Hidetsugu Shiozawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7469691/publications.pdf

Version: 2024-02-01

100 papers 2,787 citations

218677 26 h-index 51 g-index

106 all docs

106
docs citations

106 times ranked 3239 citing authors

#	Article	IF	CITATIONS
1	Room temperature synthesis of a luminescent crystalline Cu–BTC coordination polymer and metal–organic framework. Materials Advances, 2022, 3, 224-231.	5.4	9
2	Synthesis and size-dependent spin crossover of coordination polymer [Fe(Htrz)2(trz)](BF4). Journal of Materials Chemistry C, 2021, 9, 1077-1084.	5.5	12
3	Crystal engineering with copper and melamine. RSC Advances, 2021, 11, 23943-23947.	3.6	4
4	Approaching the Shockley–Queisser limit for fill factors in lead–tin mixed perovskite photovoltaics. Journal of Materials Chemistry A, 2020, 8, 693-705.	10.3	33
5	Host–Guest Interactions in Metal–Organic Frameworks Doped with Acceptor Molecules as Revealed by Resonance Raman Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 24245-24250.	3.1	22
6	Reversible changes in the electronic structure of carbon nanotube-hybrids upon NO ₂ exposure under ambient conditions. Journal of Materials Chemistry A, 2020, 8, 9753-9759.	10.3	4
7	Exchange coupling in a frustrated trimetric molecular magnet reversed by a 1D nano-confinement. Nanoscale, 2019, 11, 10615-10621.	5.6	19
8	Metal–Organic Framework Co-MOF-74-Based Host–Guest Composites for Resistive Gas Sensing. ACS Applied Materials & Composites & Composites for Resistive Gas Sensing. ACS Applied Materials & Composites & Composites for Resistive Gas Sensing. ACS Applied Materials & Composites for Resistive Gas Sensing. ACS	8.0	93
9	Near-field infrared microscopy of nanometer-sized nickel clusters inside single-walled carbon nanotubes. RSC Advances, 2019, 9, 34120-34124.	3.6	3
10	Chiral vector and metal catalyst-dependent growth kinetics of single-wall carbon nanotubes. Carbon, 2018, 133, 283-292.	10.3	21
11	Chirality-dependent growth of single-wall carbon nanotubes as revealed inside nano-test tubes. Nanoscale, 2017, 9, 7998-8006.	5.6	29
12	Doping of metal–organic frameworks towards resistive sensing. Scientific Reports, 2017, 7, 2439.	3.3	45
13	Exploring the Formation of Black Phosphorus Intercalation Compounds with Alkali Metals. Angewandte Chemie, 2017, 129, 15469-15475.	2.0	12
14	Exploring the Formation of Black Phosphorus Intercalation Compounds with Alkali Metals. Angewandte Chemie - International Edition, 2017, 56, 15267-15273.	13.8	69
15	Microscale magnetic compasses. Journal of Applied Physics, 2017, 122, .	2.5	0
16	10.1063/1.4985838.1., 2017,,.		0
17	Endohedrally Doped Carbon Nanotubes. , 2016, , 385-414.		1
18	Growth dynamics of inner tubes inside cobaltocene-filled single-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	10

