
Ruirui Xing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7469679/publications.pdf Version: 2024-02-01

RIHPHI XINC

#	Article	IF	CITATIONS
1	Peptide self-assembly: thermodynamics and kinetics. Chemical Society Reviews, 2016, 45, 5589-5604.	18.7	760
2	Simple Peptideâ€Tuned Selfâ€Assembly of Photosensitizers towards Anticancer Photodynamic Therapy. Angewandte Chemie - International Edition, 2016, 55, 3036-3039.	7.2	453
3	Smart Peptide-Based Supramolecular Photodynamic Metallo-Nanodrugs Designed by Multicomponent Coordination Self-Assembly. Journal of the American Chemical Society, 2018, 140, 10794-10802.	6.6	377
4	Hierarchically oriented organization inÂsupramolecular peptide crystals. Nature Reviews Chemistry, 2019, 3, 567-588.	13.8	326
5	Selfâ€Assembling Endogenous Biliverdin as a Versatile Nearâ€Infrared Photothermal Nanoagent for Cancer Theranostics. Advanced Materials, 2019, 31, e1900822.	11.1	249
6	Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid–Liquid Phase Separation. Angewandte Chemie - International Edition, 2019, 58, 18116-18123.	7.2	241
7	Supramolecular Photothermal Effects: A Promising Mechanism for Efficient Thermal Conversion. Angewandte Chemie - International Edition, 2020, 59, 3793-3801.	7.2	219
8	Multifunctional Antimicrobial Biometallohydrogels Based on Amino Acid Coordinated Selfâ€Assembly. Small, 2020, 16, e1907309.	5.2	196
9	Chargeâ€Induced Secondary Structure Transformation of Amyloidâ€Derived Dipeptide Assemblies from βâ€Sheet to αâ€Helix. Angewandte Chemie - International Edition, 2018, 57, 1537-1542.	7.2	192
10	Supramolecular Photothermal Nanomaterials as an Emerging Paradigm toward Precision Cancer Therapy. Advanced Functional Materials, 2019, 29, 1806877.	7.8	186
11	Amino Acid Coordination Driven Selfâ€Assembly for Enhancing both the Biological Stability and Tumor Accumulation of Curcumin. Angewandte Chemie - International Edition, 2018, 57, 17084-17088.	7.2	185
12	Interfacial Cohesion and Assembly of Bioadhesive Molecules for Design of Long-Term Stable Hydrophobic Nanodrugs toward Effective Anticancer Therapy. ACS Nano, 2016, 10, 5720-5729.	7.3	159
13	Self-Assembled Injectable Peptide Hydrogels Capable of Triggering Antitumor Immune Response. Biomacromolecules, 2017, 18, 3514-3523.	2.6	148
14	Mimicking Primitive Photobacteria: Sustainable Hydrogen Evolution Based on Peptide–Porphyrin Coâ€Assemblies with a Selfâ€Mineralized Reaction Center. Angewandte Chemie - International Edition, 2016, 55, 12503-12507.	7.2	145
15	Metal-Ion Modulated Structural Transformation of Amyloid-Like Dipeptide Supramolecular Self-Assembly. ACS Nano, 2019, 13, 7300-7309.	7.3	121
16	Supramolecular Nanofibrils Formed by Coassembly of Clinically Approved Drugs for Tumor Photothermal Immunotherapy. Advanced Materials, 2021, 33, e2100595.	11.1	105
17	Crystalline Dipeptide Nanobelts Based on Solid–Solid Phase Transformation Self-Assembly and Their Polarization Imaging of Cells. ACS Applied Materials & Interfaces, 2018, 10, 2368-2376.	4.0	98
18	Simple Peptideâ€Tuned Selfâ€Assembly of Photosensitizers towards Anticancer Photodynamic Therapy. Angewandte Chemie, 2016, 128, 3088-3091.	1.6	85

