Yi-Bing Cheng

List of Publications by Citations

Source: https://exaly.com/author-pdf/7470154/yi-bing-cheng-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

82 29,111 151 532 h-index g-index citations papers 8.7 560 32,507 7.32 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
532	A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 9898-903	16.4	1104
531	Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells. <i>Advanced Materials</i> , 2009 , 21, 2206-2210	24	858
530	Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8139-8147	13	739
529	A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells. <i>Angewandte Chemie</i> , 2014 , 126, 10056-10061	3.6	630
528	Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. <i>Nature Photonics</i> , 2015 , 9, 409-415	33.9	548
527	Highly efficient photocathodes for dye-sensitized tandem solar cells. <i>Nature Materials</i> , 2010 , 9, 31-5	27	547
526	Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells. <i>Nano Energy</i> , 2014 , 10, 10-18	17.1	461
525	Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. <i>ACS Nano</i> , 2010 , 4, 4420-5	16.7	394
524	Universal passivation strategy to slot-die printed SnO for hysteresis-free efficient flexible perovskite solar module. <i>Nature Communications</i> , 2018 , 9, 4609	17.4	392
523	Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14-23 nm). <i>Journal of the American Chemical Society</i> , 2010 , 132, 443	38 ¹ 64	379
522	Rubidium Multication Perovskite with Optimized Bandgap for Perovskite-Silicon Tandem with over 26% Efficiency. <i>Advanced Energy Materials</i> , 2017 , 7, 1700228	21.8	378
521	Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. <i>Nature Energy</i> , 2020 , 5, 35-49	62.3	369
520	Functionalization of perovskite thin films with moisture-tolerant molecules. <i>Nature Energy</i> , 2016 , 1,	62.3	369
519	Benefit of Grain Boundaries in Organic-Inorganic Halide Planar Perovskite Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 875-80	6.4	367
518	Dual-Function Scattering Layer of Submicrometer-Sized Mesoporous TiO2 Beads for High-Efficiency Dye-Sensitized Solar Cells. <i>Advanced Functional Materials</i> , 2010 , 20, 1301-1305	15.6	367
517	Resistance of alkali-activated slag concrete to acid attack. Cement and Concrete Research, 2003, 33, 160)7±16631 ′	1 351
516	A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. <i>Energy and Environmental Science</i> , 2017 , 10, 2509-2515	35.4	346

515	Alkali activation of Australian slag cements. Cement and Concrete Research, 1999, 29, 113-120	10.3	277	
514	Ultra-thin high efficiency semitransparent perovskite solar cells. <i>Nano Energy</i> , 2015 , 13, 249-257	17.1	255	
513	Phase Segregation Enhanced Ion Movement in Efficient Inorganic CsPbIBr2 Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1700946	21.8	253	
512	Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells. Energy and Environmental Science, 2015 , 8, 629-640	35.4	249	
511	Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites. <i>Nature Communications</i> , 2017 , 8, 14120	17.4	245	
510	Sulfate attack on alkali-activated slag concrete. Cement and Concrete Research, 2002, 32, 211-216	10.3	243	
509	Comparison of solution intercalation and melt intercalation of polymerlalay nanocomposites. <i>Polymer</i> , 2002 , 43, 4251-4260	3.9	239	
508	Highly Efficient Blue-Emitting Bi-Doped Cs2SnCl6 Perovskite Variant: Photoluminescence Induced by Impurity Doping. <i>Advanced Functional Materials</i> , 2018 , 28, 1801131	15.6	239	
507	Flexible and Semitransparent Organolead Triiodide Perovskite Network Photodetector Arrays with High Stability. <i>Nano Letters</i> , 2015 , 15, 7963-9	11.5	237	
506	Solution-Processed Antimony Selenide Heterojunction Solar Cells. <i>Advanced Energy Materials</i> , 2014 , 4, 1301846	21.8	233	
505	High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits. <i>Nanoscale</i> , 2013 , 5, 9666-70	7.7	226	
504	Copper(I) Iodide as Hole-Conductor in Planar Perovskite Solar Cells: Probing the Origin of JW Hysteresis. <i>Advanced Functional Materials</i> , 2015 , 25, 5650-5661	15.6	224	
503	Sequential Deposition of CH3NH3PbI3 on Planar NiO Film for Efficient Planar Perovskite Solar Cells. <i>ACS Photonics</i> , 2014 , 1, 547-553	6.3	214	
502	Hybrid Graphene B erovskite Phototransistors with Ultrahigh Responsivity and Gain. <i>Advanced Optical Materials</i> , 2015 , 3, 1389-1396	8.1	213	
501	Effect of admixtures on properties of alkali-activated slag concrete. <i>Cement and Concrete Research</i> , 2000 , 30, 1367-1374	10.3	211	
500	Three-dimensional hierarchical GeSe2 nanostructures for high performance flexible all-solid-state supercapacitors. <i>Advanced Materials</i> , 2013 , 25, 1479-86	24	209	
499	Effect of elevated temperature curing on properties of alkali-activated slag concrete. <i>Cement and Concrete Research</i> , 1999 , 29, 1619-1625	10.3	204	
498	Layered Silicate Nanocomposites Based on Various High-Functionality Epoxy Resins: The Influence of Cure Temperature on Morphology, Mechanical Properties, and Free Volume. <i>Macromolecules</i> , 2003 , 36, 1616-1625	5.5	191	

497	Encapsulation for improving the lifetime of flexible perovskite solar cells. <i>Nano Energy</i> , 2015 , 18, 118-12	2 5 7.1	186
496	Fabrication of flexible dye sensitized solar cells on plastic substrates. <i>Nano Energy</i> , 2013 , 2, 174-189	17.1	185
495	Understanding of perovskite crystal growth and film formation in scalable deposition processes. <i>Chemical Society Reviews</i> , 2020 , 49, 1653-1687	58.5	184
494	CHNHPblEbased planar solar cells with magnetron-sputtered nickel oxide. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 22862-70	9.5	180
493	Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1700576	21.8	178
492	Resistance of alkali-activated slag concrete to carbonation. <i>Cement and Concrete Research</i> , 2001 , 31, 1277-1283	10.3	173
491	A power pack based on organometallic perovskite solar cell and supercapacitor. ACS Nano, 2015, 9, 178	216.7	167
490	Synthesis and Transfer of Large-Area Monolayer WS2 Crystals: Moving Toward the Recyclable Use of Sapphire Substrates. <i>ACS Nano</i> , 2015 , 9, 6178-87	16.7	163
489	Nickel oxide nanoparticles for efficient hole transport in p-i-n and n-i-p perovskite solar cells. Journal of Materials Chemistry A, 2017 , 5, 6597-6605	13	159
488	Direct observation of intrinsic twin domains in tetragonal CHNHPbI. <i>Nature Communications</i> , 2017 , 8, 14547	17.4	152
487	Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices. <i>Nanoscale</i> , 2015 , 7, 4163-70	7.7	149
486	Dye-sensitized nickel(II)oxide photocathodes for tandem solar cell applications. <i>Nanotechnology</i> , 2008 , 19, 295304	3.4	149
485	Hydrothermal synthesis of ultrasmall CuCrO2 nanocrystal alternatives to NiO nanoparticles in efficient p-type dye-sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 24760		145
484	Perovskite Tandem Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1602761	21.8	138
483	Insights into Planar CH3NH3PbI3 Perovskite Solar Cells Using Impedance Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 4444-4453	3.8	137
482	Defect trapping states and charge carrier recombination in organicIhorganic halide perovskites. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 793-800	7.1	136
481	Copper N ickel Nitride Nanosheets as Efficient Bifunctional Catalysts for Hydrazine-Assisted Electrolytic Hydrogen Production. <i>Advanced Energy Materials</i> , 2019 , 9, 1900390	21.8	128
480	Photonics and Optoelectronics of 2D Metal-Halide Perovskites. <i>Small</i> , 2018 , 14, e1800682	11	128

(2012-2013)

479	Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries. <i>Scientific Reports</i> , 2013 , 3, 1622	4.9	126
478	p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. <i>Dalton Transactions</i> , 2015 , 44, 3967-73	4.3	125
477	Amorphous hole-transporting layer in slot-die coated perovskite solar cells. <i>Nano Energy</i> , 2017 , 31, 210	-21 71	121
476	Recent progress in hybrid perovskite solar cells based on n-type materials. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10092-10109	13	118
475	Interfacial benzenethiol modification facilitates charge transfer and improves stability of cm-sized metal halide perovskite solar cells with up to 20% efficiency. <i>Energy and Environmental Science</i> , 2018 , 11, 1880-1889	35.4	114
474	Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. <i>Science</i> , 2021 , 372, 1327-1332	33.3	113
473	Formation of TiB2IIiC composites by reactive sintering. <i>Ceramics International</i> , 1999 , 25, 353-358	5.1	112
472	Effect of organo-phosphorus and nano-clay materials on the thermal and fire performance of epoxy resins. <i>Journal of Applied Polymer Science</i> , 2004 , 91, 1233-1253	2.9	111
471	Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites. <i>Nano Energy</i> , 2016 , 30, 330-340	17.1	106
470	Eliminated hysteresis and stabilized power output over 20% in planar heterojunction perovskite solar cells by compositional and surface modifications to the low-temperature-processed TiO2 layer. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9402-9411	13	101
469	Enhanced open-circuit voltage of p-type DSC with highly crystalline NiO nanoparticles. <i>Chemical Communications</i> , 2011 , 47, 4808-10	5.8	100
468	Thermal stability and flammability of silicone polymer composites. <i>Polymer Degradation and Stability</i> , 2006 , 91, 1373-1379	4.7	100
467	Diammonium and Monoammonium Mixed-Organic-Cation Perovskites for High Performance Solar Cells with Improved Stability. <i>Advanced Energy Materials</i> , 2017 , 7, 1700444	21.8	98
466	Self-Adhesive Macroporous Carbon Electrodes for Efficient and Stable Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1802985	15.6	98
465	TiO2 solgel blocking layers for dye-sensitized solar cells. <i>Comptes Rendus Chimie</i> , 2006 , 9, 622-626	2.7	96
464	17% efficient printable mesoscopic PIN metal oxide framework perovskite solar cells using cesium-containing triple cation perovskite. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 22952-22958	13	95
463	Role of Anion Vacancies in Nitrogen-Stabilized Zirconia. <i>Journal of the American Ceramic Society</i> , 1993 , 76, 683-688	3.8	95
462	Improved photocurrents for p-type dye-sensitized solar cells using nano-structured nickel(II) oxide microballs. <i>Energy and Environmental Science</i> , 2012 , 5, 8896	35.4	94

