
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7470464/publications.pdf Version: 2024-02-01

Υλινιά Νιτίτ

#	Article	IF	CITATIONS
1	Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries. Energy and Environmental Science, 2012, 5, 6966.	15.6	455
2	Novel Threeâ€Dimensional Mesoporous Silicon for High Power Lithiumâ€Ion Battery Anode Material. Advanced Energy Materials, 2011, 1, 1036-1039.	10.2	374
3	Highly Reversible and Rechargeable Safe Zn Batteries Based on a Triethyl Phosphate Electrolyte. Angewandte Chemie - International Edition, 2019, 58, 2760-2764.	7.2	369
4	Silicon Microparticle Anodes with Self-Healing Multiple Network Binder. Joule, 2018, 2, 950-961.	11.7	316
5	Carbonylâ€ <i>β</i> yclodextrin as a Novel Binder for Sulfur Composite Cathodes in Rechargeable Lithium Batteries. Advanced Functional Materials, 2013, 23, 1194-1201.	7.8	240
6	Recent progress and perspective on lithium metal anode protection. Energy Storage Materials, 2018, 14, 199-221.	9.5	195
7	A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries. Journal of Materials Chemistry, 2011, 21, 6807.	6.7	193
8	Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries. Energy and Environmental Science, 2012, 5, 9100.	15.6	187
9	Towards a Safe Lithium–Sulfur Battery with a Flameâ€Inhibiting Electrolyte and a Sulfurâ€Based Composite Cathode. Angewandte Chemie - International Edition, 2014, 53, 10099-10104.	7.2	178
10	A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries. Scientific Reports, 2016, 6, 21771.	1.6	158
11	An Intrinsic Flameâ€Retardant Organic Electrolyte for Safe Lithiumâ€Sulfur Batteries. Angewandte Chemie - International Edition, 2019, 58, 791-795.	7.2	152
12	A new class of cathode materials for rechargeable magnesium batteries: Organosulfur compounds based on sulfur–sulfur bonds. Electrochemistry Communications, 2007, 9, 1913-1917.	2.3	132
13	Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. Chemical Communications, 2010, 46, 3794.	2.2	129
14	A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. Chemical Communications, 2015, 51, 2641-2644.	2.2	113
15	Stable Na Metal Anode Enabled by a Reinforced Multistructural SEI Layer. Advanced Functional Materials, 2019, 29, 1901924.	7.8	107
16	Polydopamine Wrapping Silicon Cross-linked with Polyacrylic Acid as High-Performance Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 2899-2904.	4.0	106
17	Ultra-fine porous SnO2 nanopowder prepared via a molten salt process: a highly efficient anode material for lithium-ion batteries. Journal of Materials Chemistry, 2009, 19, 3253.	6.7	103
18	Electrolytes for advanced lithium ion batteries using silicon-based anodes. Journal of Materials Chemistry A, 2019, 7, 9432-9446.	5.2	101

#	Article	IF	CITATIONS
19	Lithium sulfur batteries with compatible electrolyte both for stable cathode and dendrite-free anode. Energy Storage Materials, 2018, 15, 299-307.	9.5	92
20	Natural karaya gum as an excellent binder for silicon-based anodes in high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 1919-1924.	5.2	90
21	Electrospun V 2 MoO 8 as a cathode material for rechargeable batteries with Mg metal anode. Nano Energy, 2017, 34, 26-35.	8.2	85
22	Electrochemical Intercalation of Mg ²⁺ in Magnesium Manganese Silicate and Its Application as High-Energy Rechargeable Magnesium Battery Cathode. Journal of Physical Chemistry C, 2009, 113, 12594-12597.	1.5	82
23	A High-Performance Rechargeable Mg ²⁺ /Li ⁺ Hybrid Battery Using One-Dimensional Mesoporous TiO ₂ (B) Nanoflakes as the Cathode. ACS Applied Materials & Interfaces, 2016, 8, 7111-7117.	4.0	81
24	Towards practical Li–S battery with dense and flexible electrode containing lean electrolyte. Energy Storage Materials, 2020, 27, 307-315.	9.5	80
25	Designing an intrinsically safe organic electrolyte for rechargeable batteries. Energy Storage Materials, 2020, 31, 382-400.	9.5	74
26	Safer lithium–sulfur battery based on nonflammable electrolyte with sulfur composite cathode. Chemical Communications, 2018, 54, 4132-4135.	2.2	68
27	Guar gum as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Chemical Communications, 2016, 52, 13479-13482.	2.2	66
28	High Active Magnesium Trifluoromethanesulfonate-Based Electrolytes for Magnesium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 9062-9072.	4.0	65
29	Surface Modification of Li _{1.2} Ni _{0.13} Mn _{0.54} Co _{0.13} O ₂ by Hydrazine Vapor as Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 15821-15829.	4.0	57
30	Application of a Sulfur Cathode in Nucleophilic Electrolytes for Magnesium/Sulfur Batteries. Journal of the Electrochemical Society, 2017, 164, A2504-A2512.	1.3	55
31	An Efficient Bulky Mg[B(Otfe) ₄] ₂ Electrolyte and Its Derivatively General Design Strategy for Rechargeable Magnesium Batteries. ACS Energy Letters, 2021, 6, 3212-3220.	8.8	55
32	Highly Reversible and Rechargeable Safe Zn Batteries Based on a Triethyl Phosphate Electrolyte. Angewandte Chemie, 2019, 131, 2786-2790.	1.6	54
33	Sulfur@microporous Carbon Cathode with a High Sulfur Content for Magnesium–Sulfur Batteries with Nucleophilic Electrolytes. Journal of Physical Chemistry C, 2018, 122, 26764-26776.	1.5	53
34	MgFeSiO4 prepared via a molten salt method as a new cathode material for rechargeable magnesium batteries. Science Bulletin, 2011, 56, 386-390.	1.7	52
35	TPPi as a flame retardant for rechargeable lithium batteries with sulfur composite cathodes. Chemical Communications, 2014, 50, 7011-7013.	2.2	52
36	Electrochemical intercalation of Mg2+ in 3D hierarchically porous magnesium cobalt silicate and its application as an advanced cathode material in rechargeable magnesium batteries. Journal of Materials Chemistry, 2011, 21, 12437.	6.7	51