Ruirui Xing

#	Article	IF	CITATIONS
19	Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid–Liquid Phase Separation. Angewandte Chemie, 2019, 131, 18284-18291.	1.6	79
20	Aminoâ€Acidâ€Encoded Supramolecular Photothermal Nanomedicine for Enhanced Cancer Therapy. Advanced Materials, 2022, 34, e2200139.	11.1	78
21	The Dominant Role of Oxygen in Modulating the Chemical Evolution Pathways of Tyrosine in Peptides: Dityrosine or Melanin. Angewandte Chemie - International Edition, 2019, 58, 5872-5876.	7.2	72
22	Kinetically Controlled Self-Assembly of Phthalocyanine–Peptide Conjugate Nanofibrils Enabling Superlarge Redshifted Absorption. CCS Chemistry, 2019, 1, 173-180.	4.6	66
23	Peptide-modulated self-assembly as a versatile strategy for tumor supramolecular nanotheranostics. Theranostics, 2019, 9, 3249-3261.	4.6	60
24	Self-assembled injectable biomolecular hydrogels towards phototherapy. Nanoscale, 2019, 11, 22182-22195.	2.8	59
25	Supramolecular Photothermal Effects: A Promising Mechanism for Efficient Thermal Conversion. Angewandte Chemie, 2020, 132, 3821-3829.	1.6	57
26	Injectable self-assembled bola-dipeptide hydrogels for sustained photodynamic prodrug delivery and enhanced tumor therapy. Journal of Controlled Release, 2020, 319, 344-351.	4.8	52
27	Peptideâ€Based Supramolecular Nanodrugs as a New Generation of Therapeutic Toolboxes against Cancer. Advanced Therapeutics, 2019, 2, 1900048.	1.6	43
28	Spatiotemporally Coupled Photoactivity of Phthalocyanine–Peptide Conjugate Selfâ€Assemblies for Adaptive Tumor Theranostics. Chemistry - A European Journal, 2019, 25, 13429-13435.	1.7	38
29	Supramolecular Protein Nanodrugs with Coordination―and Heatingâ€Enhanced Photothermal Effects for Antitumor Therapy. Small, 2019, 15, e1905326.	5.2	33
30	Cyclic dipeptides: Biological activities and selfâ€assembled materials. Peptide Science, 2021, 113, e24202.	1.0	30
31	Amino Acid Coordination Driven Selfâ€Assembly for Enhancing both the Biological Stability and Tumor Accumulation of Curcumin. Angewandte Chemie, 2018, 130, 17330-17334.	1.6	29
32	Silver-incorporating peptide and protein supramolecular nanomaterials for biomedical applications. Journal of Materials Chemistry B, 2021, 9, 4444-4458.	2.9	29
33	Chargeâ€Induced Secondary Structure Transformation of Amyloidâ€Derived Dipeptide Assemblies from βâ€Sheet to αâ€Helix. Angewandte Chemie, 2018, 130, 1553-1558.	1.6	28
34	Covalently Assembled Dipeptide Nanoparticles with Adjustable Fluorescence Emission for Multicolor Bioimaging. ChemBioChem, 2019, 20, 555-560.	1.3	27
35	Selfâ€assembling bile pigments for cancer diagnosis and therapy. Aggregate, 2021, 2, 84-94.	5.2	24
36	Mimicking Primitive Photobacteria: Sustainable Hydrogen Evolution Based on Peptide–Porphyrin Coâ€Assemblies with a Selfâ€Mineralized Reaction Center. Angewandte Chemie, 2016, 128, 12691-12695.	1.6	23

Ruirui Xing

#	Article	IF	CITATIONS
37	Cyclic dipeptide nanoribbons formed by dye-mediated hydrophobic self-assembly for cancer chemotherapy. Journal of Colloid and Interface Science, 2019, 557, 458-464.	5.0	21
38	Covalent Assembly of Amphiphilic Bolaâ€Amino Acids into Robust and Biodegradable Nanoparticles for In Vitro Photothermal Therapy. Chemistry - an Asian Journal, 2018, 13, 3526-3532.	1.7	20
39	Tumor therapy based on selfâ€assembling peptides nanotechnology. View, 2020, 1, 20200020.	2.7	20
40	High-tolerance crystalline hydrogels formed from self-assembling cyclic dipeptide. Beilstein Journal of Nanotechnology, 2019, 10, 1894-1901.	1.5	15
41	The Dominant Role of Oxygen in Modulating the Chemical Evolution Pathways of Tyrosine in Peptides: Dityrosine or Melanin. Angewandte Chemie, 2019, 131, 5930-5934.	1.6	9
42	Orally administered covalently-assembled antioxidative peptide nanoparticles for inflammatory bowel disease therapy. Journal of Colloid and Interface Science, 2022, 626, 156-166.	5.0	9
43	Peptide-based supramolecular assembly drugs toward cancer theranostics. Expert Opinion on Drug Delivery, 2022, 19, 847-860.	2.4	6
44	Nanodrugs: Supramolecular Protein Nanodrugs with Coordination―and Heatingâ€Enhanced Photothermal Effects for Antitumor Therapy (Small 52/2019). Small, 2019, 15, 1970286.	5.2	5
45	Coordination-assembled myricetin nanoarchitectonics for sustainably scavenging free radicals. Beilstein Journal of Nanotechnology, 2022, 13, 284-291.	1.5	3
46	Innenrücktitelbild: Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid–Liquid Phase Separation (Angew. Chem. 50/2019). Angewandte Chemie, 2019, 131, 18463-18463.	1.6	0
47	Frontispiz: The Dominant Role of Oxygen in Modulating the Chemical Evolution Pathways of Tyrosine in Peptides: Dityrosine or Melanin. Angewandte Chemie, 2019, 131, .	1.6	0
48	Frontispiece: The Dominant Role of Oxygen in Modulating the Chemical Evolution Pathways of Tyrosine in Peptides: Dityrosine or Melanin. Angewandte Chemie - International Edition, 2019, 58, .	7.2	0