461	Unraveling the Morphology of High Efficiency Polymer Solar Cells Based on the Donor Polymer PBDTTT-EFT. <i>Advanced Energy Materials</i> , 2015 , 5, 1401259	21.8	93
460	Low-Temperature TiOx Compact Layer for Planar Heterojunction Perovskite Solar Cells. <i>ACS Applied Materials & District Materials & Dist</i>	9.5	91
459	Thin Films of Dendritic Anatase Titania Nanowires Enable Effective Hole-Blocking and Efficient Light-Harvesting for High-Performance Mesoscopic Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2015 , 25, 3264-3272	15.6	88
458	Light Illumination Induced Photoluminescence Enhancement and Quenching in Lead Halide Perovskite. <i>Solar Rrl</i> , 2017 , 1, 1600001	7.1	88
457	Spiro-thiophene derivatives as hole-transport materials for perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 12139-12144	13	87
456	Structural and Chemical Changes to CH NH PbI Induced by Electron and Gallium Ion Beams. <i>Advanced Materials</i> , 2018 , 30, e1800629	24	87
455	[6,6]-Phenyl-C-Butyric Acid Methyl Ester/Cerium Oxide Bilayer Structure as Efficient and Stable Electron Transport Layer for Inverted Perovskite Solar Cells. <i>ACS Nano</i> , 2018 , 12, 2403-2414	16.7	86
454	Optical analysis of perovskite/silicon tandem solar cells. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 5679-	5,689	86
453	Triggering the Passivation Effect of Potassium Doping in Mixed-Cation Mixed-Halide Perovskite by Light Illumination. <i>Advanced Energy Materials</i> , 2019 , 9, 1901016	21.8	84
452	Stability Comparison of Perovskite Solar Cells Based on Zinc Oxide and Titania on Polymer Substrates. <i>ChemSusChem</i> , 2016 , 9, 687-95	8.3	84
451	Remarkable photocurrent of p-type dye-sensitized solar cell achieved by size controlled CuGaO2 nanoplates. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2968-2976	13	83
450	NiO nanosheets as efficient top hole transporters for carbon counter electrode based perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 24121-24127	13	81
449	Effect of the Microstructure of the Functional Layers on the Efficiency of Perovskite Solar Cells. <i>Advanced Materials</i> , 2017 , 29, 1601715	24	80
448	Aqueous dye-sensitized solar cell electrolytes based on the cobalt(II)/(III) tris(bipyridine) redox couple. <i>Energy and Environmental Science</i> , 2013 , 6, 121-127	35.4	80
447	Low temperature processing of flexible planar perovskite solar cells with efficiency over 10%. Journal of Power Sources, 2015, 278, 325-331	8.9	77
446	Low-Cost N,N?-Bicarbazole-Based Dopant-Free Hole-Transporting Materials for Large-Area Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1800538	21.8	77
445	Resistance of alkali-activated slag concrete to alkaliliggregate reaction. <i>Cement and Concrete Research</i> , 2001 , 31, 331-334	10.3	77
444	Enhancing the Optoelectronic Performance of Perovskite Solar Cells via a Textured CH3NH3PbI3 Morphology. <i>Advanced Functional Materials</i> , 2016 , 26, 1278-1285	15.6	76

443	One-Pot Synthesis of Self-Stabilized Aqueous Nanoinks for Cu2ZnSn(S,Se)4Solar Cells. <i>Chemistry of Materials</i> , 2014 , 26, 3573-3578	9.6	72	
442	Dye-sensitized CuAlO2 photocathodes for tandem solar cell applications. <i>Journal of Photonics for Energy</i> , 2011 , 1, 011103	1.2	72	
441	Phase Relationships and Related Microstructural Observations in the Ca-Si-Al-O-N System. <i>Journal of the American Ceramic Society</i> , 2005 , 81, 1781-1788	3.8	72	
440	Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2010 , 213, 30-36	4.7	68	
439	Hydrothermal synthesis of bismuth oxide needles. <i>Materials Letters</i> , 2002 , 55, 46-49	3.3	68	
438	Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite Solar Cells and Modules. <i>ACS Applied Materials & Discrete Solar Cells</i> 10, 14922-14929	9.5	67	
437	4-tert-Butylpyridine Free Hole Transport Materials for Efficient Perovskite Solar Cells: A New Strategy to Enhance the Environmental and Thermal Stability. <i>ACS Energy Letters</i> , 2018 , 3, 1677-1682	20.1	67	
436	Microstructural Development of Calcium alpha-SiAlON Ceramics with Elongated Grains. <i>Journal of the American Ceramic Society</i> , 2004 , 82, 421-428	3.8	67	
435	Anisotropic grain growth of Bi4Ti3O12 in molten salt fluxes. <i>Materials Research Bulletin</i> , 2003 , 38, 567-	5 <i>7</i> ;61	67	
434	Wavelength-tunable waveguides based on polycrystalline organic-inorganic perovskite microwires. <i>Nanoscale</i> , 2016 , 8, 6258-64	7.7	66	
433	Four-Terminal Tandem Solar Cells Using CH3NH3PbBr3 by Spectrum Splitting. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 3931-4	6.4	65	
432	Planar versus mesoscopic perovskite microstructures: The influence of CH3NH3PbI3 morphology on charge transport and recombination dynamics. <i>Nano Energy</i> , 2016 , 22, 439-452	17.1	64	
431	Zinc porphyrins with a pyridine-ring-anchoring group for dye-sensitized solar cells. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 956-62	4.5	64	
430	Inverted perovskite solar cells with high fill-factors featuring chemical bath deposited mesoporous NiO hole transporting layers. <i>Nano Energy</i> , 2018 , 49, 163-171	17.1	62	
429	Improved Photovoltages for p-Type Dye-Sensitized Solar Cells Using CuCrO2 Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 16375-16379	3.8	62	
428	Formation of anatase TiO2 by microwave processing. <i>Solar Energy Materials and Solar Cells</i> , 2004 , 84, 135-143	6.4	62	
427	Efficient mesoscopic perovskite solar cells based on the CH3NH3PbI2Br light absorber. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9116-9122	13	61	
426	Organic Sensitizers with Pyridine Ring Anchoring Group for p-Type Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014 , 118, 16433-16440	3.8	61	

425	Pyrolysis behaviour of silicone-based ceramifying composites. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2006 , 425, 7-14	5.3	61
424	Study on gelcasting and properties of recrystallized silicon carbide. <i>Ceramics International</i> , 2002 , 28, 369-376	5.1	61
423	Microstructural Characterisations of Perovskite Solar Cells IFrom Grains to Interfaces: Techniques, Features, and Challenges. <i>Advanced Energy Materials</i> , 2017 , 7, 1700912	21.8	59
422	Zn-doped TiO2 electrodes in dye-sensitized solar cells for enhanced photocurrent. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17128		59
421	Formation of strong ceramified ash from silicone-based compositions. <i>Journal of Materials Science</i> , 2005 , 40, 5741-5749	4.3	59
420	Aluminum-Containing Nilrogen Melilite Phases. <i>Journal of the American Ceramic Society</i> , 1994 , 77, 143-1	4 88	59
419	Reversible Structural Swell-Shrink and Recoverable Optical Properties in Hybrid Inorganic-Organic Perovskite. <i>ACS Nano</i> , 2016 , 10, 7031-8	16.7	59
418	On the Origin of Hysteresis in Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2016 , 26, 6807-6813	3 15.6	59
417	Synthesis and characterization of CuAlO(2) and AgAlO(2) delafossite oxides through low-temperature hydrothermal methods. <i>Inorganic Chemistry</i> , 2014 , 53, 4106-16	5.1	58
416	DA structured porphyrins for efficient dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 10008	13	58
415	Cold isostatic pressing technique for producing highly efficient flexible dye-sensitised solar cells on plastic substrates. <i>Progress in Photovoltaics: Research and Applications</i> , 2012 , 20, 321-332	6.8	58
414	Enhanced performance of p-type dye-sensitized solar cells based on ultrasmall Mg-doped CuCrO2 nanocrystals. <i>ChemSusChem</i> , 2013 , 6, 1432-7	8.3	58
413	Saturation ratio of poly(ethylene oxide) to silicate in melt intercalated nanocomposites. <i>European Polymer Journal</i> , 2003 , 39, 1917-1924	5.2	58
412	Erosion of alumina ceramics by air- and water-suspended garnet particles. <i>Wear</i> , 2000 , 240, 40-51	3.5	58
411	Print flexible solar cells. <i>Nature</i> , 2016 , 539, 488-489	50.4	58
410	Thin Films of Tin Oxide Nanosheets Used as the Electron Transporting Layer for Improved Performance and Ambient Stability of Perovskite Photovoltaics. <i>Solar Rrl</i> , 2017 , 1, 1700117	7.1	57
409	Photoluminescence and electroluminescence imaging of perovskite solar cells. <i>Progress in Photovoltaics: Research and Applications</i> , 2015 , 23, 1697-1705	6.8	57
408	Synthesis and characterization of peryleneBithiopheneBriphenylamine triads: studies on the effect of alkyl-substitution in p-type NiO based photocathodes. <i>Journal of Materials Chemistry</i> , 2012, 22, 7366		57

407	A printable graphene enhanced composite counter electrode for flexible dye-sensitized solar cells. <i>Nano Energy</i> , 2013 , 2, 235-240	17.1	57
406	Fabrication of textured bismuth titanate by templated grain growth using aqueous tape casting. Journal of the European Ceramic Society, 2003 , 23, 2163-2169	6	57
405	Nitrogen-Containing Tetragonal Zirconia. <i>Journal of the American Ceramic Society</i> , 1991 , 74, 1135-1138	3.8	57
404	Fatigue behavior of planar CH3NH3PbI3 perovskite solar cells revealed by light on/off diurnal cycling. <i>Nano Energy</i> , 2016 , 27, 509-514	17.1	57
403	Low-cost porous Cu2ZnSnSe4 film remarkably superior to noble Pt as counter electrode in quantum dot-sensitized solar cell system. <i>Journal of Power Sources</i> , 2013 , 226, 359-362	8.9	56
402	Modification of mesoporous TiO2electrodes by surface treatment with titanium(IV), indium(III) and zirconium(IV) oxide precursors: preparation, characterization and photovoltaic performance in dye-sensitized nanocrystalline solar cells. <i>Nanotechnology</i> , 2007 , 18, 125608	3.4	56
401	Efficient and stable planar all-inorganic perovskite solar cells based on high-quality CsPbBr3 films with controllable morphology. <i>Journal of Energy Chemistry</i> , 2020 , 46, 8-15	12	56
400	How reliable are efficiency measurements of perovskite solar cells? The first inter-comparison, between two accredited and eight non-accredited laboratories. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 22542-22558	13	55
399	Fine tuning of fluorene-based dye structures for high-efficiency p-type dye-sensitized solar cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 10614-22	9.5	55
398	Sensitization of nickel oxide: improved carrier lifetime and charge collection by tuning nanoscale crystallinity. <i>Chemical Communications</i> , 2012 , 48, 9885-7	5.8	55
397	Increased nanopore filling: Effect on monolithic all-solid-state dye-sensitized solar cells. <i>Applied Physics Letters</i> , 2007 , 90, 213510	3.4	55
396	Development of polymerderamic composites for improved fire resistance. <i>Journal of Materials Processing Technology</i> , 2004 , 153-154, 401-407	5.3	55
395	Light-induced reversal of ion segregation in mixed-halide perovskites. <i>Nature Materials</i> , 2021 , 20, 55-61	27	55
394	Effects of dispersants and soluble counter-ions on aqueous dispersibility of nano-sized zirconia powder. <i>Ceramics International</i> , 2004 , 30, 219-224	5.1	54
393	Controlling interfacial recombination in aqueous dye-sensitized solar cells by octadecyltrichlorosilane surface treatment. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 6933-7	, 16.4	53
392	Silver Bismuth Sulfoiodide Solar Cells: Tuning Optoelectronic Properties by Sulfide Modification for Enhanced Photovoltaic Performance. <i>Advanced Energy Materials</i> , 2019 , 9, 1803396	21.8	52
391	Highly efficient light harvesting ruthenium sensitizers for dye-sensitized solar cells featuring triphenylamine donor antennas. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 4945-4953	13	51
390	Dipole-field-assisted charge extraction in metal-perovskite-metal back-contact solar cells. <i>Nature Communications</i> , 2017 , 8, 613	17.4	51