#	Article	IF	CITATIONS
37	Nonflammable electrolyte for rechargeable lithium battery with sulfur based composite cathode materials. Journal of Power Sources, 2013, 223, 18-22.	4.0	51
38	High concentration magnesium borohydride/tetraglyme electrolyte for rechargeable magnesium batteries. Journal of Power Sources, 2015, 276, 255-261.	4.0	50
39	Effect of Mg ²⁺ /Li ⁺ mixed electrolytes on a rechargeable hybrid battery with Li ₄ Ti ₅ O ₁₂ cathode and Mg anode. RSC Advances, 2016, 6, 3231-3234.	1.7	50
40	Effects of binders on the electrochemical performance of rechargeable magnesium batteries. Journal of Power Sources, 2017, 341, 219-229.	4.0	46
41	Metal Organic Framework (MOF)-Derived carbon-encapsulated cuprous sulfide cathode based on displacement reaction for Hybrid Mg2+/Li+ batteries. Journal of Power Sources, 2020, 445, 227325.	4.0	44
42	Hybrid Mg2+/Li+ batteries with Cu2Se cathode based on displacement reaction. Electrochimica Acta, 2018, 261, 503-512.	2.6	39
43	Highly Reversible Lithium-Metal Anode and Lithium–Sulfur Batteries Enabled by an Intrinsic Safe Electrolyte. ACS Applied Materials & Interfaces, 2019, 11, 33419-33427.	4.0	38
44	A compatible carbonate electrolyte with lithium anode for high performance lithium sulfur battery. Electrochimica Acta, 2018, 282, 555-562.	2.6	37
45	Facile approach to an advanced nanoporous silicon/carbon composite anode material for lithium ion batteries. RSC Advances, 2012, 2, 5701.	1.7	36
46	A conductive selenized polyacrylonitrile cathode in nucleophilic Mg ²⁺ /Li ⁺ hybrid electrolytes for magnesium–selenium batteries. Journal of Materials Chemistry A, 2018, 6, 17075-17085.	5.2	35
47	Low-cost SiO-based anode using green binders for lithium ion batteries. Journal of Solid State Electrochemistry, 2013, 17, 2461-2469.	1.2	34
48	Magnesium Borohydride-Based Electrolytes Containing 1-butyl-1-methylpiperidinium bis(trifluoromethyl sulfonyl)imide Ionic Liquid for Rechargeable Magnesium Batteries. Journal of the Electrochemical Society, 2016, 163, D682-D688.	1.3	34
49	High Molecular Weight Polyacrylonitrile Precursor for S@pPAN Composite Cathode Materials with High Specific Capacity for Rechargeable Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 33702-33709.	4.0	34
50	Duplex component additive of tris(trimethylsilyl) phosphite-vinylene carbonate for lithium sulfur batteries. Energy Storage Materials, 2018, 14, 75-81.	9.5	33
51	A new class of electrolytes based on magnesium bis(diisopropyl)amide for magnesium–sulfur batteries. Chemical Communications, 2019, 55, 6086-6089.	2.2	33
52	A novel magnesium electrolyte containing a magnesium bis(diisopropyl)amide–magnesium chloride complex for rechargeable magnesium batteries. Journal of Materials Chemistry A, 2019, 7, 18295-18303.	5.2	32
53	Oxidized starch as a superior binder for silicon anodes in lithium-ion batteries. RSC Advances, 2016, 6, 97084-97088.	1.7	31
54	Molybdenum dioxide hollow microspheres for cathode material in rechargeable hybrid battery using magnesium anode. Journal of Solid State Electrochemistry, 2015, 19, 3347-3353.	1.2	30

