Christoph Handschin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7469622/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PGCâ€lα regulates myonuclear accretion after moderate endurance training. Journal of Cellular Physiology, 2022, 237, 696-705.	2.0	6
2	Transcriptomic, proteomic and phosphoproteomic underpinnings of daily exercise performance and zeitgeber activity of training in mouse muscle. Journal of Physiology, 2022, 600, 769-796.	1.3	27
3	Interleukinâ€6 potentiates endurance training adaptation and improves functional capacity in old mice. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1164-1176.	2.9	11
4	Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. Nature Communications, 2022, 13, 2025.	5.8	30
5	Time to Train: The Involvement of the Molecular Clock in Exercise Adaptation of Skeletal Muscle. Frontiers in Physiology, 2022, 13, 902031.	1.3	12
6	Branched-chain amino acid metabolism is regulated by ERRα in primary human myotubes and is further impaired by glucose loading in type 2 diabetes. Diabetologia, 2021, 64, 2077-2091.	2.9	20
7	RNA-bound PGC-1Î \pm controls gene expression in liquid-like nuclear condensates. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
8	The Role of the Skeletal Muscle Secretome in Mediating Endurance and Resistance Training Adaptations. Frontiers in Physiology, 2021, 12, 709807.	1.3	37
9	Remodeling of metabolism and inflammation by exercise ameliorates tumor-associated anemia. Science Advances, 2021, 7, eabi4852.	4.7	14
10	Pharmacological targeting of age-related changes in skeletal muscle tissue. Pharmacological Research, 2020, 154, 104191.	3.1	2
11	PGCâ€1α plays a pivotal role in simvastatinâ€induced exercise impairment in mice. Acta Physiologica, 2020, 228, e13402.	1.8	14
12	Exerciseâ€linked improvement in ageâ€associated loss of balance is associated with increased vestibular input to motor neurons. Aging Cell, 2020, 19, e13274.	3.0	9
13	PGC-1β-expressing POMC neurons mediate the effect of leptin on thermoregulation in the mouse. Scientific Reports, 2020, 10, 16888.	1.6	4
14	The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia. Nature Communications, 2020, 11, 4510.	5.8	98
15	Lifestyle vs. pharmacological interventions for healthy aging. Aging, 2020, 12, 5-7.	1.4	3
16	Muscle Wasting Diseases: Novel Targets and Treatments. Annual Review of Pharmacology and Toxicology, 2019, 59, 315-339.	4.2	69
17	Peroxisome proliferatorâ€activated receptor γ coactivator 1α regulates mitochondrial calcium homeostasis, sarcoplasmic reticulum stress, and cell death to mitigate skeletal muscle aging. Aging Cell, 2019, 18, e12993.	3.0	23
18	BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16111-16120.	3.3	85

#	Article	IF	CITATIONS
19	How Epigenetic Modifications Drive the Expression and Mediate the Action of PGC-11± in the Regulation of Metabolism. International Journal of Molecular Sciences, 2019, 20, 5449.	1.8	20
20	JAK2-mutant hematopoietic cells display metabolic alterations that can be targeted to treat myeloproliferative neoplasms. Blood, 2019, 134, 1832-1846.	0.6	42
21	Skeletal muscle PGC-1α1 reroutes kynurenine metabolism to increase energy efficiency and fatigue-resistance. Nature Communications, 2019, 10, 2767.	5.8	72
22	Anaerobic Glycolysis Maintains the Glomerular Filtration Barrier Independent of Mitochondrial Metabolism and Dynamics. Cell Reports, 2019, 27, 1551-1566.e5.	2.9	106