389	Probing Molecular and Crystalline Orientation in Solution-Processed Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2015 , 25, 5529-5536	15.6	51
388	A comparison of microwave and conventional heat treatments of nanocrystalline TiO2. <i>Solar Energy Materials and Solar Cells</i> , 2007 , 91, 6-16	6.4	51
387	Spray deposition of water-soluble multiwall carbon nanotube and Cu2ZnSnSe4 nanoparticle composites as highly efficient counter electrodes in a quantum dot-sensitized solar cell system. <i>Nanoscale</i> , 2013 , 5, 6992-8	7.7	50
386	Thermal Stability of Calcium Bialon Ceramics. <i>Journal of the European Ceramic Society</i> , 1998 , 18, 417-42	76	50
385	Role of Pores in the Carbothermal Reduction of CarbonBilica Nanocomposites into Silicon Carbide Nanostructures. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 636-641	3.8	50
384	Preferential orientation of muscovite in ceramifiable silicone composites. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2005 , 398, 180-187	5.3	50
383	Chemical Dopant Engineering in Hole Transport Layers for Efficient Perovskite Solar Cells: Insight into the Interfacial Recombination. <i>ACS Nano</i> , 2018 , 12, 10452-10462	16.7	50
382	Investigation of the ceramifying process of modified siliconeBilicate compositions. <i>Journal of Materials Science</i> , 2007 , 42, 6046-6055	4.3	49
381	Nanocomposites of poly(methyl methacrylate) and organically modified layered silicates by melt intercalation. <i>Journal of Applied Polymer Science</i> , 2004 , 92, 2101-2115	2.9	49
380	Solgel derived composites from poly(silicic acid) and 2-hydroxyethylmethacrylate: thermal, physical and morphological properties. <i>Polymer</i> , 2002 , 43, 4627-4638	3.9	49
379	Visualizing Phase Segregation in Mixed-Halide Perovskite Single Crystals. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 2893-2898	16.4	49
378	Solid-state Ru-dye solar cells using polypyrrole as a hole conductor. <i>Journal Physics D: Applied Physics</i> , 2004 , 37, 13-20	3	48
377	Alkali Cation Doping for Improving the Structural Stability of 2D Perovskite in 3D/2D PSCs. <i>Nano Letters</i> , 2020 , 20, 1240-1251	11.5	47
376	Solvent-Mediated Dimension Tuning of Semiconducting Oxide Nanostructures as Efficient Charge Extraction Thin Films for Perovskite Solar Cells with Efficiency Exceeding 16%. <i>Advanced Energy Materials</i> , 2016 , 6, 1502027	21.8	47
375	Dye-sensitized nanocrystalline solar cells incorporating ethylmethylimidazolium-based ionic liquid electrolytes. <i>Comptes Rendus Chimie</i> , 2006 , 9, 617-621	2.7	47
374	Translucent Bialon Ceramics by Hot Pressing. <i>Journal of the American Ceramic Society</i> , 2004 , 87, 730-73	2 3.8	47
373	The critical role of composition-dependent intragrain planar defects in the performance of MA1NFAxPbI3 perovskite solar cells. <i>Nature Energy</i> , 2021 , 6, 624-632	62.3	47
372	Stacking n-type layers: Effective route towards stable, efficient and hysteresis-free planar perovskite solar cells. <i>Nano Energy</i> , 2018 , 44, 34-42	17.1	47

(2003-2018)

371	Large-area perovskite solar cells with CsxFA1\(\mathbb{R}\)Pbi3\(\mathbb{J}\)Bry thin films deposited by a vapor\(\mathbb{R}\)olimbel of Materials Chemistry A, 2018 , 6, 21143-21148	13	47	
370	LiTFSI-Free Spiro-OMeTAD-Based Perovskite Solar Cells with Power Conversion Efficiencies Exceeding 19%. <i>Advanced Energy Materials</i> , 2019 , 9, 1901519	21.8	46	
369	Efficient p-type dye-sensitized solar cells based on disulfide/thiolate electrolytes. <i>Nanoscale</i> , 2013 , 5, 7963-9	7.7	46	
368	Surface State Recombination and Passivation in Nanocrystalline TiO2 Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 25118-25126	3.8	46	
367	A design for monolithic all-solid-state dye-sensitized solar cells with a platinized carbon counterelectrode. <i>Applied Physics Letters</i> , 2009 , 94, 103102	3.4	46	
366	Lanthanum modified bismuth titanate prepared by a hydrolysis method. <i>Journal of Materials Chemistry</i> , 2004 , 14, 3566		46	
365	Bi4Ti3O12 nanoparticles prepared by hydrothermal synthesis. <i>Journal of the European Ceramic Society</i> , 2003 , 23, 161-166	6	46	
364	Boosting the photocurrent density of p-type solar cells based on organometal halide perovskite-sensitized mesoporous NiO photocathodes. <i>ACS Applied Materials & Description</i> (2014, 6, 12609-17)	9.5	45	
363	Rutile TiO2 microspheres with exposed nano-acicular single crystals for dye-sensitized solar cells. <i>Nano Research</i> , 2011 , 4, 938-947	10	45	
362	Directing nucleation and growth kinetics in solution-processed hybrid perovskite thin-films. <i>Science China Materials</i> , 2017 , 60, 617-628	7.1	44	
361	Controlled Growth of Monocrystalline Organo-Lead Halide Perovskite and Its Application in Photonic Devices. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 12486-12491	16.4	43	
360	Efficient and stable mixed perovskite solar cells using P3HT as a hole transporting layer. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 5733-5737	7.1	43	
359	Preparation and grain boundary devitrification of samarium Bialon ceramics. <i>Journal of the European Ceramic Society</i> , 1994 , 14, 13-21	6	43	
358	Sulfurization induced surface constitution and its correlation to the performance of solution-processed Cu2ZnSn(S,Se)4 solar cells. <i>Scientific Reports</i> , 2014 , 4, 6288	4.9	42	
357	Modulated charge injection in p-type dye-sensitized solar cells using fluorene-based light absorbers. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 3448-54	9.5	42	
356	Charge transport in photocathodes based on the sensitization of NiO nanorods. <i>Journal of Materials Chemistry</i> , 2012 , 22, 7005		42	
355	Gelcasting of silicon carbide based on gelation of sodium alginate. <i>Ceramics International</i> , 2002 , 28, 865	-8,7:1	42	
354	Gelcasting of alumina ceramics in the mixed acrylamide and polyacrylamide systems. <i>Journal of the European Ceramic Society</i> , 2003 , 23, 2273-2279	6	42	

353	Synthesis and thermal behavior of inorganic Brganic hybrid geopolymer composites. <i>Journal of Applied Polymer Science</i> , 2005 , 96, 112-121	2.9	42
352	Fabrication of efficient solar cells on plastic substrates using binder-free ball milled titania slurries. Journal of Photochemistry and Photobiology A: Chemistry, 2009 , 206, 64-70	4.7	41
351	Influence of starting material composition and carbon content on the preparation of Mg-BiAlON powders by carbothermal reduction-nitridation. <i>Journal of the European Ceramic Society</i> , 2002 , 22, 2989)- <u>2</u> 996	41
350	Efficient Perovskite Solar Cells Employing Inorganic Interlayers. <i>ChemNanoMat</i> , 2016 , 2, 182-188	3.5	41
349	Wearable and sensitive heart-rate detectors based on PbS quantum dot and multiwalled carbon nanotube blend film. <i>Applied Physics Letters</i> , 2014 , 105, 153702	3.4	40
348	Improved air stability of perovskite hybrid solar cells via blending poly(dimethylsiloxane) Irea copolymers. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 5486-5494	13	39
347	Novel porphyrin-preparation, characterization, and applications in solar energy conversion. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 6885-92	3.6	39
346	Effect of mesoporous TiOlbead diameter in working electrodes on the efficiency of dye-sensitized solar cells. <i>ChemSusChem</i> , 2011 , 4, 1498-503	8.3	39
345	An optical fibre-based sensor for the detection of gaseous ammonia with methylammonium lead halide perovskite. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 6988-6995	7.1	39
344	Efficient and Stable Inverted Planar Perovskite Solar Cells Using a Triphenylamine Hole-Transporting Material. <i>ChemSusChem</i> , 2018 , 11, 1467-1473	8.3	38
343	Flexible dye-sensitized solar cells containing multiple dyes in discrete layers. <i>Energy and Environmental Science</i> , 2011 , 4, 2803	35.4	38
342	Nanostructured ZrO2-Coated TiO2 Electrodes for Dye-Sensitised Solar Cells. <i>Journal of Sol-Gel Science and Technology</i> , 2004 , 32, 363-366	2.3	38
341	High-throughput method to deposit continuous composition spread Sb2(SexS1Ik)3 thin film for photovoltaic application. <i>Progress in Photovoltaics: Research and Applications</i> , 2018 , 26, 281-290	6.8	37
340	Light induced degradation in mixed-halide perovskites. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 9326-9	9 3 34	37
339	A facile approach to alleviate photochemical degradation in high efficiency polymer solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16313-16319	13	36
338	Spray deposition of AgBiS2 and Cu3BiS3 thin films for photovoltaic applications. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 2483-2494	7.1	36
337	Design and synthesis of dopant-free organic hole-transport materials for perovskite solar cells. <i>Chemical Communications</i> , 2018 , 54, 9571-9574	5.8	36
336	High-capacity optical long data memory based on enhanced YoungN modulus in nanoplasmonic hybrid glass composites. <i>Nature Communications</i> , 2018 , 9, 1183	17.4	36

