al-air batteries. Chemical Engineering Journal, 2019, 369, 988-995.	12.7	121
13	Porous NiCo2S4/FeOOH nanowire arrays with rich sulfide/hydroxide interfaces enable high OER activity. Nano Energy, 2020, 78, 105230.	16.0	121
14	2D carbide nanomeshes and their assembling into 3D microflowers for efficient water splitting. Applied Catalysis B: Environmental, 2019, 243, 678-685.	20.2	116
15	Heterogeneous Single Atom Electrocatalysis, Where "Singles―Are "Married― Advanced Energy Materials, 2020, 10, 1903181.	19.5	113
16	Engineering the Coordination Environment of Single Cobalt Atoms for Efficient Oxygen Reduction and Hydrogen Evolution Reactions. ACS Catalysis, 2021, 11, 4498-4509.	11.2	94
17	Cage-confinement pyrolysis route to size-controlled molybdenum-based oxygen electrode catalysts: From isolated atoms to clusters and nanoparticles. Nano Energy, 2020, 67, 104288.	16.0	93
18	Dynamic Surface Chemistry of Catalysts in Oxygen Evolution Reaction. Small Science, 2021, 1, 2100011.	9.9	59

#	Article	IF	CITATIONS
19	Twinned Tungsten Carbonitride Nanocrystals Boost Hydrogen Evolution Activity and Stability. Small, 2019, 15, e1900248.	10.0	57
20	Flexible and Wearable All-Solid-State Al–Air Battery Based on Iron Carbide Encapsulated in Electrospun Porous Carbon Nanofibers. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1988-1995.	8.0	56
21	PtCo bimetallic nanoparticles encapsulated in N-doped carbon nanorod arrays for efficient electrocatalysis. Carbon, 2019, 142, 206-216.	10.3	56
22	Strong Charge Transfer at 2H–1T Phase Boundary of MoS ₂ for Superb Highâ€Performance Energy Storage. Small, 2019, 15, e1900131.	10.0	53
23	Assembling of Bi atoms on TiO ₂ nanorods boosts photoelectrochemical water splitting of semiconductors. Nanoscale, 2020, 12, 4302-4308.	5.6	49
24	A sacrificial Zn strategy enables anchoring of metal single atoms on the exposed surface of holey 2D molybdenum carbide nanosheets for efficient electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 3071-3082.	10.3	48
25	All-solid-state sponge-like squeezable zinc-air battery. Energy Storage Materials, 2019, 23, 375-382.	18.0	47
26	Mechanical properties and thermal conductivity of a temperature resistance hollow glass microspheres/borosilicate glass buoyance material. Materials Science & Dy Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 674, 604-614.	5.6	44
27	Single atom catalysts: a surface heterocompound perspective. Nanoscale Horizons, 2020, 5, 757-764.	8.0	39
28	Lightweight alumina based fibrous ceramics with different high temperature binder. Ceramics International, 2016, 42, 10310-10316.	4.8	38
29	Hollow structure engineering of FeCo alloy nanoparticles electrospun in nitrogen-doped carbon enables high performance flexible all-solid-state zinc–air batteries. Sustainable Energy and Fuels, 2020, 4, 1747-1753.	4.9	36
30	Trimetal atoms confined in openly accessible nitrogen-doped carbon constructs for an efficient ORR. Journal of Materials Chemistry A, 2020, 8, 17266-17275.	10.3	32
31	Quasiâ€Paired Pt Atomic Sites on Mo ₂ C Promoting Selective Fourâ€Electron Oxygen Reduction. Advanced Science, 2021, 8, e2101344.	11.2	29
32	Preparation of homogeneous mulliteâ€based fibrous ceramics by starch consolidation. Journal of the American Ceramic Society, 2018, 101, 3138-3147.	3.8	27
33	Preparation of homogeneous mullite fibrous porous ceramics consolidated by propylene oxide. Ceramics International, 2019, 45, 2474-2482.	4.8	24
34	Boosted electrochemical ammonia synthesis by high-percentage metallic transition metal dichalcogenide quantum dots. Nanoscale, 2020, 12, 10964-10971.	5.6	24
35	In-situ formation of isolated iron sites coordinated on nitrogen-doped carbon coated carbon cloth as self-supporting electrode for flexible aluminum-air battery. Chemical Engineering Journal, 2021, 421, 129973.	12.7	21
36	Surface engineered alumina microfiltration membranes based on rationally constructed core-shell particles. Journal of the European Ceramic Society, 2020, 40, 5951-5958.	5.7	20

#	Article	IF	CITATIONS
37	Fundamentals, On-Going Advances and Challenges of Electrochemical Carbon Dioxide Reduction. Electrochemical Energy Reviews, 2022, 5, 82-111.	25.5	17
38	Phospho-oxynitride Layer Protected Cobalt Phosphonitride Nanowire Arrays for High-Rate and Stable Supercapacitors. ACS Applied Energy Materials, 2019, 2, 616-626.	5.1	16
39	Sizeâ€Dependent Activity and Selectivity of Atomicâ€Level Copper Nanoclusters during CO/CO ₂ Electroreduction. Angewandte Chemie, 2021, 133, 470-476.	2.0	16
40	Single Atom Electrocatalysis: Heterogeneous Single Atom Electrocatalysis, Where "Singles―Are "Married―(Adv. Energy Mater. 9/2020). Advanced Energy Materials, 2020, 10, 2070037.	19.5	5
41	Designing Energy Materials via Atomic-resolution Microscopy and Spectroscopy. Microscopy and Microanalysis, 2019, 25, 1998-1999.	0.4	1