John M Marshall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7469914/publications.pdf

Version: 2024-02-01

126907 182427 3,607 75 33 51 citations g-index h-index papers 93 93 93 2256 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reversing insecticide resistance with allelic-drive in Drosophila melanogaster. Nature Communications, 2022, 13, 291.	12.8	21
2	Target Product Profiles for Mosquito Gene Drives: Incorporating Insights From Mathematical Models. Frontiers in Tropical Diseases, 2022, 3, .	1.4	3
3	Prediction of dengue annual incidence using seasonal climate variability in Bangladesh between 2000 and 2018. PLOS Global Public Health, 2022, 2, e0000047.	1.6	4
4	A confinable home-and-rescue gene drive for population modification. ELife, 2021, 10, .	6.0	42
5	Estimating the potential impact of Attractive Targeted Sugar Baits (ATSBs) as a new vector control tool for Plasmodium falciparum malaria. Malaria Journal, 2021, 20, 151.	2.3	25
6	Spatio-temporal associations between deforestation and malaria incidence in Lao PDR. ELife, 2021, 10, .	6.0	7
7	Inherently confinable split-drive systems in Drosophila. Nature Communications, 2021, 12, 1480.	12.8	55
8	MGDrivE 2: A simulation framework for gene drive systems incorporating seasonality and epidemiological dynamics. PLoS Computational Biology, 2021, 17, e1009030.	3.2	28
9	Engineered reproductively isolated species drive reversible population replacement. Nature Communications, 2021, 12, 3281.	12.8	21
10	Population modification strategies for malaria vector control are uniquely resilient to observed levels of gene drive resistance alleles. BioEssays, 2021, 43, 2000282.	2.5	9
11	Combating mosquito-borne diseases using genetic control technologies. Nature Communications, 2021, 12, 4388.	12.8	76
12	Population size estimation of seasonal forest-going populations in southern Lao PDR. Scientific Reports, 2021, 11, 14816.	3.3	1
13	Gene drive strategies of pest control in agricultural systems: Challenges and opportunities. Evolutionary Applications, 2021, 14, 2162-2178.	3.1	17
14	Household-level risk factors for Aedes aegypti pupal density in Guayaquil, Ecuador. Parasites and Vectors, 2021, 14, 458.	2.5	5
15	Suppressing mosquito populations with precision guided sterile males. Nature Communications, 2021, 12, 5374.	12.8	73
16	New genotype invasion of dengue virus serotype 1 drove massive outbreak in Guangzhou, China. Parasites and Vectors, 2021, 14, 126.	2.5	6
17	Field Trials of Gene Drive Mosquitoes: Lessons from Releases of Genetically Sterile Males and Wolbachia-infected Mosquitoes., 2021,, 21-41.		1
18	Monitoring Needs for Gene Drive Mosquito Projects: Lessons From Vector Control Field Trials and Invasive Species. Frontiers in Genetics, 2021, 12, 780327.	2.3	11