335	Titanium Carbide and Titanium Nitride-Based Nanocomposites as Efficient Catalysts for the Co2+/Co3+ Redox Couple in Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 16818	3 ³ 1 ⁸ 682	.4 ³⁶
334	Anomalous rheological behavior in chemically modified TiO2 colloidal pastes prepared for flexible dye-sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2010 , 20, 9954		36
333	Low-temperature sintering of Bi4Ti3O12 derived from a co-precipitation method. <i>Materials Letters</i> , 2002 , 56, 910-914	3.3	36
332	Preferred orientation in hot-pressed Ca BiAlON ceramics. <i>Journal of Materials Science Letters</i> , 1996 , 15, 1447-1449		36
331	Slow Response of Carrier Dynamics in Perovskite Interface upon Illumination. <i>ACS Applied Materials & ACS Applied Materials</i> 8. 10, 31452-31461	9.5	35
330	Surface modification via self-assembling large cations for improved performance and modulated hysteresis of perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 6793-6800	13	35
329	Influence of Fullerene Acceptor on the Performance, Microstructure, and Photophysics of Low Bandgap Polymer Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1602197	21.8	34
328	Back-contact perovskite solar cells with honeycomb-like charge collecting electrodes. <i>Nano Energy</i> , 2018 , 50, 710-716	17.1	34
327	Graphene/titanium carbide composites prepared by solgel infiltration and spark plasma sintering. <i>Ceramics International</i> , 2016 , 42, 122-131	5.1	33
326	Fatigue stability of CH3NH3PbI3 based perovskite solar cells in day/night cycling. <i>Nano Energy</i> , 2019 , 58, 687-694	17.1	33
325	TiO2 nanorods: a facile size- and shape-tunable synthesis and effective improvement of charge collection kinetics for dye-sensitized solar cells. <i>ACS Applied Materials & District Company</i> , 10, 9698-70	12 .5	33
324	In-Depth Understanding of the Morphology-Performance Relationship in Polymer Solar Cells. <i>ACS Applied Materials & Description (Materials & Description of the Morphology Performance Relationship in Polymer Solar Cells. ACS Applied Materials & Description (Materials & Description of the Morphology Performance Relationship in Polymer Solar Cells. <i>ACS Applied Materials & Description (Materials & Description of the Morphology Performance Relationship in Polymer Solar Cells. ACS Applied Materials & Description (Materials & Description of the Morphology Performance Relationship in Polymer Solar Cells. <i>ACS Applied Materials & Description (Materials & Description of the Morphology Performance Relationship in Polymer Solar Cells. ACS Applied Materials & Description (Materials & Description of the Morphology) (</i></i></i>	9.5	33
323	Thiophene-Functionalized Porphyrins: Synthesis, Photophysical Properties, and Photovoltaic Performance in Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 5265-5273	3.8	33
322	Titania nanobundle networks as dye-sensitized solar cell photoanodes. <i>Nanoscale</i> , 2014 , 6, 3704-11	7.7	33
321	A facile deposition method for CuSCN: Exploring the influence of CuSCN on J-V hysteresis in planar perovskite solar cells. <i>Nano Energy</i> , 2017 , 32, 310-319	17.1	32
320	Preparation of p-type AgCrO2 nanocrystals through low-temperature hydrothermal method and the potential application in p-type dye-sensitized solar cell. <i>Journal of Alloys and Compounds</i> , 2015 , 642, 104-110	5.7	32
319	Selective laser sintering of TiO2 nanoparticle film on plastic conductive substrate for highly efficient flexible dye-sensitized solar cell application. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 4566-45	733	32
318	Pyrene-conjugated porphyrins for efficient mesoscopic solar cells: the role of the spacer. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 17495-17501	13	32

317	Conducting polymer and titanium carbide-based nanocomposites as efficient counter electrodes for dye-sensitized solar cells. <i>Electrochimica Acta</i> , 2013 , 105, 275-281	6.7	32
316	Microstructural Tailoring and Characterization of a Calcium EiAlON Composition. <i>Journal of the American Ceramic Society</i> , 2004 , 85, 812-818	3.8	32
315	OrganicIhorganic hybrids derived from 2-hydroxyethylmethacrylate and (3-methacryloyloxypropyl)trimethoxysilane. <i>Polymer</i> , 2002 , 43, 4123-4136	3.9	32
314	Synthesis of Mg-EsiAlON powders from talc and halloysite clay minerals. <i>Journal of the European Ceramic Society</i> , 2000 , 20, 1809-1814	6	32
313	Impact of microstructure on the electronfiole interaction in lead halide perovskites. <i>Energy and Environmental Science</i> , 2017 , 10, 1358-1366	35.4	31
312	Preparation and properties of neodymium-modified bismuth titanate ceramics. <i>Journal of the European Ceramic Society</i> , 2008 , 28, 1641-1647	6	31
311	Al-Containing Porous Titanium Dioxide Networks: Sol © el Synthesis within Agarose Gel Template and Photocatalytic Activity. <i>Chemistry of Materials</i> , 2006 , 18, 5835-5839	9.6	31
310	High performance perovskite sub-module with sputtered SnO2 electron transport layer. <i>Solar Energy</i> , 2019 , 183, 306-314	6.8	30
309	Generalized Water-Processed Metal Chalcogenide Complexes: Synthesis and Applications. <i>Chemistry of Materials</i> , 2015 , 27, 8048-8057	9.6	30
308	Potassium-doped zinc oxide as photocathode material in dye-sensitized solar cells. <i>ChemSusChem</i> , 2013 , 6, 622-9	8.3	30
307	Synthesis of nanostructured silicon carbide spheres from mesoporous C-SiO2 nanocomposites. <i>Chemical Communications</i> , 2010 , 46, 303-5	5.8	30
306	Microwave processing of TiO2 blocking layers for dye-sensitized solar cells. <i>Journal of Sol-Gel Science and Technology</i> , 2006 , 40, 45-54	2.3	30
305	Influence of 🗟 lumina seed on the morphology of grain growth in alumina ceramics from Bayer aluminum hydroxide. <i>Materials Letters</i> , 2003 , 57, 2501-2508	3.3	30
304	Dynamic Antisolvent Engineering for Spin Coating of 10 🛮 10 cm2 Perovskite Solar Module Approaching 18%. <i>Solar Rrl</i> , 2020 , 4, 1900263	7.1	30
303	Photovoltaic performance and the energy landscape of CH3NH3PbI3. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 22604-15	3.6	29
302	Two-step sequential blade-coating of high quality perovskite layers for efficient solar cells and modules. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 8447-8454	13	29
301	Synthesis and Evolution of Zirconium Carbide via Sol © el Route: Features of Nanoparticle Oxide © arbon Reactions. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 1099-1106	3.8	29
300	Role of microstructure in the grinding and polishing of Bialon ceramics. <i>Journal of the European Ceramic Society</i> , 2003 , 23, 2351-2360	6	29

(2015-2017)

299	Robust transparent superamphiphobic coatings on non-fabric flat substrates with inorganic adhesive titania bonded silica. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 8352-8359	13	28	
298	Solgel synthesis of SiCIIiO2nanoparticles for microwave processing. <i>Nanotechnology</i> , 2007 , 18, 055708	3.4	28	
297	Effect of Grain Cluster Size on Back-Contact Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1805098	15.6	28	
296	An efficient, flexible perovskite solar module exceeding 8% prepared with an ultrafast PbI deposition rate. <i>Scientific Reports</i> , 2018 , 8, 442	4.9	27	
295	Formation of novel mesoporous TiC microspheres through a solgel and carbothermal reduction process. <i>Journal of the European Ceramic Society</i> , 2012 , 32, 3407-3414	6	27	
294	Al O Underlayer Prepared by Atomic Layer Deposition for Efficient Perovskite Solar Cells. <i>ChemSusChem</i> , 2017 , 10, 3810-3817	8.3	27	
293	Isolating and quantifying the impact of domain purity on the performance of bulk heterojunction solar cells. <i>Energy and Environmental Science</i> , 2017 , 10, 1843-1853	35.4	27	
292	Ultrafast Fabrication of Flexible Dye-Sensitized Solar Cells by Ultrasonic Spray-Coating Technology. <i>Scientific Reports</i> , 2015 , 5, 14645	4.9	27	
291	Towards an all-polymer cathode for dye sensitized photovoltaic cells. <i>Thin Solid Films</i> , 2010 , 518, 2871-7	28725	27	
290	Study on gelcasting of silicon nitride-bonded silicon carbide refractories. <i>Materials Letters</i> , 2002 , 56, 895-900	3.3	27	
289	XRD analysis of formation of strontium barium niobate phase. <i>Materials Letters</i> , 2002 , 56, 915-920	3.3	27	
288	Construction of nanostructured electrodes on flexible substrates using pre-treated building blocks. <i>Applied Physics Letters</i> , 2012 , 100, 123102	3.4	26	
287	Synthesis of (Ca,Mg)-Bialon from slag by self-propagating high-temperature synthesis. <i>Journal of Materials Chemistry</i> , 2002 , 12, 1199-1202		26	
286	Organized intrafibrillar mineralization, directed by a rationally designed multi-functional protein. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 4496-4502	7.3	25	
285	Solution-processed Zn2SnO4 electron transporting layer for efficient planar perovskite solar cells. <i>Materials Today Energy</i> , 2018 , 7, 260-266	7	25	
284	Tailoring the conduction band of titanium oxide by doping tungsten for efficient electron injection in a sensitized photoanode. <i>Nanoscale</i> , 2014 , 6, 3875-80	7.7	25	
283	DA Porphyrin Sensitizers with Extended Conjugation for Mesoscopic Solar Cells. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 14739-14748	3.8	25	
282	A Bi-layer TiO2 photoanode for highly durable, flexible dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4679-4686	13	25	

281	Spiky mesoporous anatase titania beads: a metastable ammonium titanate-mediated synthesis. <i>Chemistry - A European Journal</i> , 2012 , 18, 13762-9	4.8	25
280	Formation of silicon nitride bonded silicon carbide by aqueous gelcasting. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2003 , 349, 20-28	5.3	25
279	Moisture assisted CsPbBr3 film growth for high-efficiency, all-inorganic solar cells prepared by a multiple sequential vacuum deposition method. <i>Materials Science in Semiconductor Processing</i> , 2019 , 98, 39-43	4.3	24
278	A novel approach for preparation of dense TiCBiC nanocomposites by solgel infiltration and spark plasma sintering. <i>Journal of the European Ceramic Society</i> , 2014 , 34, 1949-1954	6	24
277	4-fold photocurrent enhancement in ultrathin nanoplasmonic perovskite solar cells. <i>Optics Express</i> , 2015 , 23, A1700-6	3.3	24
276	Crystallization behaviour and microstructural evolution of a Li2OAl2O3BiO2 glass derived from spodumene mineral. <i>Journal of Materials Science</i> , 1997 , 32, 83-89	4.3	24
275	Hollow Beads Composed of Nanosize Ca BiAlON Grains. <i>Journal of the American Ceramic Society</i> , 2004 , 83, 995-997	3.8	24
274	Effects of molecular weight and clay organo-ions on the melt intercalation of poly(ethylene oxide) into layered silicates. <i>Polymer Engineering and Science</i> , 2002 , 42, 2369-2382	2.3	24
273	Optimizing semiconductor thin films with smooth surfaces and well-interconnected networks for high-performance perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 12463-12470	13	23
272	Mussel-Directed Synthesis of Nitrogen-Doped Anatase TiO2. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 3031-5	16.4	23
271	Improved Performance of Planar Perovskite Solar Cells Using an Amino-Terminated Multifunctional Fullerene Derivative as the Passivation Layer. <i>ACS Applied Materials & Desiration Layer</i> , 11, 27145-2	7 9:§2	23
270	Carbon film electrode based square-centimeter scale planar perovskite solar cells exceeding 17% efficiency. <i>Materials Science in Semiconductor Processing</i> , 2020 , 107, 104809	4.3	23
269	Impact of Fullerene Mixing Behavior on the Microstructure, Photophysics, and Device Performance of Polymer/Fullerene Solar Cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 29608-29618	9.5	23
268	Efficient and stable perovskite solar cells via surface passivation of an ultrathin hydrophobic organic molecular layer. <i>Chemical Engineering Journal</i> , 2021 , 405, 126712	14.7	23
267	Organic/inorganic self-doping controlled crystallization and electronic properties of mixed perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 6319-6326	13	22
266	Microstructures and properties of Si3N4/TiN composites sintered by hot pressing and spark plasma sintering. <i>Materials Research Bulletin</i> , 2013 , 48, 1927-1933	5.1	22
265	On the Role of the Spacer Layer in Monolithic Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 2365-2369	3.8	22
264	Elongated Bialon grains in pressureless sintered sialon ceramics. <i>Journal of the European Ceramic Society</i> , 1998 , 18, 1053-1057	6	22

(2011-2005)