#	Article	IF	CITATIONS
19	Nickel clusters embedded in carbon nanotubes as high performance magnets. Scientific Reports, 2015, 5, 15033.	3.3	23
20	Temperature-dependent inner tube growth and electronic structure of nickelocene-filled single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2015, 252, 2485-2490.	1.5	15
21	Tailoring the electronic properties of single-walled carbon nanotubes via filling with nickel acetylacetonate. Physica Status Solidi (B): Basic Research, 2015, 252, 2546-2550.	1.5	6
22	Doping of single-walled carbon nanotubes controlled via chemical transformation of encapsulated nickelocene. Nanoscale, 2015, 7, 1383-1391.	5.6	60
23	<i>In situ</i> Raman spectroscopy studies on timeâ€dependent inner tube growth in ferroceneâ€filled large diameter singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2014, 251, 2394-2400.	1.5	8
24	Anisotropic Eliashberg function and electron-phonon coupling in doped graphene. Physical Review B, 2013, 88, .	3.2	41
25	Length scales in orientational order of vertically aligned single walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2013, 250, 2631-2634.	1.5	2
26	Internal charge transfer in metallicity sorted ferrocene filled carbon nanotube hybrids. Carbon, 2013, 59, 237-245.	10.3	33
27	Microscopic insight into the bilateral formation of carbon spirals from a symmetric iron core. Scientific Reports, 2013, 3, 1840.	3.3	7
28	Hybrid Carbon Nanotube Networks as Efficient Hole Extraction Layers for Organic Photovoltaics. ACS Nano, 2013, 7, 556-565.	14.6	102
29	Confined Crystals of the Smallest Phase-Change Material. Nano Letters, 2013, 13, 4020-4027.	9.1	73
30	Orbital and spin magnetic moments of transforming one-dimensional iron inside metallic and semiconducting carbon nanotubes. Physical Review B, 2013, 87, .	3.2	23
31	Environmental stability of ferrocene filled in purely metallic single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2013, 250, 2599-2604.	1.5	6
32	Structural properties of mirrored carbon spirals as revealed by scanning electron microscopy and micro-Raman spectroscopy. Physica Status Solidi (B): Basic Research, 2013, 250, 2737-2740.	1.5	0
33	Inner tube growth properties and electronic structure of ferrocene-filled large diameter single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2013, 250, 2575-2580.	1.5	29
34	Electronic structure of Eu atomic wires encapsulated inside single-wall carbon nanotubes. Physical Review B, 2012, 86, .	3.2	29
35	Orbital and spin magnetic moments of ferrocene encapsulated in metallicity sorted singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2012, 249, 2424-2427.	1.5	2
36	<i>In situ</i> filling of metallic singleâ€walled carbon nanotubes with ferrocene molecules. Physica Status Solidi (B): Basic Research, 2012, 249, 2408-2411.	1.5	18

#	Article	IF	CITATIONS
37	The Effect of pH on the Functionalization of Nylon Fabric with Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2012, 12, 84-90.	0.9	3
38	Spontaneous Emergence of Long-Range Shape Symmetry. Nano Letters, 2011, 11, 160-163.	9.1	7
39	High resolution Xâ€ray absorption on metallicity selected C ₆₀ peapods, singleâ€, and double walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2011, 248, 2544-2547.	1.5	1
40	Highly conductive nanoclustered carbon:nickel films grown by pulsed laser deposition. Carbon, 2011, 49, 3781-3788.	10.3	14
41	A Resonant Photoemission Insight to the Electronic Structure of Gd Nanowires Templated in the Hollow Core of SWCNTs. Materials Express, 2011, 1, 30-35.	0.5	20
42	Disentanglement of the unoccupied electronic structure in metallic and semiconducting C60 peapods. Physical Review B, 2011, 83, .	3.2	7
43	Templating rare-earth hybridization via ultrahigh vacuum annealing of ErCl3nanowires inside carbon nanotubes. Physical Review B, $2011,83,\ldots$	3.2	29
44	An X-ray absorption approach to mixed and metallicity-sorted single-walled carbon nanotubes. Journal of Materials Science, 2010, 45, 5318-5322.	3.7	8
45	Catalyst and Chirality Dependent Growth of Carbon Nanotubes Determined Through Nanoâ€√est Tube Chemistry. Advanced Materials, 2010, 22, 3685-3689.	21.0	54
46	Lowâ€ŧemperature growth of singleâ€wall carbon nanotubes inside nano test tubes. Physica Status Solidi (B): Basic Research, 2010, 247, 2730-2733.	1.5	9
47	A combined photoemission and <i>ab initio</i> study of the electronic structure of (6,4)/(6,5) enriched single wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2010, 247, 2875-2879.	1.5	3
48	Insight to the valence band electronic structure of metallicity selected single wall carbon nanotubes from a photoemission viewpoint. Physica Status Solidi (B): Basic Research, 2010, 247, 2779-2783.	1.5	0
49	GeTe-filled Carbon Nanotubes for Data Storage Applications. Materials Research Society Symposia Proceedings, 2010, 1251, 3.	0.1	1
50	Observation of the Fermi surface, the band structure, and their diffraction replicas of Sr14â^3xCaxCu24O41by angle-resolved photoemission spectroscopy. Physical Review B, 2010, 81, .	3.2	9
51	Ethanol-Promoted Fabrication of Tungsten Oxide Nanobelts with Defined Crystal Orientation. Journal of Physical Chemistry C, 2010, 114, 10-14.	3.1	20
52	Combined experimental and <i>ab initio </i> study of the electronic structure of narrow-diameter single-wall carbon nanotubes with predominant (6,4),(6,5) chirality. Physical Review B, 2010, 82, .	3.2	19
53	Disentanglement of the electronic properties of metallicity-selected single-walled carbon nanotubes. Physical Review B, 2009, 80, .	3.2	73
54	Screening the Missing Electron: Nanochemistry in Action. Physical Review Letters, 2009, 102, 046804.	7.8	64

