Wyatt Allen Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7469705/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Yellow Dwarf Viruses of Cereals: Taxonomy and Molecular Mechanisms. Annual Review of Phytopathology, 2022, 60, 121-141.	7.8	12
2	Effects of the noncoding subgenomic RNA of red clover necrotic mosaic virus in virus infection. Journal of Virology, 2021, , JVI0181521.	3.4	5
3	Control of translation during the unfolded protein response in maize seedlings: Life without PERKs. Plant Direct, 2020, 4, e00241.	1.9	11
4	The RNA of Maize Chlorotic Mottle Virus, an Obligatory Component of Maize Lethal Necrosis Disease, Is Translated via a Variant Panicum Mosaic Virus-Like Cap-Independent Translation Element. Journal of Virology, 2020, 94, .	3.4	7
5	A rapid and simple quantitative method for specific detection of smaller coterminal RNA by PCR (DeSCo-PCR): application to the detection of viral subgenomic RNAs. Rna, 2020, 26, 888-901.	3.5	5
6	A new mechanism for translational control in plants. FEBS Journal, 2019, 286, 3775-3777.	4.7	2
7	The 3′ Untranslated Region of a Plant Viral RNA Directs Efficient Cap-Independent Translation in Plant and Mammalian Systems. Pathogens, 2019, 8, 28.	2.8	13
8	Interacting stressors matter: diet quality and virus infection in honeybee health. Royal Society Open Science, 2019, 6, 181803.	2.4	80
9	A Stem-Loop Structure in <i>Potato Leafroll Virus</i> Open Reading Frame 5 (ORF5) Is Essential for Readthrough Translation of the Coat Protein ORF Stop Codon 700 Bases Upstream. Journal of Virology, 2018, 92, .	3.4	33
10	Discovery of Known and Novel Viral Genomes in Soybean Aphid by Deep Sequencing. Phytobiomes Journal, 2017, 1, 36-45.	2.7	38
11	Quantification of Pea enation mosaic virus 1 and 2 during infection of Pisum sativum by one step real-time RT-PCR. Journal of Virological Methods, 2017, 240, 63-68.	2.1	5
12	Eukaryotic translation initiation factor 4G (elF4G) coordinates interactions with elF4A, elF4B, and elF4E in binding and translation of the barley yellow dwarf virus 3′ cap-independent translation element (BTE). Journal of Biological Chemistry, 2017, 292, 5921-5931.	3.4	44
13	Non-canonical Translation in Plant RNA Viruses. Frontiers in Plant Science, 2017, 8, 494.	3.6	99
14	Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector. Viruses, 2016, 8, 312.	3.3	17
15	Noncoding RNAs of Plant Viruses and Viroids: Sponges of Host Translation and RNA Interference Machinery. Molecular Plant-Microbe Interactions, 2016, 29, 156-164.	2.6	28
16	In vivo and in vitro infection dynamics of honey bee viruses. Scientific Reports, 2016, 6, 22265.	3.3	88
17	Pollen Contaminated With Field-Relevant Levels of Cyhalothrin Affects Honey Bee Survival, Nutritional Physiology, and Pollen Consumption Behavior. Journal of Economic Entomology, 2016, 109, 41-48.	1.8	22
18	Intensively Cultivated Landscape and Varroa Mite Infestation Are Associated with Reduced Honey Bee Nutritional State, PLoS ONE, 2016, 11, e0153531.	2.5	55