263	Improvement of the Zirconia shell in nanostructured titania corellhell working electrodes for dye-sensitized solar cells. <i>Materials Letters</i> , 2005 , 59, 1893-1896	3.3	22	
262	Influence of sol-gel derived ZrB2 additions on microstructure and mechanical properties of SiBCN composites. <i>Ceramics International</i> , 2017 , 43, 4372-4378	5.1	21	
261	Thermal ablation behavior of SiBCN-Zr composites prepared by reactive spark plasma sintering. <i>Ceramics International</i> , 2017 , 43, 7978-7983	5.1	21	
260	Near field enhanced photocurrent generation in p-type dye-sensitized solar cells. <i>Scientific Reports</i> , 2014 , 4, 3961	4.9	21	
259	Stabilizing High Efficiency Perovskite Solar Cells with 3D-2D Heterostructures. <i>Joule</i> , 2020 , 4, 975-979	27.8	21	
258	Self-augmented ion blocking of sandwiched 2D/1D/2D electrode for solution processed high efficiency semitransparent perovskite solar cell. <i>Nano Energy</i> , 2020 , 71, 104567	17.1	21	
257	Humidity controlled sol-gel Zr/TiO2 with optimized band alignment for efficient planar perovskite solar cells. <i>Solar Energy</i> , 2016 , 139, 290-296	6.8	21	
256	Enhanced Crystallinity of Low-Temperature Solution-Processed SnO for Highly Reproducible Planar Perovskite Solar Cells. <i>ChemSusChem</i> , 2018 , 11, 2898-2903	8.3	21	
255	Controlling Homogenous Spherulitic Crystallization for High-Efficiency Planar Perovskite Solar Cells Fabricated under Ambient High-Humidity Conditions. <i>Small</i> , 2019 , 15, e1904422	11	21	
254	The Effect of the Scattering Layer in Dye-Sensitized Solar Cells Employing a Cobalt-Based Aqueous Gel Electrolyte. <i>ChemSusChem</i> , 2015 , 8, 3704-11	8.3	21	
253	Elimination of Surface Spallation of Alumina Green Bodies Prepared by Acrylamide-Based Gelcasting via Poly(vinylpyrrolidone). <i>Journal of the American Ceramic Society</i> , 2003 , 86, 266-272	3.8	21	
252	Influence of microstructure on the erosive wear behaviour of Ca Bialon materials. <i>Journal of the European Ceramic Society</i> , 2001 , 21, 2435-2445	6	21	
251	Universal defects elimination for high performance thermally evaporated CsPbBr3 perovskite solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2020 , 206, 110317	6.4	21	
250	Oriented Attachment as the Mechanism for Microstructure Evolution in Chloride-Derived Hybrid Perovskite Thin Films. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 39930-39939	9.5	20	
249	Solvent Engineering of a Dopant-Free Spiro-OMeTAD Hole-Transport Layer for Centimeter-Scale Perovskite Solar Cells with High Efficiency and Thermal Stability. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 8260-8270	9.5	20	
248	Long-Distance Ionic Diffusion in Cesium Lead Mixed Halide Perovskite Induced by Focused Illumination. <i>Chemistry of Materials</i> , 2019 , 31, 9049-9056	9.6	20	
247	Solvent-Mediated Intragranular-Coarsening of CHNHPbI Thin Films toward High-Performance Perovskite Photovoltaics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 31959-31967	9.5	20	
246	Al-doped TiO2 Photoanode for Dye-Sensitized Solar Cells. <i>Australian Journal of Chemistry</i> , 2011 , 64, 820	1.2	20	

245	Formation and Sintering Mechanisms of Reaction Bonded Silicon Carbide-Boron Carbide Composites. <i>Key Engineering Materials</i> , 2007 , 352, 207-212	0.4	20
244	Self-Propagating High-Temperature Synthesis of EsiAlON Doped by RE (RE=Eu,Pr,Ce) and Codoped by RE and Yttrium. <i>Journal of the American Ceramic Society</i> , 2004 , 87, 703-705	3.8	20
243	Investigation of thermal and fire performance of novel hybrid geopolymer composites. <i>Journal of Materials Science</i> , 2004 , 39, 4721-4726	4.3	20
242	Characterization of nanostructured core-shell working electrodes for application in dye-sensitized solar cells. <i>Surface and Coatings Technology</i> , 2005 , 198, 118-122	4.4	20
241	Decomposition of Sm & iAlON phases during post-sintering heat treatment. <i>Journal of the European Ceramic Society</i> , 1996 , 16, 1001-1008	6	20
240	Integrated planar and bulk dual heterojunctions capable of efficient electron and hole extraction for perovskite solar cells with >17% efficiency. <i>Nano Energy</i> , 2017 , 32, 187-194	17.1	19
239	Structure engineering of hierarchical layered perovskite interface for efficient and stable wide bandgap photovoltaics. <i>Nano Energy</i> , 2020 , 75, 104917	17.1	19
238	Quasi-Solid-State Dye-Sensitized Solar Cells on Plastic Substrates. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 16366-16374	3.8	19
237	Modification of ZrB2 powders by a solgel ZrC precursor new approach for ultra high temperature ceramic composites Peer review under responsibility of The Ceramic Society of Japan and the Korean Ceramic Society. View all notes. <i>Journal of Asian Ceramic Societies</i> , 2013 , 1, 77-85	2.4	19
236	Fabrication and Evaluation of Ca-EsiAlON Nano Ceramics. Key Engineering Materials, 2003, 237, 105-110	0.4	19
235	Effect of V2O5 on sintering behaviour, microstructure and dielectric properties of textured Sr0.4Ba0.6Nb2O6 ceramics. <i>Journal of the European Ceramic Society</i> , 2005 , 25, 957-962	6	19
234	Challenges of producing TiO2 films by microwave heating. <i>Surface and Coatings Technology</i> , 2005 , 198, 20-23	4.4	19
233	Raman Spectroscopy of Formamidinium-Based Lead Halide Perovskite Single Crystals. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 2265-2272	3.8	19
232	Sequentially Reinforced Additive Coating for Transparent and Durable Superhydrophobic Glass. <i>Langmuir</i> , 2018 , 34, 11316-11324	4	19
231	Rationally Induced Interfacial Dipole in Planar Heterojunction Perovskite Solar Cells for Reduced JN Hysteresis. <i>Advanced Energy Materials</i> , 2018 , 8, 1800568	21.8	19
230	Catalytic Activity and Impedance Behavior of Screen-Printed Nickel Oxide as Efficient Water Oxidation Catalysts. <i>ChemSusChem</i> , 2015 , 8, 4266-74	8.3	18
229	Facile Synthesis, Growth Mechanism, and UVII is Spectroscopy of Novel Urchin-like TiO2/TiB2 Heterostructures. <i>Crystal Growth and Design</i> , 2009 , 9, 4017-4022	3.5	18
228	Optical properties of SPS-ed Y- and (Dy,Y)-Bialon ceramics. <i>Journal of Materials Science</i> , 2004 , 39, 6257-	62.62	18

(2015-2004)

227	Effects of composition and thermal treatment on infrared transmission of Dy-Bialon. <i>Journal of the European Ceramic Society</i> , 2004 , 24, 2869-2877	6	18
226	Gelcasting of ceramic suspension in acrylamide/polyethylene glycol systems. <i>Ceramics International</i> , 2002 , 28, 859-864	5.1	18
225	Gas-discharging reactions and their effect on the microstructures of green bodies in gelcasting of non-oxide materials. <i>Materials Letters</i> , 2000 , 45, 51-57	3.3	18
224	Optical Probe Ion and Carrier Dynamics at the CH3NH3PbI3 Interface with Electron and Hole Transport Materials. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600467	4.6	18
223	Cobalt Polypyridyl Complexes as Transparent Solution-Processable Solid-State Charge Transport Materials. <i>Advanced Energy Materials</i> , 2016 , 6, 1600874	21.8	17
222	Facile synthesis of nanoporous TiCBiCI composites as a novel counter-electrode for dye sensitized solar cells. <i>Microporous and Mesoporous Materials</i> , 2014 , 190, 309-315	5.3	17
221	Fluorene functionalized porphyrins as broadband absorbers for TiO2 nanocrystalline solar cells. Journal of Materials Chemistry A, 2014 , 2, 13667	13	17
220	Tailoring carbon nanotube/matrix interface to optimize mechanical properties of multiscale composites. <i>Carbon</i> , 2014 , 69, 621-625	10.4	17
219	Investigation on regeneration kinetics at perovskite/oxide interface with scanning electrochemical microscopy. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9216-9222	13	17
218	Effect of TiOlmicrobead pore size on the performance of DSSCs with a cobalt based electrolyte. <i>Nanoscale</i> , 2014 , 6, 13787-94	7.7	17
217	Synthesis of Mesoporous Carbon-Bonded TiC/SiC Composites by Direct Carbothermal Reduction of SolCiel Derived Monolithic Precursor. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 4025-4031	3.8	17
216	Phase formation and microstructural evolution of Ca Bialon using different Si 3 N 4 starting powders. <i>Journal of the European Ceramic Society</i> , 2000 , 20, 1803-1808	6	17
215	Pressureless sintering and phase relationship of samarium Bialons. <i>Journal of the European Ceramic Society</i> , 1994 , 14, 343-349	6	17
214	Suppressed hysteresis and enhanced performance of triple cation perovskite solar cell with chlorine incorporation. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 13157-13161	7.1	17
213	Parameters responsible for the degradation of CH3NH3PbI3-based solar cells on polymer substrates. <i>Nano Energy</i> , 2016 , 22, 211-222	17.1	16
212	Mesoporous titania beads for flexible dye-sensitized solar cells. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 1284-1289	7.1	16
211	ZIF-11/Polybenzimidazole composite membrane with improved hydrogen separation performance. <i>Journal of Applied Polymer Science</i> , 2014 , 131, n/a-n/a	2.9	16
210	Molecular engineering of organic dyes with a hole-extending donor tail for efficient all-solid-state dye-sensitized solar cells. <i>ChemSusChem</i> , 2015 , 8, 2529-36	8.3	16