#	Article	IF	Citations
19	Exploiting a Y chromosome-linked Cas9 for sex selection and gene drive. Nature Communications, 2021, 12, 7202.	12.8	9
20	Progress towards engineering gene drives for population control. Journal of Experimental Biology, 2020, 223, .	1.7	51
21	Active Genetic Neutralizing Elements for Halting or Deleting Gene Drives. Molecular Cell, 2020, 80, 246-262.e4.	9.7	54
22	Core commitments for field trials of gene drive organisms. Science, 2020, 370, 1417-1419.	12.6	67
23	Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi. Nature Communications, 2020, $11,5553$.	12.8	110
24	Modeling confinement and reversibility of threshold-dependent gene drive systems in spatially-explicit Aedes aegypti populations. BMC Biology, 2020, 18, 50.	3.8	27
25	Toward the Definition of Efficacy and Safety Criteria for Advancing Gene Drive-Modified Mosquitoes to Field Testing. Vector-Borne and Zoonotic Diseases, 2020, 20, 237-251.	1.5	60
26	Translating gene drive science to promote linguistic diversity in community and stakeholder engagement. Global Public Health, 2020, 15, 1551-1565.	2.0	6
27	MGD <scp>riv</scp> E: A modular simulation framework for the spread of gene drives through spatially explicit mosquito populations. Methods in Ecology and Evolution, 2020, 11, 229-239.	5.2	53
28	A transcomplementing gene drive provides a flexible platform for laboratory investigation and potential field deployment. Nature Communications, 2020, 11, 352.	12.8	61
29	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. PLoS Computational Biology, 2020, 16, e1007446.	3.2	20
30	Application of the Relationship-Based Model to Engagement for Field Trials of Genetically Engineered Malaria Vectors. American Journal of Tropical Medicine and Hygiene, 2020, , .	1.4	13
31	Development of a confinable gene drive system in the human disease vector Aedes aegypti. ELife, 2020, 9,	6.0	156
32	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology., 2020, 16, e1007446.		0
33	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology., 2020, 16, e1007446.		0
34	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology., 2020, 16, e1007446.		0
35	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology., 2020, 16, e1007446.		О
36	Reply to  Concerns about the feasibility of using "precision guided sterile males―to control insects'. Nature Communications, 2019, 10, 3955.	12.8	11

#	Article	IF	CITATIONS
37	Genome-wide divergence among invasive populations of Aedes aegypti in California. BMC Genomics, 2019, 20, 204.	2.8	44
38	Experimental population modification of the malaria vector mosquito, Anopheles stephensi. PLoS Genetics, 2019, 15, e1008440.	3.5	101
39	Winning the Tug-of-War Between Effector Gene Design and Pathogen Evolution in Vector Population Replacement Strategies. Frontiers in Genetics, 2019, 10, 1072.	2.3	39
40	Transforming insect population control with precision guided sterile males with demonstration inÂflies. Nature Communications, 2019, 10, 84.	12.8	160
41	Synthetically engineered <i>Medea</i> gene drive system in the worldwide crop pest <i>Drosophila suzukii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4725-4730.	7.1	109
42	Engineered Reciprocal Chromosome Translocations Drive High Threshold, Reversible Population Replacement in Drosophila. ACS Synthetic Biology, 2018, 7, 1359-1370.	3.8	72
43	Can CRISPR-Based Gene Drive Be Confined in the Wild? A Question for Molecular and Population Biology. ACS Chemical Biology, 2018, 13, 424-430.	3.4	71
44	Recommendations for Laboratory Containment and Management of Gene Drive Systems in Arthropods. Vector-Borne and Zoonotic Diseases, 2018, 18, 2-13.	1.5	37
45	Estimating the elimination feasibility in the 'end game' of control efforts for parasites subjected to regular mass drug administration: Methods and their application to schistosomiasis. PLoS Neglected Tropical Diseases, 2018, 12, e0006794.	3.0	3
46	Consequences of resistance evolution in a Cas9-based sex conversion-suppression gene drive for insect pest management. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6189-6194.	7.1	130
47	Mathematical models of human mobility of relevance to malaria transmission in Africa. Scientific Reports, 2018, 8, 7713.	3.3	43
48	Developing an expanded vector control toolbox for malaria elimination. BMJ Global Health, 2017, 2, e000211.	4.7	93
49	Overcoming evolved resistance to population-suppressing homing-based gene drives. Scientific Reports, 2017, 7, 3776.	3.3	142
50	Measuring, manipulating and exploiting behaviours of adult mosquitoes to optimise malaria vector control impact. BMJ Global Health, 2017, 2, e000212.	4.7	54
51	Rules of the road for insect gene drive research and testing. Nature Biotechnology, 2017, 35, 716-718.	17.5	74
52	Going beyond personal protection against mosquito bites to eliminate malaria transmission: population suppression of malaria vectors that exploit both human and animal blood. BMJ Global Health, 2017, 2, e000198.	4.7	69
53	The interplay of climate, intervention and imported cases as determinants of the 2014 dengue outbreak in Guangzhou. PLoS Neglected Tropical Diseases, 2017, 11, e0005701.	3.0	31
54	Is outdoor vector control needed for malaria elimination? An individual-based modelling study. Malaria Journal, 2017, 16, 266.	2.3	32