23	Physiological Regulation of Skeletal Muscle Mass. , 2019, , 139-150.		1
24	Relation of nNOS isoforms to mitochondrial density and PGC-1alpha expression in striated muscles of mice. Nitric Oxide - Biology and Chemistry, 2018, 77, 35-43.	1.2	2
25	Over-expression of a retinol dehydrogenase (SRP35/DHRS7C) in skeletal muscle activates mTORC2, enhances glucose metabolism and muscle performance. Scientific Reports, 2018, 8, 636.	1.6	19
26	Pharmacological targeting of exercise adaptations in skeletal muscle: Benefits and pitfalls. Biochemical Pharmacology, 2018, 147, 211-220.	2.0	23
27	<scp>PGC</scp> â€1α affects agingâ€related changes in muscle and motor function by modulating specific exerciseâ€mediated changes in old mice. Aging Cell, 2018, 17, e12697.	3.0	50
28	Injected Human Muscle Precursor Cells Overexpressing PGC-1 <i>α</i> Enhance Functional Muscle Regeneration after Trauma. Stem Cells International, 2018, 2018, 1-11.	1.2	6
29	Moderate Modulation of Cardiac PGC-1α Expression Partially Affects Age-Associated Transcriptional Remodeling of the Heart. Frontiers in Physiology, 2018, 9, 242.	1.3	32
30	Endocrine Crosstalk Between Skeletal Muscle and the Brain. Frontiers in Neurology, 2018, 9, 698.	1.1	163
31	Coregulator-mediated control of skeletal muscle plasticity – A mini-review. Biochimie, 2017, 136, 49-54.	1.3	14
32	Paracrine cross-talk between skeletal muscle and macrophages in exercise by PGC-1α-controlled BNP. Scientific Reports, 2017, 7, 40789.	1.6	29
33	Role of Nuclear Receptors in Exercise-Induced Muscle Adaptations. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a029835.	2.9	18
34	Muscle PGC-1α is required for long-term systemic and local adaptations to a ketogenic diet in mice. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E437-E446.	1.8	11
35	Human Muscle Precursor Cells Overexpressing PGC-1α Enhance Early Skeletal Muscle Tissue Formation. Cell Transplantation, 2017, 26, 1103-1114.	1.2	14
36	Exploring the Role of PGCâ€1α in Defining Nuclear Organisation in Skeletal Muscle Fibres. Journal of Cellular Physiology, 2017, 232, 1270-1274.	2.0	18

#	Article	IF	CITATIONS
37	Plasticity of the Muscle Stem Cell Microenvironment. Advances in Experimental Medicine and Biology, 2017, 1041, 141-169.	0.8	28
38	Optimized Engagement of Macrophages and Satellite Cells in theÂRepair and Regeneration of Exercised Muscle. Research and Perspectives in Endocrine Interactions, 2017, , 57-66.	0.2	5
39	Loss of Renal Tubular PGC-1α Exacerbates Diet-Induced Renal Steatosis and Age-Related Urinary Sodium Excretion in Mice. PLoS ONE, 2016, 11, e0158716.	1.1	22
40	Magnetic stimulation supports muscle and nerve regeneration after trauma in mice. Muscle and Nerve, 2016, 53, 598-607.	1.0	26
41	PGC-1α modulates necrosis, inflammatory response, and fibrotic tissue formation in injured skeletal muscle. Skeletal Muscle, 2016, 6, 38.	1.9	35
42	<scp>mTORC</scp> 2 sustains thermogenesis via Aktâ€induced glucose uptake and glycolysis in brown adipose tissue. EMBO Molecular Medicine, 2016, 8, 232-246.	3.3	110
43	MP30-16 GENETICALLY MODIFIED HUMAN MUSCLE PRECURSOR CELLS OVEREXPRESSING PGC-1? SUPPORT EARLY MYOFIBER FORMATION FOR BIOENGINEERING OF SLOW TWITCH SPHINCTER MUSCLE. Journal of Urology, 2016, 195, .	0.2	0
44	The Genomic Context and Corecruitment of SP1 Affect ERRα Coactivation by PGC-1α in Muscle Cells. Molecular Endocrinology, 2016, 30, 809-825.	3.7	20