209	A bio-process inspired synthesis of vaterite (CaCO), directed by a rationally designed multifunctional protein, ChiCaSifi. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 5951-5956	7.3	16
208	One-step microwave calcination of ZrO2-coated TiO2 electrodes for use in dye-sensitized solar cells. <i>Comptes Rendus Chimie</i> , 2006 , 9, 713-716	2.7	16
207	Scratch Damage in Ceramics: Role of Microstructure. <i>Journal of the American Ceramic Society</i> , 2003 , 86, 141-148	3.8	16
206	Gelcasting of alumina ceramic components in nontoxic Na-alginate©alO3BVP systems. <i>Materials</i> & <i>Design</i> , 2005 , 26, 291-296		16
205	Microstructural features of the Ho EsiAlON phase transformation. <i>Journal of the European Ceramic Society</i> , 1996 , 16, 529-534	6	16
204	Printing strategies for scaling-up perovskite solar cells. <i>National Science Review</i> , 2021 , 8, nwab075	10.8	16
203	Photovoltaic characteristics and stability of flexible dye-sensitized solar cells on ITO/PEN substrates. <i>RSC Advances</i> , 2014 , 4, 1393-1400	3.7	15
202	Enhanced performance of p-type dye sensitized solar cells based on mesoporous Ni1MMgxO ternary oxide films. <i>RSC Advances</i> , 2014 , 4, 60670-60674	3.7	15
201	Ca-BiAlON hollow spheres prepared by carbothermal reduction litridation from different SiO2 powders. <i>Ceramics International</i> , 2010 , 36, 1553-1559	5.1	15
200	Effect of seeding on formation of silicon carbide nanostructures from mesoporous silica-carbon nanocomposites. <i>Nanotechnology</i> , 2008 , 19, 175605	3.4	15
199	Erosion Response of Highly Anisotropic Silicon Nitride. <i>Journal of the American Ceramic Society</i> , 2004 , 88, 114-120	3.8	15
198	Optical Properties of Gd⊞ialon Ceramics: Effect of Carbon Contamination. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 2304-2306	3.8	15
197	Phase relationships and microstructures of Ca and Al-rich sialon ceramics. <i>Journal of the European Ceramic Society</i> , 2000 , 20, 357-366	6	15
196	Phase transformations in Sm (FisiAlON ceramics during post-sintering heat treatments. <i>Journal of the European Ceramic Society</i> , 1995 , 15, 1221-1228	6	15
195	The development of microstructure in silicon nitride-bonded silicon carbide. <i>Journal of the European Ceramic Society</i> , 1995 , 15, 415-424	6	15
194	Spectral dependence of direct and trap-mediated recombination processes in lead halide perovskites using time resolved microwave conductivity. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 12043-9	3.6	15
193	A perovskite/silicon hybrid system with a solar-to-electric power conversion efficiency of 25.5%. Journal of Materials Chemistry A, 2019 , 7, 26479-26489	13	15
192	A cyclopenta[1,2-b:5,4-bi]kdithiophene-porphyrin conjugate for mesoscopic solar cells: a D-ED-A approach. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 24755-62	3.6	14

(2016-2014)

	191	Influence of solgel derived ZrO2 and ZrC additions on microstructure and properties of ZrB2 composites. <i>Journal of the European Ceramic Society</i> , 2014 , 34, 3139-3149	6	14	
	190	Modifying TiO2 surface architecture by oxygen plasma to increase dye sensitized solar cell efficiency. <i>Thin Solid Films</i> , 2013 , 545, 521-526	2.2	14	
	189	Effects of the electric current on conductive Si3N4/TiN composites in spark plasma sintering. Journal of Alloys and Compounds, 2013 , 547, 51-58	5.7	14	
	188	Device pre-conditioning and steady-state temperature dependence of CH3NH3PbI3 perovskite solar cells. <i>Progress in Photovoltaics: Research and Applications</i> , 2017 , 25, 533-544	6.8	14	
	187	Preparation of sialon Bransition metal silicide composites. <i>Journal of the European Ceramic Society</i> , 2006 , 26, 193-199	6	14	
	186	Sliding wear behaviour of Ca Bialon ceramics at 600LC in air. Wear, 2006, 260, 1356-1360	3.5	14	
•	185	Microstructural design of Ca Bialon ceramics: effects of starting compositions and processing conditions. <i>Journal of the European Ceramic Society</i> , 2003 , 23, 1531-1541	6	14	
:	184	Influence of phase transition on stability of perovskite solar cells under thermal cycling conditions. <i>Solar Energy</i> , 2019 , 188, 312-317	6.8	13	
	183	Influence of Parameters of Cold Isostatic Pressing on TiO2Films for Flexible Dye-Sensitized Solar Cells. <i>International Journal of Photoenergy</i> , 2011 , 2011, 1-7	2.1	13	
	182	Low temperature crystallization behavior of TiO2 derived from a solgel process. <i>Journal of Sol-Gel Science and Technology</i> , 2007 , 42, 107-117	2.3	13	
•	181	Hot Forging of a Textured Bialon Ceramic. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 478-483	3.8	13	
	180	Sliding wear of calcium Bialon ceramics. <i>Wear</i> , 2006 , 260, 387-400	3.5	13	
	179	The solubility of aluminium in rare earth nitrogen melilite phases. <i>Journal of the European Ceramic Society</i> , 1995 , 15, 1213-1220	6	13	
	178	The impact of spiro-OMeTAD photodoping on the reversible light-induced transients of perovskite solar cells. <i>Nano Energy</i> , 2021 , 82, 105658	17.1	13	
	177	Alleviate the - hysteresis of carbon-based perovskite solar cells introducing additional methylammonium chloride into MAPbI precursor <i>RSC Advances</i> , 2018 , 8, 35157-35161	3.7	13	
	176	Alkyl-thiophene Functionalized D-EA Porphyrins for Mesoscopic Solar Cells. <i>Electrochimica Acta</i> , 2015 , 179, 187-196	6.7	12	
	175	Sub-100 °C solution processed amorphous titania nanowire thin films for high-performance perovskite solar cells. <i>Journal of Power Sources</i> , 2016 , 329, 17-22	8.9	12	
	174	Time-resolved fluorescence anisotropy study of organic lead halide perovskite. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 151, 102-112	6.4	12	

173	Metal Evaporation-Induced Degradation of Fullerene Acceptors in Polymer/Fullerene Solar Cells. <i>ACS Applied Materials & Description of European Solar Cells (Control of Action Materials & Description of European Solar Cells)</i>	9.5	12
172	Multiple Roles of Cobalt Pyrazol-Pyridine Complexes in High-Performing Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2019 , 10, 4675-4682	6.4	12
171	Three-dimensional titanium oxide nanoarrays for perovskite photovoltaics: surface engineering for cascade charge extraction and beneficial surface passivation. <i>Sustainable Energy and Fuels</i> , 2017 , 1, 196	50 ⁵ 1 ⁸ 967	7 ¹²
170	Polypyridyl Iron Complex as a Hole-Transporting Material for Formamidinium Lead Bromide Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2017 , 2, 1855-1859	20.1	12
169	Formation Process of Calcium-BiAlON Hollow Balls Composed of Nanosized Particles by Carbothermal Reduction Nitridation. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 860-864	3.8	12
168	Sequential and Simultaneous Melt Intercalation of Poly(ethylene oxide) and Poly(methyl methacrylate) into Layered Silicates. <i>Macromolecules</i> , 2005 , 38, 1744-1751	5.5	12
167	Structural characterization of lithium aluminosilicate glass and glass ceramics derived from spodumene mineral. <i>Journal of Physics Condensed Matter</i> , 1995 , 7, 3115-3128	1.8	12
166	Enhancing the thermal stability of the carbon-based perovskite solar cells by using a Cs FA PbBr I light absorber <i>RSC Advances</i> , 2019 , 9, 11877-11881	3.7	11
165	Room-temperature synthesized SnO electron transport layers for efficient perovskite solar cells <i>RSC Advances</i> , 2019 , 9, 9946-9950	3.7	11
164	Improved efficiency and stability of flexible dye sensitized solar cells on ITO/PEN substrates using an ionic liquid electrolyte. <i>Photochemistry and Photobiology</i> , 2015 , 91, 315-22	3.6	11
163	Rapid preparation of conductive transparent films via solution printing of graphene precursor. <i>Thin Solid Films</i> , 2018 , 657, 24-31	2.2	11
162	SPS densification and microstructure of ZrB2 composites derived from solgel ZrC coating. <i>Journal of the European Ceramic Society</i> , 2014 , 34, 2875-2883	6	11
161	Meso/micro-porosity and phase separation in TiO2/SiO2/C nanocomposites. <i>Microporous and Mesoporous Materials</i> , 2012 , 150, 25-31	5.3	11
160	A novel carbon PEDOT composite counter electrode for monolithic dye-sensitized solar cells. <i>Journal Physics D: Applied Physics</i> , 2013 , 46, 024007	3	11
159	Spark Plasma Sintering of Bismuth Titanate Ceramics. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 1631-1633	3.8	11
158	Honeycomb-shaped charge collecting electrodes for dipole-assisted back-contact perovskite solar cells. <i>Nano Energy</i> , 2020 , 67, 104223	17.1	11
157	High efficiency solid-state dye-sensitized solar cells using a cobalt(II/III) redox mediator. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 4875-4883	7.1	10
156	Enhancing the performance and stability of carbon-based perovskite solar cells by the cold isostatic pressing method. <i>RSC Advances</i> , 2017 , 7, 48958-48961	3.7	10

(2008-2018)

155	Oxidation behavior of SiBCN-Zr composites at 1500 $^{\circ}$ C prepared by reactive spark plasma sintering. <i>Corrosion Science</i> , 2018 , 132, 293-299	6.8	10
154	An over 10% enhancement of dye-sensitized solar cell efficiency by tuning nanoparticle packing. <i>RSC Advances</i> , 2013 , 3, 17003	3.7	10
153	Numerical analysis of a hysteresis model in perovskite solar cells. <i>Computational Materials Science</i> , 2017 , 126, 22-28	3.2	10
152	Reversible transformation in preferentially oriented sialon ceramics. <i>Journal of the European Ceramic Society</i> , 2006 , 26, 1337-1349	6	10
151	Effect of additives on microstructure of Ca Bialon. <i>Materials Letters</i> , 2001 , 47, 281-285	3.3	10
150	NMR Investigation of the Structure of Aluminum-Containing Nitrogen Melilite (MNs). <i>Chemistry of Materials</i> , 1995 , 7, 982-988	9.6	10
149	Preparation of fine-grained calcium Bialon. <i>Journal of Materials Science Letters</i> , 1994 , 13, 1612-1615		10
148	Groups-dependent phosphines as the organic redox for point defects elimination in hybrid perovskite solar cells. <i>Journal of Energy Chemistry</i> , 2021 , 54, 23-29	12	10
147	Fabrication of Efficient and Stable Perovskite Solar Cells in High-Humidity Environment through Trace-Doping of Large-Sized Cations. <i>ChemSusChem</i> , 2019 , 12, 2385-2392	8.3	9
146	Sub-sized monovalent alkaline cations enhanced electrical stability for over 17% hysteresis-free planar perovskite solar mini-module. <i>Electrochimica Acta</i> , 2019 , 306, 635-642	6.7	9
145	Formamidinium-Based Perovskite Solar Cells with Enhanced Moisture Stability and Performance via Confined Pressure Annealing. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 12249-12258	3.8	9
144	Interface modification effect on the performance of CsFAPbIBr perovskite solar cells fabricated by evaporation/spray-coating method. <i>Journal of Chemical Physics</i> , 2020 , 153, 014706	3.9	9
143	A pressure-assisted annealing method for high quality CsPbBr film deposited by sequential thermal evaporation <i>RSC Advances</i> , 2020 , 10, 8905-8909	3.7	9
142	Influence of Hot Spot Heating on Stability of Large Size Perovskite Solar Module with a Power Conversion Efficiency of ~14%. <i>ACS Applied Energy Materials</i> , 2018 , 1, 3565-3570	6.1	9
141	Controlling Interfacial Recombination in Aqueous Dye-Sensitized Solar Cells by Octadecyltrichlorosilane Surface Treatment. <i>Angewandte Chemie</i> , 2014 , 126, 7053-7057	3.6	9
140	An alternative flexible electrode for dye-sensitized solar cells. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	9
139	Crystalline TiO2 Nanorod Aggregates: Template-Free Fabrication and Efficient Light Harvesting in Dye-Sensitized Solar Cell Applications. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 754-758	3.1	9
138	Alternative materials and processing techniques for optimized nanostructures in dye-sensitized solar cells. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 2230-48	1.3	9