#	Article	IF	Citations
55	Attacking the mosquito on multiple fronts: Insights from the Vector Control Optimization Model (VCOM) for malaria elimination. PLoS ONE, 2017, 12, e0187680.	2.5	28
56	Gene Drive Strategies for Population Replacement. , 2016, , 169-200.		40
57	Climate and the Timing of Imported Cases as Determinants of the Dengue Outbreak in Guangzhou, 2014: Evidence from a Mathematical Model. PLoS Neglected Tropical Diseases, 2016, 10, e0004417.	3.0	72
58	The Hitchhiking Parasite: Why Human Movement Matters to Malaria Transmission and What We Can Do About It. Trends in Parasitology, 2016, 32, 752-755.	3.3	21
59	Key traveller groups of relevance to spatial malaria transmission: a survey of movement patterns in four sub-Saharan African countries. Malaria Journal, 2016, 15, 200.	2.3	43
60	Modelling optimum use of attractive toxic sugar bait stations for effective malaria vector control in Africa. Malaria Journal, 2015, 14, 492.	2.3	16
61	A spatial individual-based model predicting a great impact of copious sugar sources and resting sites on survival of Anopheles gambiae and malaria parasite transmission. Malaria Journal, 2015, 14, 59.	2.3	14
62	Novel Synthetic <i>Medea</i> Selfish Genetic Elements Drive Population Replacement in <i>Drosophila</i> ; a Theoretical Exploration of <i>Medea</i> Dependent Population Suppression. ACS Synthetic Biology, 2014, 3, 915-928.	3.8	98
63	Medusa: A Novel Gene Drive System for Confined Suppression of Insect Populations. PLoS ONE, 2014, 9, e102694.	2.5	27
64	Quantifying the mosquito's sweet tooth: modelling the effectiveness of attractive toxic sugar baits (ATSB) for malaria vector control. Malaria Journal, 2013, 12, 291.	2.3	37
65	A Synthetic Gene Drive System for Local, Reversible Modification and Suppression of Insect Populations. Current Biology, 2013, 23, 671-677.	3.9	150
66	THE IMPORTANCE OF MOSQUITO BEHAVIOURAL ADAPTATIONS TO MALARIA CONTROL IN AFRICA. Evolution; International Journal of Organic Evolution, 2013, 67, 1218-1230.	2.3	253
67	GENERAL PRINCIPLES OF SINGLEâ€CONSTRUCT CHROMOSOMAL GENE DRIVE. Evolution; International Journal of Organic Evolution, 2012, 66, 2150-2166.	2.3	37
68	Confinement of gene drive systems to local populations: A comparative analysis. Journal of Theoretical Biology, 2012, 294, 153-171.	1.7	87
69	The toxin and antidote puzzle. Bioengineered Bugs, 2011, 2, 235-240.	1.7	15
70	<i>Semele</i> : A Killer-Male, Rescue-Female System for Suppression and Replacement of Insect Disease Vector Populations. Genetics, 2011, 187, 535-551.	2.9	55
71	Inverse Medea as a Novel Gene Drive System for Local Population Replacement: A Theoretical Analysis. Journal of Heredity, 2011, 102, 336-341.	2.4	42
72	Perspectives of people in Mali toward genetically-modified mosquitoes for malaria control. Malaria Journal, 2010, 9, 128.	2.3	39

#	Article	IF	CITATIONS
73	The effect of gene drive on containment of transgenic mosquitoes. Journal of Theoretical Biology, 2009, 258, 250-265.	1.7	70
74	A branching process for the early spread of a transposable element in a diploid population. Journal of Mathematical Biology, 2008, 57, 811-840.	1.9	5
75	A Bayesian Heterogeneous Analysis of Variance Approach to Inferring Recent Selective Sweeps. Genetics, 2006, 173, 2357-2370.	2.9	4