#	Article	IF	CITATIONS
55	Bicomponent electrolyte additive excelling fluoroethylene carbonate for high performance Si-based anodes and lithiated Si-S batteries. Energy Storage Materials, 2019, 20, 388-394.	9.5	30
56	AlF ₃ -Modified carbon nanofibers as a multifunctional 3D interlayer for stable lithium metal anodes. Chemical Communications, 2018, 54, 8347-8350.	2.2	28
57	Recent progress on selenium-based cathode materials for rechargeable magnesium batteries: A mini review. Journal of Materials Science and Technology, 2021, 91, 168-177.	5.6	28
58	Prelithiation Activates Fe ₂ (MoO ₄) ₃ Cathode for Rechargeable Hybrid Mg ²⁺ /Li ⁺ Batteries. ACS Applied Materials & Interfaces, 2017, 9, 38455-38466.	4.0	26
59	SnSe ₂ /FeSe ₂ Nanocubes Capsulated in Nitrogenâ€Doped Carbon Realizing Stable Sodiumâ€ion Storage at Ultrahigh Rate. Small Methods, 2021, 5, e2100437.	4.6	26
60	A new flame-retardant polymer electrolyte with enhanced Li-ion conductivity for safe lithium-sulfur batteries. Journal of Energy Chemistry, 2022, 65, 616-622.	7.1	26
61	Iron Phosphide Confined in Carbon Nanofibers as a Free-Standing Flexible Anode for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 34074-34083.	4.0	24
62	An Intrinsic Flameâ€Retardant Organic Electrolyte for Safe Lithium‣ulfur Batteries. Angewandte Chemie, 2019, 131, 801-805.	1.6	23
63	Electrochemical polymerization of nonflammable electrolyte enabling fast-charging lithium-sulfur battery. Energy Storage Materials, 2022, 50, 387-394.	9.5	23
64	Towards a Safe Lithium–Sulfur Battery with a Flameâ€Inhibiting Electrolyte and a Sulfurâ€Based Composite Cathode. Angewandte Chemie, 2014, 126, 10263-10268.	1.6	20
65	A Chlorine-Free Electrolyte Based on Non-nucleophilic Magnesium Bis(diisopropyl)amide and Ionic Liquid for Rechargeable Magnesium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 32957-32967.	4.0	19
66	Efficient single-perfluorinated borate-based electrolytes for rechargeable magnesium batteries. Energy Storage Materials, 2022, 51, 764-776.	9.5	19
67	Superior rate capability of a sulfur composite cathode in a tris(trimethylsilyl)borate-containing functional electrolyte. Chemical Communications, 2016, 52, 14430-14433.	2.2	18
68	Integrated Composite Polymer Electrolyte Cross-Linked with SiO ₂ -Reinforced Layer for Enhanced Li-Ion Conductivity and Lithium Dendrite Inhibition. ACS Applied Energy Materials, 2020, 3, 8552-8561.	2.5	18
69	Scalable and Costâ€Effective Preparation of Hierarchical Porous Silicon with a High Conversion Yield for Superior Lithiumâ€lon Storage. Energy Technology, 2016, 4, 593-599.	1.8	17
70	2D Ti3C2 MXene embedded with Co(II)(OH)n nanoparticles as the cathode material for hybrid magnesium–lithium-ion batteries. Journal of Materials Science, 2021, 56, 2464-2473.	1.7	17
71	Sulfurized-Pyrolyzed Polyacrylonitrile Cathode for Magnesium-Sulfur Batteries Containing Mg2+/Li+ Hybrid Electrolytes. Chemical Engineering Journal, 2022, 427, 130902.	6.6	17
72	Reversible Deposition and Dissolution of Magnesium from Imidazolium-Based Ionic Liquids. International Journal of Electrochemistry, 2012, 2012, 1-8.	2.4	16