WYATT ALLEN MILLER

#	Article	IF	CITATIONS
19	Mild and severe cereal yellow dwarf viruses differ in silencing suppressor efficiency of the PO protein. Virus Research, 2015, 208, 199-206.	2.2	26
20	Discovery of a Small Non-AUG-Initiated ORF in Poleroviruses and Luteoviruses That Is Required for Long-Distance Movement. PLoS Pathogens, 2015, 11, e1004868.	4.7	147
21	Cis- and trans-regulation of luteovirus gene expression by the $3\hat{a}\in^2$ end of the viral genome. Virus Research, 2015, 206, 37-45.	2.2	37
22	Recruitment of the 40S Ribosome Subunit to the 3′-Untranslated Region (UTR) of a Viral mRNA, via the eIF4 Complex, Facilitates Cap-independent Translation. Journal of Biological Chemistry, 2015, 290, 11268-11281.	3.4	34
23	Positive strand RNA virus replication: It depends on the ends. Virus Research, 2015, 206, 1-2.	2.2	7
24	Challenges associated with research on RNA viruses of insects. Current Opinion in Insect Science, 2015, 8, 62-68.	4.4	25
25	Lymantria dispar iflavirus 1 (LdIV1), a new model to study iflaviral persistence in lepidopterans. Journal of General Virology, 2014, 95, 2285-2296.	2.9	30
26	Interfamilial recombination between viruses led to acquisition of a novel translationâ€enhancing <scp>RNA</scp> element that allows resistance breaking. New Phytologist, 2014, 202, 233-246.	7.3	73
27	Toxin delivery by the coat protein of an aphid-vectored plant virus provides plant resistance to aphids. Nature Biotechnology, 2014, 32, 102-105.	17.5	66
28	Conclusive Evidence of Replication of a Plant Virus in Honeybees Is Lacking. MBio, 2014, 5, e00985-14.	4.1	10
29	Analysis of new aphid lethal paralysis virus (ALPV) isolates suggests evolution of two ALPV species. Journal of General Virology, 2014, 95, 2809-2819.	2.9	25
30	3′ Cap-Independent Translation Enhancers of Plant Viruses. Annual Review of Microbiology, 2013, 67, 21-42.	7.3	176
31	Cation-dependent folding of 3′ cap-independent translation elements facilitates interaction of a 17-nucleotide conserved sequence with elF4C. Nucleic Acids Research, 2013, 41, 3398-3413.	14.5	56
32	The complete nucleotide sequence of the genome of Barley yellow dwarf virus-RMV reveals it to be a new Polerovirus distantly related to other yellow dwarf viruses. Frontiers in Microbiology, 2013, 4, 205.	3.5	52
33	Interaction of the Trans-Frame Potyvirus Protein P3N-PIPO with Host Protein PCaP1 Facilitates Potyvirus Movement. PLoS Pathogens, 2012, 8, e1002639.	4.7	179
34	Untranslated regions of diverse plant viral RNAs vary greatly in translation enhancement efficiency. BMC Biotechnology, 2012, 12, 22.	3.3	37
35	The Cap-Binding Translation Initiation Factor, eIF4E, Binds a Pseudoknot in a Viral Cap-Independent Translation Element. Structure, 2011, 19, 868-880.	3.3	69
36	Crystallization and preliminary X-ray diffraction analysis of the barley yellow dwarf virus cap-independent translation element. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 561-564.	0.7	4

WYATT ALLEN MILLER

#	Article	IF	CITATIONS
37	A peptide that binds the pea aphid gut impedes entry of Pea enation mosaic virus into the aphid hemocoel. Virology, 2010, 401, 107-116.	2.4	49
38	Structural plasticity of Barley yellow dwarf virus-like cap-independent translation elements in four genera of plant viral RNAs. Virology, 2010, 402, 177-186.	2.4	53
39	Dicistroviruses. Annual Review of Entomology, 2010, 55, 129-150.	11.8	182
40	Structure of a Viral Cap-independent Translation Element That Functions via High Affinity Binding to the eIF4E Subunit of eIF4F. Journal of Biological Chemistry, 2009, 284, 14189-14202.	3.4	83
41	The readthrough domain of pea enation mosaic virus coat protein is not essential for virus stability in the hemolymph of the pea aphid. Archives of Virology, 2009, 154, 469-479.	2.1	36
42	Baculovirus-expressed virus-like particles of Pea enation mosaic virus vary in size and encapsidate baculovirus mRNAs. Virus Research, 2009, 139, 54-63.	2.2	11
43	The 3′ cap-independent translation element of Barley yellow dwarf virus binds elF4F via the elF4G subunit to initiate translation. Rna, 2008, 14, 134-147.	3.5	94
44	Rose spring dwarf-associated virus has RNA structural and gene-expression features like those of Barley yellow dwarf virus. Virology, 2008, 375, 354-360.	2.4	20
45	Infectious genomic RNA of Rhopalosiphum padi virus transcribed in vitro from a full-length cDNA clone. Virology, 2008, 375, 401-411.	2.4	15
46	In Vitro Analysis of Translation Enhancers. Methods in Molecular Biology, 2008, 451, 113-124.	0.9	3
47	An overlapping essential gene in the Potyviridae. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5897-5902.	7.1	718
48	In Vivo Analyses of Viral RNA Translation. Methods in Molecular Biology, 2008, 451, 99-112.	0.9	4
49	A Baculovirus-Expressed Dicistrovirus That Is Infectious to Aphids. Journal of Virology, 2007, 81, 9339-9345.	3.4	18
50	A glassy-winged sharpshooter cell line supports replication of Rhopalosiphum padi virus (Dicistroviridae). Journal of Invertebrate Pathology, 2007, 94, 130-139.	3.2	17
51	Preparation and Electroporation of Oat Protoplasts from Cell Suspension Culture. Current Protocols in Microbiology, 2007, 5, Unit 16D.3.	6.5	8
52	Structures required for poly(A) tail-independent translation overlap with, but are distinct from, cap-independent translation and RNA replication signals at the 3′ end of Tobacco necrosis virus RNA. Virology, 2007, 358, 448-458.	2.4	21
53	Long-Distance RNA-RNA Interactions in Plant Virus Gene Expression and Replication. Annual Review of Phytopathology, 2006, 44, 447-467.	7.8	145
54	Translational control in positive strand RNA plant viruses. Virology, 2006, 344, 185-197.	2.4	179

