Giuseppe Rosace

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7470266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Time-Course Study on a Food Contact Material (FCM)-Certified Coating Based on Titanium Oxide Deposited onto Aluminum. Biology, 2022, 11, 97.	2.8	0
2	Surface Modification of Polyester/Viscose Fabric with Silica Hydrosol and Amino-Functionalized Polydimethylsiloxane for the Preparation of a Fluorine-Free Superhydrophobic and Breathable Textile. Coatings, 2022, 12, 398.	2.6	13
3	Alizarin-functionalized organic-inorganic silane coatings for the development of wearable textile sensors. Journal of Colloid and Interface Science, 2022, 617, 463-477.	9.4	11
4	Preparation and Characterization of 3D-Printed Biobased Composites Containing Micro- or Nanocrystalline Cellulose. Polymers, 2022, 14, 1886.	4.5	14
5	Sol-Gel Assisted Immobilization of Alizarin Red S on Polyester Fabrics for Developing Stimuli-Responsive Wearable Sensors. Polymers, 2022, 14, 2788.	4.5	10
6	Electrically conductive cotton fabric coatings developed by silica sol-gel precursors doped with surfactant-aided dispersion of vertically aligned carbon nanotubes fillers in organic solvent-free aqueous solution. Journal of Colloid and Interface Science, 2021, 586, 120-134.	9.4	24
7	Enhancement of acid dyestuff salt-free fixation by a cationizing sol-gel based coating for cotton fabric. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 125984.	4.7	5
8	Antibacterial Effect of Stainless Steel Surfaces Treated with a Nanotechnological Coating Approved for Food Contact. Microorganisms, 2021, 9, 248.	3.6	12
9	Development of a Nitrazine Yellow-glycidyl methacrylate coating onto cotton fabric through thermal-induced radical polymerization reactions: a simple approach towards wearable pH sensors applications. Cellulose, 2021, 28, 3847-3868.	4.9	10
10	Gold Derivatives Development as Prospective Anticancer Drugs for Breast Cancer Treatment. Applied Sciences (Switzerland), 2021, 11, 2089.	2.5	10
11	Nanostructured Surface Finishing and Coatings: Functional Properties and Applications. Materials, 2021, 14, 2733.	2.9	23
12	The Different Facets of Triclocarban: A Review. Molecules, 2021, 26, 2811.	3.8	40
13	Photosensitive acrylates containing bioâ€based epoxyâ€acrylate soybean oil for 3D printing application. Journal of Applied Polymer Science, 2021, 138, 51292.	2.6	13
14	Nanomaterials for 3D Printing of Polymers via Stereolithography: Concept, Technologies, and Applications. Macromolecular Materials and Engineering, 2021, 306, 2100345.	3.6	21
15	Time-Course Study of the Antibacterial Activity of an Amorphous SiOxCyHz Coating Certified for Food Contact. Antibiotics, 2021, 10, 901.	3.7	3
16	Synthesis, Chemical–Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules, 2021, 26, 5823.	3.8	54
17	Sol-gel approach to incorporate millimeter-long carbon nanotubes into fabrics for the development of electrical-conductive textiles. Materials Chemistry and Physics, 2020, 240, 122218.	4.0	23
18	Sol–Cel Treatment of Textiles for the Entrapping of an Antioxidant/Anti-Inflammatory Molecule: Functional Coating Morphological Characterization and Drug Release Evaluation. Applied Sciences (Switzerland), 2020, 10, 2287.	2.5	20