#	Article	IF	CITATIONS
55	Substitutionally-Functionalized vs Metallicity-Selected Single-Walled Carbon Nanotubes: A High Energy Spectroscopy Viewpoint. Materials Research Society Symposia Proceedings, 2009, 1204, 1.	0.1	0
56	Electronic and optical properties of alkali metal doped carbon nanotubes. Physica Status Solidi (B): Basic Research, 2009, 246, 2693-2698.	1.5	6
57	Electronic properties of singleâ€walled carbon nanotubes encapsulating a cerium organometallic compound. Physica Status Solidi (B): Basic Research, 2009, 246, 2626-2630.	1.5	15
58	Potassium-intercalated single-wall carbon nanotube bundles: Archetypes for semiconductor/metal hybrid systems. Physical Review B, 2009, 79, .	3.2	23
59	From Stems (and Stars) to Roses: Shape-Controlled Synthesis of Zinc Oxide Crystals. Crystal Growth and Design, 2009, 9, 3432-3437.	3.0	25
60	Electronic structure of mml="http://www.w3.org/1998/Math/MathML" display="inline"> CeColn <a 1998="" display="inline" href="mailto:m</td><td>mrs.5</mr</td><td>ml:8:8n></mm</td></tr><tr><td>61</td><td>A detailed comparison of CVD grown and precursor based DWCNTs. Physica Status Solidi (B): Basic
Research, 2008, 245, 1943-1946.</td><td>1.5</td><td>10</td></tr><tr><td>62</td><td>Photoemission study of electronic structures of fullerene and metallofullerene peapods. Physica Status Solidi (B): Basic Research, 2008, 245, 2025-2028.</td><td>1.5</td><td>5</td></tr><tr><td>63</td><td>Capillary filling of singleâ€walled carbon nanotubes with ferrocene in an organic solvent. Physica
Status Solidi (B): Basic Research, 2008, 245, 1983-1985.</td><td>1.5</td><td>15</td></tr><tr><td>64</td><td>Bonding environment and electronic structure of Gd metallofullerene and Gd nanowire filled singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2008, 245, 2038-2041.</td><td>1.5</td><td>19</td></tr><tr><td>65</td><td>A Catalytic Reaction Inside a Singleâ€Walled Carbon Nanotube. Advanced Materials, 2008, 20, 1443-1449.</td><td>21.0</td><td>178</td></tr><tr><td>66</td><td>Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene. Physical Review B, 2008, 78, .</td><td>3.2</td><td>243</td></tr><tr><td>67</td><td>Fine tuning the charge transfer in carbon nanotubes via the interconversion of encapsulated molecules. Physical Review B, 2008, 77, .</td><td>3.2</td><td>79</td></tr><tr><td>68</td><td>Hybridization effects in<mml:math xmlns:mml=" http:="" math="" mathml"="" www.w3.org=""><mml:mrow><mml:mi mathvariant="normal">Ce</mml:mi><mml:mi mathvariant="normal">Co</mml:mi><mml:msub><mml:mi mathvariant="normal">In</mml:mi><mml:mn>5</mml:mn></mml:msub></mml:mrow>observed	3.2	40
69	by angle-resolved photoemission. Physical Review B, 2008, 77, . Electron-Electron Correlation in Graphite: A Combined Angle-Resolved Photoemission and First-Principles Study. Physical Review Letters, 2008, 100, 037601.	7.8	103
70	Unraveling van Hove singularities in x-ray absorption response of single-wall carbon nanotubes. Physical Review B, 2007, 75, .	3.2	58
71	Revealing the Small-Bundle Internal Structure of Vertically Aligned Single-Walled Carbon Nanotube Filmsâ€. Journal of Physical Chemistry C, 2007, 111, 17861-17864.	3.1	37
72	Observing the heavy fermions in CeCoIn5 by angle-resolved photoemission. Physica C: Superconductivity and Its Applications, 2007, 460-462, 666-667.	1.2	5