137	Grain Growth of ⊞iAlON in the Calcium-Doped System. <i>Journal of the American Ceramic Society</i> , 2002 , 85, 2545-2549	3.8	9
136	Infrared transmission of hot-pressed Y- and Dy-Bialon ceramics. <i>Materials Letters</i> , 2004 , 58, 1985-1988	3.3	9
135	Melt Intercalation of PMMA into Organically-Modified Layered Silicate. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 576, 137		9
134	Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells. <i>Frontiers of Optoelectronics</i> , 2020 , 13, 272-281	2.8	9
133	Nitrogen-doped tin oxide electron transport layer for stable perovskite solar cells with efficiency over 23%		9
132	Efficient Planar Perovskite Solar Cells via a Sputtered Cathode. <i>Solar Rrl</i> , 2019 , 3, 1900209	7.1	8
131	Facile Deposition of Mesoporous PbI2 through DMF:DMSO Solvent Engineering for Sequentially Deposited Metal Halide Perovskites. <i>ACS Applied Energy Materials</i> , 2020 , 3, 3358-3368	6.1	8
130	Molecular Engineering of Zinc-Porphyrin Sensitisers for p-Type Dye-Sensitised Solar Cells. <i>ChemPlusChem</i> , 2018 , 83, 711-720	2.8	8
129	Charge Transport in Photoanodes Constructed with Mesoporous TiO2 Beads for Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 16635-16642	3.8	8
128	Slag Derived Esialon Ceramics and their Properties. <i>Key Engineering Materials</i> , 2004 , 264-268, 781-786	0.4	8
127	Control of Microstructures in BiAlON Ceramics. <i>Journal of the American Ceramic Society</i> , 2004 , 85, 276-2	2388	8
126	The Dependence of Benzo-15-Crown-5 Ether-Containing Oligo Paraphenylene Vinylene (CE-OPV) Emission Upon Complexation with Metal Ions in Solution. <i>Journal of Fluorescence</i> , 2003 , 13, 427-436	2.4	8
125	Phase assemblages of (Ca,Mg)-Bialon ceramics derived from an Bialon powder prepared by SHS. <i>Journal of the European Ceramic Society</i> , 2003 , 23, 2343-2349	6	8
124	Chemical structure of composites derived from poly(silicic acid) and 2-hydroxyethylmethacrylate. <i>Journal of Polymer Science Part A</i> , 2001 , 39, 1342-1352	2.5	8
123	Ink Engineering for Blade Coating FA-Dominated Perovskites in Ambient Air for Efficient Solar Cells and Modules. <i>ACS Applied Materials & Districted Solar Cells</i> 13, 18724-18732	9.5	8
122	Controlled Growth of Monocrystalline Organo-Lead Halide Perovskite and Its Application in Photonic Devices. <i>Angewandte Chemie</i> , 2017 , 129, 12660-12665	3.6	7
121	Low-Temperature Solution-Processed Amorphous Titania Nanowire Thin Films for 1 cm Perovskite Solar Cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 11450-11458	9.5	7
120	A novel in situ synthesis of SiBCN-Zr composites prepared by a sol-gel process and spark plasma sintering. <i>Dalton Transactions</i> , 2016 , 45, 12739-44	4.3	7

119	Charge Transport and Recombination in Dye-Sensitized Solar Cells on Plastic Substrates. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 15154-15161	3.8	7
118	Effects of starting composition and carbon content on the formation of CaALPHA. SiAlON powders by carbothermal reduction-nitridation. <i>Journal of the Ceramic Society of Japan</i> , 2010 , 118, 827-	·8 2 9	7
117	Study on the stability of Ce Bialon derived from SHS-ed powder. <i>Journal of the European Ceramic Society</i> , 2004 , 24, 2853-2860	6	7
116	Formation of AlN-Polytypoid Phases during BiAlON Decomposition. <i>Journal of the American Ceramic Society</i> , 2005 , 80, 2459-2463	3.8	7
115	Direct assessment of structural order and evidence for stacking faults in layered hybrid perovskite films from X-ray scattering measurements. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 12790-12798	13	6
114	Improving the intrinsic thermal stability of the MAPbI perovskite by incorporating cesium 5-aminovaleric acetate <i>RSC Advances</i> , 2018 , 8, 14991-14994	3.7	6
113	Ultra-fine zirconium diboride powders prepared by a combined solgel and spark plasma sintering technique. <i>Journal of Sol-Gel Science and Technology</i> , 2016 , 77, 636-641	2.3	6
112	Bis(9,9-dihexyl-9H-fluorene-7-yl)amine (BDFA) as a new donor for porphyrin-sensitized solar cells. <i>Organic Electronics</i> , 2014 , 15, 2448-2460	3.5	6
111	Surface plasma resonance enhanced photocurrent generation in NiO photoanode based solar cells. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2015 , 199, 1-8	3.1	6
110	Thermal stability of mixed-cation Bialon ceramics. <i>Materials Science & Discourse Materials: Properties, Microstructure and Processing</i> , 2003 , 339, 115-123	5.3	6
109	Control of fluorescence emission color of benzo 15-crown-5 ether substituted oligo phenylene vinyleneBeramic nanocomposites. <i>Polymer</i> , 2005 , 46, 7176-7184	3.9	6
108	Formation behavior, microstructure and mechanical properties of multi-cation Bialons containing calcium and neodymium. <i>Journal of the European Ceramic Society</i> , 2001 , 21, 1273-1278	6	6
107	Nano-Sized Bi4Ti3O12 Powder Prepared by the Hydrolysis Process. <i>Key Engineering Materials</i> , 2002 , 224-226, 597-600	0.4	6
106	Role of Nitrides in Oxynitride Glasses and Glassteramics: An NMR Investigation. <i>Chemistry of Materials</i> , 1996 , 8, 2516-2522	9.6	6
105	Microstructural Characterization of ZrO2/ONSiAION Composites. <i>Journal of the American Ceramic Society</i> , 1996 , 79, 1314-1318	3.8	6
104	Balancing Charge Extraction for Efficient Back-Contact Perovskite Solar Cells by Using an Embedded Mesoscopic Architecture. <i>Advanced Energy Materials</i> , 2021 , 11, 2100053	21.8	6
103	Mussel-Directed Synthesis of Nitrogen-Doped Anatase TiO2. <i>Angewandte Chemie</i> , 2016 , 128, 3083-3087	73.6	6
102	Batch chemical bath deposition of large-area SnO2 film with mercaptosuccinic acid decoration for homogenized and efficient perovskite solar cells. <i>Chemical Engineering Journal</i> , 2021 , 425, 131444	14.7	6

101	Incorporation of Ebutyrolactone (GBL) dramatically lowers the phase transition temperature of formamidinium-based metal halide perovskites. <i>Chemical Communications</i> , 2019 , 55, 11743-11746	5.8	5
100	Room-temperature Sputtered NiOx for hysteresis-free and stable inverted Cs-FA mixed-cation perovskite solar cells. <i>Materials Science in Semiconductor Processing</i> , 2020 , 115, 105129	4.3	5
99	Microstructure and thermal shock behavior of solgel introduced ZrB2 reinforced SiBCN matrix. Journal of Sol-Gel Science and Technology, 2018 , 86, 365-373	2.3	5
98	Phase reactions in a hot pressed TiC/Si powder mixture. <i>Ceramics International</i> , 2012 , 38, 1999-2003	5.1	5
97	Preparation of Ca-siAlON hollow spheres by carbothermal reduction ditridation of CaOAl2O3BiO2 glass. <i>Materials Letters</i> , 2011 , 65, 116-118	3.3	5
96	Influence of some selected organic molecules on intensity of luminescence of TiO2:Eu3+ electrodes. <i>Journal of Luminescence</i> , 2009 , 129, 563-565	3.8	5
95	Microstructure and mechanical properties of nanoscale SiC/Ca & iAlON composites. <i>Journal of Materials Science</i> , 1997 , 32, 3263-3269	4.3	5
94	Gelcasting of alumina ceramic in mixed PVPHEMA systems. <i>Advances in Applied Ceramics</i> , 2004 , 103, 257-260		5
93	Microwave calcination of thin TiO2 films on transparent conducting oxide glass substrates. <i>Journal of Materials Science</i> , 2004 , 39, 6361-6363	4.3	5
92	Mechanical and erosion-resistance properties of slag Bialon ceramics. <i>Journal of the European Ceramic Society</i> , 2004 , 24, 2847-2851	6	5
91	Rheological behavior of alumina aqueous suspension in acrylamide/polyacrylamide systems. Journal of Materials Science Letters, 2002, 21, 1163-1165		5
90	Anisotropic grain growth of R-Bialon (R = Nd and Er). <i>Journal of Materials Science</i> , 2001 , 36, 807-810	4.3	5
89	The Effect of Processing Conditions on the Microstructures of EsiAION Ceramics. <i>Materials Science Forum</i> , 2000 , 325-326, 213-218	0.4	5
88	Preparation of dispersed zirconia barium aluminosilicate composites. <i>Journal of the European Ceramic Society</i> , 1995 , 15, 787-794	6	5
87	High-Performance Rb[Is0.14FA0.86Pb(BrxI1日)3 Perovskite Solar Cells Achieved by Regulating the Halogen Exchange in VaporBolid Reaction Process. <i>Solar Rrl</i> , 2021 , 5, 2100102	7.1	5
86	Interface Passivation Engineering for Hybrid Perovskite Solar Cells. <i>Materials Reports Energy</i> , 2021 , 1, 100060		5
85	Lead contamination analysis of perovskite modules under simulated working conditions. <i>Solar Energy</i> , 2021 , 226, 85-91	6.8	5
84	3D nonlinear photolithography of Tin oxide ceramics via femtosecond laser. <i>Science China Materials</i> , 2021 , 64, 1477-1484	7.1	5