GIUSEPPE ROSACE

#	Article	IF	CITATIONS
19	Surface Functionalization of Cotton Fabrics by Photo-Grafting for pH Sensing Applications. Frontiers in Materials, 2020, 7, .	2.4	15
20	Recent trends in smart textiles: Wearable sensors and drug release systems. AIP Conference Proceedings, 2019, , .	0.4	10
21	Synthesis and characterization of a phosphorous/nitrogen based sol-gel coating as a novel halogen- and formaldehyde-free flame retardant finishing for cotton fabric. Polymer Degradation and Stability, 2019, 162, 148-159.	5.8	98
22	Inhibition of Human Topoisomeraseâ€II by <i>N</i> , <i>N</i> , <i>N</i> â€Trimethylethanammonium Iodide Alkylcarbazole Derivatives. ChemMedChem, 2018, 13, 2635-2643.	3.2	28
23	Thermal and flame retardant behaviour of cotton fabrics treated with a novel nitrogen-containing carboxyl-functionalized organophosphorus system. Carbohydrate Polymers, 2018, 196, 348-358.	10.2	91
24	Carbon nanotubes textile coating for the development of wearable sensors. , 2018, , .		0
25	Design and development of wearable sensing nanomaterials for smart textiles. AIP Conference Proceedings, 2018, , .	0.4	19
26	Vinylphosphonic acid/methacrylamide system as a durable intumescent flame retardant for cotton fabric. Cellulose, 2017, 24, 3095-3108.	4.9	43
27	Structural and morphological characterizations of MWCNTs hybrid coating onto cotton fabric as potential humidity and temperature wearable sensor. Sensors and Actuators B: Chemical, 2017, 252, 428-439.	7.8	69
28	Thermal behaviour and flame retardancy of monoethanolamine-doped sol-gel coatings of cotton fabric. Progress in Organic Coatings, 2017, 103, 174-181.	3.9	91
29	Sol-gel 3-glycidoxypropyltriethoxysilane finishing on different fabrics: The role of precursor concentration and catalyst on the textile performances and cytotoxic activity. Journal of Colloid and Interface Science, 2017, 506, 504-517.	9.4	35
30	Effect of GPTMS functionalization on the improvement of the pH-sensitive methyl red photostability. Sensors and Actuators B: Chemical, 2017, 238, 281-291.	7.8	44
31	Halochromic resorufin-GPTMS hybrid sol-gel: Chemical-physical properties and use as pH sensor fabric coating. Sensors and Actuators B: Chemical, 2017, 241, 85-95.	7.8	55
32	Intumescent flame retardant properties of graft copolymerized vinyl monomers onto cotton fabric. IOP Conference Series: Materials Science and Engineering, 2017, 254, 122009.	0.6	2
33	Ceramic coatings for water-repellent textiles. IOP Conference Series: Materials Science and Engineering, 2017, 254, 122002.	0.6	5
34	Phosphorus-Silica Sol-Gel Hybrid Coatings for Flame Retardant Cotton Fabrics. Tekstilec, 2017, 60, 29-35.	0.6	4
35	Influence of Textile Structure and Silica Based Finishing on Thermal Insulation Properties of Cotton Fabrics. International Journal of Polymer Science, 2016, 2016, 1-10.	2.7	21
36	Delayed luminescence induced by complex domains in water and in TEOS aqueous solutions. Physical Chemistry Chemical Physics, 2016, 18, 772-780.	2.8	5

#	Article	IF	CITATIONS
37	Optical monitoring of sweat pH by a textile fabric wearable sensor based on covalently bonded litmus-3-glycidoxypropyltrimethoxysilane coating. Sensors and Actuators B: Chemical, 2016, 222, 213-220.	7.8	142
38	Flame Retardant Finishing for Textiles. Engineering Materials, 2015, , 209-246.	0.6	18
39	Hydrophobic behaviour of non-fluorinated sol–gel based cotton and polyester fabric coatings. Journal of Industrial Textiles, 2015, 44, 815-834.	2.4	37
40	Innovative sol–gel route in neutral hydroalcoholic condition to obtain antibacterial cotton finishing by zinc precursor. Journal of Sol-Gel Science and Technology, 2015, 74, 151-160.	2.4	37
41	Radiation protection finishes for textiles. , 2015, , 487-512.		4
42	A Comparative Analysis of Nanoparticle Adsorption as Fire-Protection Approach for Fabrics. Polymers, 2015, 7, 47-68.	4.5	42
43	A Wearable Sweat pH and Body Temperature Sensor Platform for Health, Fitness, and Wellness Applications. Lecture Notes in Electrical Engineering, 2014, , 431-434.	0.4	9
44	Sol–gel derived architectures for enhancing cotton flame retardancy: Effect of pure and phosphorus-doped silica phases. Polymer Degradation and Stability, 2014, 99, 92-98.	5.8	67
45	Influence of catalyst in the synthesis of a cellulose-based sensor: Kinetic study of 3-glycidoxypropyltrimethoxysilane epoxy ring opening by Lewis acid. Sensors and Actuators B: Chemical, 2014, 203, 213-222.	7.8	44
46	Thermal stability and flame retardancy of polyester fabrics sol–gel treated in the presence of boehmite nanoparticles. Polymer Degradation and Stability, 2013, 98, 1609-1616.	5.8	51
47	A novel sol-gel multi-layer approach for cotton fabric finishing by tetraethoxysilane precursor. Surface and Coatings Technology, 2013, 235, 192-203.	4.8	59
48	A wearable sensor platform to monitor sweat pH and skin temperature. , 2013, , .		7
49	High sensitivity measurements of thermal properties ofÂtextile fabrics. Polymer Testing, 2013, 32, 1029-1036.	4.8	20
50	Phosphorus- and nitrogen-doped silica coatings for enhancing the flame retardancy of cotton: Synergisms or additive effects?. Polymer Degradation and Stability, 2013, 98, 579-589.	5.8	87
51	The role of pre-hydrolysis on multi step sol–gel processes for enhancing the flame retardancy of cotton. Cellulose, 2013, 20, 525-535.	4.9	44
52	Thermal and fire stability of cotton fabrics coated with hybrid phosphorus-doped silica films. Journal of Thermal Analysis and Calorimetry, 2012, 110, 1207-1216.	3.6	78
53	Hybrid phosphorus-doped silica architectures derived from a multistep sol–gel process for improving thermal stability and flame retardancy of cotton fabrics. Polymer Degradation and Stability, 2012, 97, 1334-1344.	5.8	80
54	Development of a textile-optoelectronic pH meter based on hybrid xerogel doped with Methyl Red. Sensors and Actuators B: Chemical, 2012, 171-172, 1013-1021.	7.8	50