#	Article	IF	CITATIONS
73	Low energy quasiparticle dispersion of graphite by angleâ€resolved photoemission spectroscopy. Physica Status Solidi (B): Basic Research, 2007, 244, 4129-4133.	1.5	5
74	Growth mechanisms of innerâ€shell tubes in doubleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4097-4101.	1.5	6
75	Ferrocene encapsulated in singleâ€wall carbon nanotubes: a precursor to secondary tubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4102-4105.	1.5	23
76	Anisotropy in the X-ray absorption of vertically aligned single wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 3978-3981.	1.5	7
77	Photoemission and inverse photoemission study of the electronic structure of C60 fullerenes encapsulated in single-walled carbon nanotubes. Physical Review B, 2006, 73, .	3.2	45
78	Filling factor and electronic structure of Dy3N@C80 filled single-wall carbon nanotubes studied by photoemission spectroscopy. Physical Review B, 2006, 73, .	3.2	24
79	Charge distribution of potassium intercalated Dy3N@C80 observed with core-level and valence-band photoemission. Physica Status Solidi (B): Basic Research, 2006, 243, 3004-3007.	1.5	7
80	A photoemission study of the metallic ground state of potassium-doped C60 peapods. Physica Status Solidi (B): Basic Research, 2006, 243, 3013-3016.	1.5	1
81	High-resolution angle-resolved photoemission study of kish graphite. Physica B: Condensed Matter, 2006, 383, 150-151.	2.7	2
82	Resonant photoemission study of CeRu4Sb12. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 643-645.	1.7	3
83	Temperature dependence of magnetic circular dichroism of X-ray emission for rare-earth compounds. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 731-735.	1.7	0
84	Resonant inverse photoemission of Pr compounds. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 647-650.	1.7	1
85	Electronic structure of the trimetal nitride fullereneDy3N@C80. Physical Review B, 2005, 72, .	3.2	31
86	Influence of theC60filling on the nature of the metallic ground state in intercalated peapods. Physical Review B, 2005, 72, .	3.2	20
87	Photoemission spectroscopy on single-wall carbon nanotubes. Physica B: Condensed Matter, 2004, 351, 259-261.	2.7	4
88	Interpretation of difference between bulk magnetic susceptibility and "local magnetic susceptibility― detected by core excitation magnetic circular dichroism. Journal of Electron Spectroscopy and Related Phenomena, 2004, 136, 117-123.	1.7	2
89	Electronic Structure of Single-Wall Carbon Nanotubes and Peapods; Photoemission Study. AIP Conference Proceedings, 2004, , .	0.4	2
90	Measurements of temperature dependence of "localized susceptibility― Nuclear Instruments & Methods in Physics Research B, 2003, 199, 318-322.	1.4	2

#	Article	IF	Citations
91	Measurement of the two-photon correlation of synchrotron radiation in the VUV region by a delay-time modulation technique. Journal of Synchrotron Radiation, 2003, 10, 303-309.	2.4	3
92	Direct observation of Tomonaga–Luttinger-liquid state in carbon nanotubes at low temperatures. Nature, 2003, 426, 540-544.	27.8	459
93	Local Magnetic Susceptibility in Rare-Earth Compounds. Journal of the Physical Society of Japan, 2003, 72, 2079-2084.	1.6	11
94	Valence-Band Photoemission Study of Single-Wall Carbon Nanotubes. AIP Conference Proceedings, 2003, , .	0.4	0
95	MAGNETIC CIRCULAR DICHROISM OF 4d–4f RESONANT X-RAY EMISSION FOR GADOLINIUM AND TERBIUM. Surface Review and Letters, 2002, 09, 837-841.	1.1	2
96	RESONANT PHOTOEMISSION STUDY OF RFe4P12 (R = La, Ce, Pr). Surface Review and Letters, 2002, 09, 1257-1261.	1.1	9
97	MEASUREMENT OF THE SECOND-ORDER COHERENCE OF SYNCHROTRON RADIATION IN THE VUV REGION. Surface Review and Letters, 2002, 09, 631-634.	1.1	0
98	Magnetic Circular Dichroism of X-Ray Emission for Gadolinium in 4d–4f Excitation Region. Journal of the Physical Society of Japan, 2002, 71, 340-346.	1.6	10
99	Electron-beam diagnosis with Young's interferometer in soft X-ray region. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 455, 217-221.	1.6	2
100	Electrochromic 2,5â€Dihydroxyterephthalic Acid Linker in Metalâ^'Organic Frameworks. Advanced Photonics Research, 0, , 2100219.	3.6	1