83	Self-Enhancement of Efficiency and Self-Attenuation of Hysteretic Behavior of Perovskite Solar Cells with Aging <i>Journal of Physical Chemistry Letters</i> , 2022 , 2792-2799	6.4	5	
82	Near-infrared absorbing porphyrin dyes with perpendicularly extended Econjugation for dye-sensitized solar cells. <i>RSC Advances</i> , 2014 , 4, 50897-50905	3.7	4	
81	Preparation of chemically sintered ZnO films and their application in dye sensitized solar cells formed on plastic substrates. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2012 , 228, 15-27	1 ^{4.7}	4	
80	Preparation of ZrC Powder by Self-Propagating High-Temperature Synthesis. <i>Advanced Materials Research</i> , 2009 , 66, 258-261	0.5	4	
79	Grain boundary devitrification of Ca Bialon ceramics and its relation with the fracture toughness. <i>Journal of Materials Science</i> , 2003 , 38, 1359-1364	4.3	4	
78	Effect of processing on microstructure and optical properties of Dy-Bialon. <i>Materials Letters</i> , 2004 , 58, 3340-3344	3.3	4	
77	Fabrication of high toughness alumina with elongated grains. <i>Journal of Materials Science Letters</i> , 2001 , 20, 1425-1427		4	
76	A universal tactic of using Lewis-base polymer-CNTs composites as additives for high performance cm2-sized and flexible perovskite solar cells. <i>Science China Chemistry</i> , 2021 , 64, 281-292	7.9	4	
75	Probing the Electron Beam-Induced Structural Evolution of Halide Perovskite Thin Films by Scanning Transmission Electron Microscopy. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 10786-10794	3.8	4	
74	Origin of vertical slab orientation in blade-coated layered hybrid perovskite films revealed with in-situ synchrotron X-ray scattering. <i>Nano Energy</i> , 2021 , 83, 105818	17.1	4	
73	Intermediate phase-enhanced Ostwald ripening for the elimination of phase segregation in efficient inorganic CsPbIBr2 perovskite solar cells. <i>Science China Materials</i> , 2021 , 64, 2655-2666	7.1	4	
7 ²	Morphology control of mesoporous silica-carbon nanocomposites via phase separation of poly(furfuryl alcohol) and silica in the solgel synthesis. <i>Journal of Sol-Gel Science and Technology</i> , 2017 , 82, 664-674	2.3	3	
71	Efficient Gas Adsorption Using Superamphiphobic Porous Monoliths as the under-Liquid Gas-Conductive Circuits. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 24795-24801	9.5	3	
70	Post-Treatment of Photoanodes Including Mesoporous TiO2Beads in Dye-Sensitized Solar Cells Using Pulsed Deposition Technique. <i>Journal of the Electrochemical Society</i> , 2015 , 162, H780-H784	3.9	3	
69	Improving the crystal growth of a Cs0.24FA0.76PbI3\(\mathbb{B}\)Brx perovskite in a vapor\(\mathbb{S}\)olid reaction process using strontium iodide. Sustainable Energy and Fuels, 2020, 4, 2491-2496	5.8	3	
68	Reversible P<-> Itransformation in a textured Sm-sialon ceramic. <i>Journal of the European Ceramic Society</i> , 2011 , 31, 1165-1175	6	3	
67	2007,		3	
66	Selective Laser Melting of Li2O.Al2O3.SiO2 (LAS) Glass Powders. <i>Materials Science Forum</i> , 2003 , 437-438, 249-252	0.4	3	

65	On the superstructure of KTiO2(OH). <i>Zeitschrift Fur Kristallographie - Crystalline Materials</i> , 2004 , 219, 227-230	1	3
64	Formation and Stability of EQuartz Solid-Solution Phase in the Li-Si-Al-O-N System. <i>Journal of the American Ceramic Society</i> , 2005 , 80, 3045-3053	3.8	3
63	Preparation of High Concentrated Suspension and Gelcasting Process for Silicon Nitride Bonded Silicon Carbide Refractories. <i>Key Engineering Materials</i> , 2002 , 224-226, 685-690	0.4	3
62	Microstructure and property anisotropy of hot-pressed Ca Bialon. <i>Journal of Materials Science Letters</i> , 2000 , 19, 999-1002		3
61	Effect of processing on toughness of Ca Bialon ceramics. <i>Journal of Materials Science</i> , 2000 , 35, 5817-5	82413	3
60	Al-Containing Porous Titanium Dioxide Networks: Sol G el Synthesis within Agarose Gel Template and Photocatalytic Activity		3
59	Toward Commercialization of Efficient and Stable Perovskite Solar Modules. Solar Rrl, 2100600	7.1	3
58	Differentiated Functions of Potassium Interface Passivation and Doping on Charge-Carrier Dynamics in Perovskite Solar Cells <i>Journal of Physical Chemistry Letters</i> , 2022 , 3188-3196	6.4	3
57	Perovskite Solar Cells: Effect of the Microstructure of the Functional Layers on the Efficiency of Perovskite Solar Cells (Adv. Mater. 20/2017). <i>Advanced Materials</i> , 2017 , 29,	24	2
56	Enhanced charge collection in dye-sensitized solar cells utilizing collector hell electrodes. <i>Journal of Power Sources</i> , 2015 , 277, 343-349	8.9	2
55	Recovering Quadruple-cation Perovskite Films from Water Caused Permanent Degradations. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2020 , 35, 57-64	1	2
54	Preparation of Textured Bi4Ti3O12 Ceramics by Templated Grain Growth. <i>Key Engineering Materials</i> , 2004 , 264-268, 1317-1320	0.4	2
53	Phase and microstructural evolution during the heat treatment of Smtalialon ceramics. <i>Journal of the European Ceramic Society</i> , 2002 , 22, 1609-1620	6	2
52	Preparation of Esialon seed particles with different morphology. <i>Journal of Materials Science Letters</i> , 2002 , 21, 589-591		2
51	Formation behaviors of Sr0.4Ba0.6Nb2O6 powders synthesized from the molten salt of KCI. <i>Journal of Materials Science Letters</i> , 2003 , 22, 949-951		2
50	Properties of Aqueous Bismuth Titanate Suspensions Stabilized by Acrylic Acid/Acrylic Ester Copolymer. <i>Journal of the American Ceramic Society</i> , 2003 , 86, 2203-2205	3.8	2
49	Effect of ratios of Y/Ce on phase assemblages of SHS-ed (Ce,Y)	3.3	2
48	Pressureless Sintering of Calcium Alpha Sialons. <i>Materials Science Forum</i> , 2000 , 325-326, 199-206	0.4	2

(2005-1993)

47	Densification of zirconia-containing sialon composites by Sm2O3. <i>Journal of Materials Science</i> , 1993 , 28, 3097-3102	4.3	2
46	CsPb0.9Sn0.1IBr2 Based All-Inorganic Perovskite Solar Cells Exhibit Improved Efficiency and Stability. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2018 , 34, 449-450	3.8	2
45	A novel dopant for spiro-OMeTAD towards efficient and stable perovskite solar cells. <i>Science China Materials</i> ,1	7.1	2
44	Creation of Titanium and Zirconium Carbide Fibers with the Forcespinning Technique. <i>International Journal of Applied Ceramic Technology</i> , 2016 , 13, 619-628	2	2
43	Solvent effects on adsorption kinetics, dye monolayer, and cell performance of porphyrin-sensitized solar cells. <i>RSC Advances</i> , 2016 , 6, 114037-114045	3.7	2
42	Bandgap adjustment assisted preparation of >18% Cs FA PbI Br -based perovskite solar cells using a hybrid spraying process <i>RSC Advances</i> , 2021 , 11, 17595-17602	3.7	2
41	All-vacuum deposited perovskite solar cells with glycine modified NiO hole-transport layers <i>RSC Advances</i> , 2022 , 12, 10863-10869	3.7	2
40	Impact of Nickel Oxide/Perovskite Interfacial Contact on the Crystallization and Photovoltaic Performance of Perovskite Solar Cells. <i>Solar Rrl</i> ,2200232	7.1	2
39	Bromide complimented methylammonium-free wide bandgap perovskite solar modules with high efficiency and stability. <i>Chemical Engineering Journal</i> , 2022 , 445, 136626	14.7	2
38	Aqueous Sn-S Complex Derived Electron Selective Layer for Perovskite Solar Cells. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2020 , 35, 272-279	1	1
37	Novel Optical Ceramics: Esialons. <i>Key Engineering Materials</i> , 2004 , 264-268, 905-908	0.4	1
36	Microstructure control of Bialon ceramics by seeding with Bialon particles. <i>Journal of Materials Science</i> , 2002 , 37, 3285-3290	4.3	1
35	∄phase stability in NdIi-sialon systems. <i>Journal of the European Ceramic Society</i> , 2003 , 23, 1083-1092	6	1
34	Synthesis of Ca-BiAlON Hollow Balls. <i>Key Engineering Materials</i> , 2003 , 237, 87-94	0.4	1
33	Microstructural Evidence for the Mechanism of the ₹->Phase Transformation in Ytterbium SiAlON Ceramics. <i>Key Engineering Materials</i> , 2003 , 237, 157-162	0.4	1
32	Development of Textured Bismuth Titanate Piezoelectric Ceramics. <i>Key Engineering Materials</i> , 2003 , 247, 371-376	0.4	1
31	Phase Assemblages of Pr Bialon Derived from SHS-ed Powders and TEM Study on the Nucleation of Pr Bialon. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 950-953	3.8	1
30	Eu stabilized Bialon ceramics derived from SHS-synthesized powders. <i>Materials Letters</i> , 2005 , 59, 205-2	20 9 .3	1

29	Nonepitaxial heterogeneous nucleation of Bialon in the Ca-doped system. <i>Journal of Materials Research</i> , 2001 , 16, 578-582	2.5	1
28	Printable materials for printed perovskite solar cells. Flexible and Printed Electronics, 2020, 5, 014002	3.1	1
27	Visualisierung der Phasensegregation in Gemischthalogenid- Perowskiteinkristallen. <i>Angewandte Chemie</i> , 2019 , 131, 2919-2924	3.6	1
26	Recovering MAPbI3-Based Perovskite Films From Water-Caused Permanent Degradations by Dipping in MAI Solution. <i>IEEE Journal of Photovoltaics</i> , 2018 , 8, 1692-1700	3.7	1
25	Ionic liquid dopant for hole transporting layer towards efficient LiTFSI-free perovskite solar cells. <i>Chemical Physics Letters</i> , 2022 , 801, 139713	2.5	1
24	Regulating the Ni3+/Ni2+ ratio of NiOx by plasma treatment for fully vacuum-deposited perovskite solar cells. <i>Materials Science in Semiconductor Processing</i> , 2022 , 148, 106839	4.3	1
23	A New Route of Forming Silicon Carbide Nanostructures with Controlled Morphologies. <i>Key Engineering Materials</i> , 2008 , 403, 149-152	0.4	О
22	An overview of the Australian Centre for Advanced Photovoltaics and the Australia-US Institute for Advanced Photovoltaics. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1771, 33-44		
21	Titelbild: Controlled Growth of Monocrystalline Organo-Lead Halide Perovskite and Its Application in Photonic Devices (Angew. Chem. 41/2017). <i>Angewandte Chemie</i> , 2017 , 129, 12547-12547	3.6	
20	Fabrication of Silicon-Based Ceramic Synthesized from Mesoporous Carbon-Silica Nanocomposites. <i>Ceramic Transactions</i> , 2009 , 71-78	0.1	
19	Effect of Microstructure on Sliding Wear of Ca &iAlON Ceramics. <i>Key Engineering Materials</i> , 2007 , 280-283, 1253-1258	0.4	
18	Use of HEMA in Gelcasting of Ceramics: A Case Study on Fused Silica. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 060623005134011-???	3.8	
17	Densification of Ca-BiAlON Nano Particles by Spark Plasma Sintering. <i>Key Engineering Materials</i> , 2003 , 247, 71-74	0.4	
16	Application of Focused Ion Beam Miller in Fracture Characterization. <i>Key Engineering Materials</i> , 2003 , 247, 297-300	0.4	
15	Synthesis of ⊞iAlON from Slag by SHS and its Reaction Behavior. <i>Key Engineering Materials</i> , 2003 , 247, 101-104	0.4	
14	The Role of Microstructure in the Erosion Behaviour of Engineering Ceramics. <i>Key Engineering Materials</i> , 2003 , 237, 211-220	0.4	
13	Preferential Orientation of SiAlON Grains in Reversible №->®Phase Transformations. <i>Key Engineering Materials</i> , 2003 , 237, 163-168	0.4	
12	Comparison of the Luminescence Properties of Dy3+ in Bialon and Oxynitride Glass. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 2955-2956	3.8	

LIST OF PUBLICATIONS

0.4
0.4
0.4
0.4
3.6
2.8
21.8