#	Article	IF	CITATIONS
55	Photocatalytic properties and optical characterization of cotton fabric coated via sol–gel with nonâ€crystalline TiO2 modified with poly(ethylene glycol). Surface and Coatings Technology, 2012, 207, 79-88.	4.8	44
56	Low power textile-based wearable sensor platform for pH and temperature monitoring with wireless battery recharge. , 2012, , .		5
57	Textile Based Colorimetric pH Sensing: A Platform for Future Wearable pH Monitoring. , 2012, , .		7
58	Novel cellulose and polyamide halochromic textile sensors based on the encapsulation of Methyl Red into a sol–gel matrix. Sensors and Actuators B: Chemical, 2012, 162, 27-34.	7.8	81
59	Thermal properties and combustion behavior of POSS―and bohemiteâ€finished cotton fabrics. Journal of Applied Polymer Science, 2012, 123, 426-436.	2.6	32
60	Dendrimer finishing influence on CO/PES blended fabrics color assessment. Journal of Applied Polymer Science, 2011, 120, 2122-2129.	2.6	8
61	Poly-dimethylsiloxane derivates side chains effect on syntan functionalized Polyamide fabric. Applied Surface Science, 2011, 257, 3904-3912.	6.1	3
62	Effect of hybrid phosphorus-doped silica thin films produced by sol-gel method on the thermal behavior of cotton fabrics. Polymer Degradation and Stability, 2011, 96, 483-490.	5.8	131
63	Plasma enhanced CVD of SiOxCyHz thin film on different textile fabrics: Influence of exposure time on the abrasion resistance and mechanical properties. Applied Surface Science, 2010, 256, 2509-2516.	6.1	37
64	Influence of Iowâ€ŧemperature plasma conditions on wicking properties of PA/PU knitted fabric. Journal of Applied Polymer Science, 2008, 107, 3702-3706.	2.6	6
65	Decomposition of a phthalocyanine dye in various conditions under UV or visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184, 135-140.	3.9	15
66	5-Phenyl-9H-1,3-dioxolo[4,5-h][2,3]benzodiazepin-8(7H)-one. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, o117-o119.	0.4	2
67	4-[4-(Dimethylamino)benzylideneamino]-3,5-bis(2-pyridyl)-4H-1,2,4-triazole. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, o390-o391.	0.4	5
68	(η3-Allyl-2κ3C)(chloro-1κCl)(μ-N,N′-diethyldithioxamidato-1:2κ4S,S′:N,N′)[diphenyl(2-pyridyl)phosphine chloroform solvate. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, m316-m318.	e-1κP]pall 0.4	adium(II)plat 5
69	N,N′-Dibenzyldithiooxamide. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, o608-o609.	0.4	0
70	Luminescence Properties of Platinum(II) Dithiooxamide Compounds. Inorganic Chemistry, 1996, 35, 6816-6822.	4.0	31
71	Organoplatinum(II) complexes containing disubstituted dithioxamides: Evidence for an S,S′ Pt coordinated neutral dithioxamide acting as an anion binding agent. Inorganica Chimica Acta, 1994, 227, 63-69.	2.4	14
72	Evidence for an unexpected chiral axis in tetraethyldithiooxamide and in its platinum(II) coordination and organometallic complexes Tetrahedron: Asymmetry, 1993, 4, 2311-2314.	1.8	8

#	Article	IF	CITATIONS
73	Platinum(II) complexes of N,N′-di-nbutyldithiooxamide showing a peculiar +Nî—,H···Clâ^' interaction. The crystal and molecular structure of bis-di-nbutyldithiooxamidato-platinum(II). Inorganica Chimica Acta, 1993, 208, 59-65.	2.4	21