#	Article	IF	CITATIONS
73	A novel thiolate-based electrolyte system for rechargeable magnesium batteries. Electrochimica Acta, 2014, 121, 258-263.	2.6	16
74	A high-performance rechargeable Mg2+/Li+ hybrid battery using CNT@TiO2 nanocables as the cathode. Journal of Colloid and Interface Science, 2021, 581, 307-313.	5.0	16
75	Silica-nanoresin crosslinked composite polymer electrolyte for ambient-temperature all-solid-state lithium batteries. Materials Chemistry Frontiers, 2021, 5, 6502-6511.	3.2	16
76	A crosslinking hydrogel binder for high-sulfur content S@pPAN cathode in rechargeable lithium batteries. Journal of Energy Chemistry, 2021, 60, 360-367.	7.1	16
77	Nano-/Microhierarchical-Structured LiMn _{0.85} Fe _{0.15} PO ₄ Cathode Material for Advanced Lithium Ion Battery. ACS Applied Materials & Interfaces, 2018, 10, 43552-43560.	4.0	15
78	A Novel Filler for Gel Polymer Electrolyte with a High Lithium-Ion Transference Number toward Stable Cycling for Lithium-Metal Anodes in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 48622-48633.	4.0	15
79	Ti3C2 MXene with pillared structure for hybrid magnesium-lithium batteries cathode material with long cycle life and high rate capability. Journal of Colloid and Interface Science, 2022, 608, 2455-2462.	5.0	15
80	Highly Reversible Lithiumâ€ions Storage of Molybdenum Dioxide Nanoplates for High Power Lithiumâ€ion Batteries. ChemSusChem, 2015, 8, 2621-2624.	3.6	14
81	LiCrTiO ₄ Nanowires as High-Performance Cathodes for Magnesium–Lithium Hybrid Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 14539-14544.	3.2	14
82	A superb 3D composite lithium metal anode prepared by in-situ lithiation of sulfurized polyacrylonitrile. Energy Storage Materials, 2020, 33, 452-459.	9.5	14
83	Sodium Polyacrylate as a Promising Aqueous Binder of S@pPAN Cathodes for Magnesium–Sulfur Batteries. Journal of Physical Chemistry C, 2020, 124, 20712-20721.	1.5	14
84	Carbyne Polysulfide as a Novel Cathode Material for Rechargeable Magnesium Batteries. Scientific World Journal, The, 2014, 2014, 1-7.	0.8	13
85	A polyimide ion-conductive protection layer to suppress side reactions on Li4Ti5O12electrodes at elevated temperature. RSC Advances, 2014, 4, 10280-10283.	1.7	13
86	Nanostructured NiO/C Composite for Lithium-Ion Battery Anode. Journal of Nanoscience and Nanotechnology, 2009, 9, 1951-1955.	0.9	12
87	Sulfurized Polyacrylonitrile Cathode Derived from Intermolecular Cross-Linked Polyacrylonitrile for a Rechargeable Lithium Battery. ACS Applied Energy Materials, 2021, 4, 5706-5712.	2.5	11
88	Coupling-Agent-Coordinated Uniform Polymer Coating on LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ for Improved Electrochemical Performance at Elevated Temperatures. ACS Applied Materials & Interfaces, 2021, 13, 26971-26980.	4.0	10
89	Artificial Alloy/Li ₃ N Double-Layer Enabling Stable High-Capacity Lithium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 13132-13139.	2.5	10
90	A Se-Doped S@CMK3 Composite as a High-Performance Cathode for Magnesium–Sulfur Batteries with Mg ²⁺ /Li ⁺ Hybrid Electrolytes. Journal of Physical Chemistry C, 2021, 125, 25959-25967.	1.5	10

#	Article	IF	CITATIONS
91	Cu2O nanowires as anode materials for Li-ion rechargeable batteries. Science China Technological Sciences, 2014, 57, 1073-1076.	2.0	8
92	Nanoporous silicon from low-cost natural clinoptilolite for lithium storage. RSC Advances, 2015, 5, 56772-56779.	1.7	8
93	A new electrolyte with good compatibility to a lithium anode for non-aqueous Li–O ₂ batteries. RSC Advances, 2016, 6, 47820-47823.	1.7	8
94	High performance nano-sized LiMn _{1â^'x} Fe _x PO ₄ cathode materials for advanced lithium-ion batteries. RSC Advances, 2017, 7, 43708-43715.	1.7	7
95	Effect of copper to Selenium@Microporous carbon cathode for Mg–Se batteries with nucleophilic electrolyte. Electrochimica Acta, 2020, 330, 135354.	2.6	7
96	Dendrite-Free and Micron-Columnar Li Metal Deposited from LiNO ₃ -Based Electrolytes. ACS Applied Energy Materials, 2021, 4, 11336-11342.	2.5	7
97	Fabrication and degradation characteristic of sputtered iridium oxide neural microelectrodes for FES application. , 2014, , .		4
98	MLi ₂ Ti ₆ O ₁₄ (M = Sr, Ba, and Pb): new cathode materials for magnesium–lithium hybrid batteries. Dalton Transactions, 2019, 48, 17566-17571.	1.6	3
99	Surgical suture inspired wire microelectrodes implant for enhancing functional electrical stimulation. Microsystem Technologies, 2015, 21, 611-617.	1.2	0