WYATT ALLEN MILLER

#	Article	IF	CITATIONS
55	Cap-independent translation of plant viral RNAs. Virus Research, 2006, 119, 63-75.	2.2	130
56	A simple wax-embedding method for isolation of aphid hemolymph for detection of luteoviruses in the hemocoel. Journal of Virological Methods, 2006, 132, 174-180.	2.1	18
57	Oscillating kissing stem-loop interactions mediate 5' scanning-dependent translation by a viral 3'-cap-independent translation element. Rna, 2006, 12, 1893-1906.	3.5	67
58	trans Regulation of Cap-Independent Translation by a Viral Subgenomic RNA. Journal of Virology, 2006, 80, 10045-10054.	3.4	23
59	cis and trans Requirements for Rolling Circle Replication of a Satellite RNA. Journal of Virology, 2004, 78, 3072-3082.	3.4	20
60	The 3′ Untranslated Region of Tobacco Necrosis Virus RNA Contains a Barley Yellow Dwarf Virus-Like Cap-Independent Translation Element. Journal of Virology, 2004, 78, 4655-4664.	3.4	82
61	Subgenomic RNA as a riboregulator: negative regulation of RNA replication by Barley yellow dwarf virus subgenomic RNA 2. Virology, 2004, 327, 196-205.	2.4	27
62	A -1 ribosomal frameshift element that requires base pairing across four kilobases suggests a mechanism of regulating ribosome and replicase traffic on a viral RNA. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11133-11138.	7.1	119
63	Barley yellow dwarf virus: Luteoviridae or Tombusviridae ?. Molecular Plant Pathology, 2002, 3, 177-183.	4.2	120
64	The 3′-Terminal Structure Required for Replication of Barley Yellow Dwarf Virus RNA Contains an Embedded 3′ End. Virology, 2002, 292, 114-126.	2.4	56
65	Structure and function of a cap-independent translation element that functions in either the 3′ or the 5′ untranslated region. Rna, 2000, 6, 1808-1820.	3.5	88
66	A Positive-Strand RNA Virus with Three Very Different Subgenomic RNA Promoters. Journal of Virology, 2000, 74, 5988-5996.	3.4	70
67	A potential mechanism for selective control of cap-independent translation by a viral RNA sequence in cis and in trans. Rna, 1999, 5, 728-738.	3.5	47
68	LUTEOVIRUS (LUTEOVIRIDAE). , 1999, , 901-908.		12
69	Primary and Secondary Structural Elements Required for Synthesis of Barley Yellow Dwarf Virus Subgenomic RNA1. Journal of Virology, 1999, 73, 2876-2885.	3.4	56
70	Extreme Reduction of Disease in Oats Transformed with the 5′ Half of the Barley Yellow Dwarf Virus-PAV Genome. Phytopathology, 1998, 88, 1013-1019.	2.2	45
71	Are There Risks Associated with Transgenic Resistance to Luteoviruses?. Plant Disease, 1997, 81, 700-710.	1.4	36
72	A Sequence Located 4.5 to 5 Kilobases from the 5′ End of the Barley Yellow Dwarf Virus (PAV) Genome Strongly Stimulates Translation of Uncapped mRNA. Journal of Biological Chemistry, 1995, 270, 13446-13452.	3.4	71

#	Article	IF	CITATIONS
73	Luteovirus Gene Expression. Critical Reviews in Plant Sciences, 1995, 14, 179-211.	5.7	143
74	Luteovirus Gene Expression. Critical Reviews in Plant Sciences, 1995, 14, 179-179.	5.7	27
75	A satellite RNA of barley yellow dwarf virus contains a novel hammerhead structure in the self-cleavage domain. Virology, 1991, 183, 711-720.	2.4	62