45	Muscle PGC-1α modulates satellite cell number and proliferation by remodeling the stem cell niche. Skeletal Muscle, 2016, 6, 39.	1.9	28
46	Noninvasive PET Imaging and Tracking of Engineered Human Muscle Precursor Cells for Skeletal Muscle Tissue Engineering. Journal of Nuclear Medicine, 2016, 57, 1467-1473.	2.8	12
47	PGC-1α expression in murine AgRP neurons regulates food intake and energy balance. Molecular Metabolism, 2016, 5, 580-588.	3.0	11
48	Caloric restriction and exercise "mimetics'': Ready for prime time?. Pharmacological Research, 2016, 103, 158-166.	3.1	68
49	Skeletal muscle PGCâ€1α modulates systemic ketone body homeostasis and ameliorates diabetic hyperketonemia in mice. FASEB Journal, 2016, 30, 1976-1986.	0.2	36
50	Complex Coordination of Cell Plasticity by a PGC-1α-controlled Transcriptional Network in Skeletal Muscle. Frontiers in Physiology, 2015, 6, 325.	1.3	53
51	External physical and biochemical stimulation to enhance skeletal muscle bioengineering. Advanced Drug Delivery Reviews, 2015, 82-83, 168-175.	6.6	33
52	PDE2 activity differs in right and left rat ventricular myocardium and differentially regulates β ₂ adrenoceptor-mediated effects. Experimental Biology and Medicine, 2015, 240, 1205-1213.	1.1	8
53	Resveratrol and SRT1720 Elicit Differential Effects in Metabolic Organs and Modulate Systemic Parameters Independently of Skeletal Muscle Peroxisome Proliferator-activated Receptor γ Co-activator 11̂± (PGC-11̂±). Journal of Biological Chemistry, 2015, 290, 16059-16076.	1.6	22
54	The PGC-1 coactivators promote an anti-inflammatory environment in skeletal muscle inÂvivo. Biochemical and Biophysical Research Communications, 2015, 464, 692-697.	1.0	60

Christoph Handschin

#	Article	IF	CITATIONS
55	Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise. Bone, 2015, 80, 115-125.	1.4	298
56	Körperliche Aktivitäund PGC-1alpha bei Entzündung und chronischen Krankheiten. Deutsche Zeitschrift Fur Sportmedizin, 2015, 2015, 317-320.	0.2	2
57	Morphological and functional remodelling of the neuromuscular junction by skeletal muscle PGC-1α. Nature Communications, 2014, 5, 3569.	5.8	64
58	Modulation of PGC-1α activity as a treatment for metabolic and muscle-related diseases. Drug Discovery Today, 2014, 19, 1024-1029.	3.2	12
59	Effect of carnitine, acetyl-, and propionylcarnitine supplementation on the body carnitine pool, skeletal muscle composition, and physical performance in mice. European Journal of Nutrition, 2014, 53, 1313-1325.	1.8	11
60	The coactivator PGC-1α regulates skeletal muscle oxidative metabolism independently of the nuclear receptor PPARβ/δ in sedentary mice fed a regular chow diet. Diabetologia, 2014, 57, 2405-2412.	2.9	17
61	MicroRNAs Emerge as Modulators of NAD+-Dependent Energy Metabolism in Skeletal Muscle. Diabetes, 2014, 63, 1451-1453.	0.3	6
62	MP12-19 NON-INVASIVE TRACKING OF MUSCLE PRECURSOR CELLS FOR SPHINCTER MUSCLE ENGINEERING. Journal of Urology, 2014, 191, .	0.2	0
63	Transcriptional Network Analysis in Muscle Reveals AP-1 as a Partner of PGC-1α in the Regulation of the Hypoxic Gene Program. Molecular and Cellular Biology, 2014, 34, 2996-3012.	1.1	32
64	Functional crosstalk of PGC-1 coactivators and inflammation in skeletal muscle pathophysiology. Seminars in Immunopathology, 2014, 36, 27-53.	2.8	44
65	The transcriptional coactivator PGC-1α is dispensable for chronic overload-induced skeletal muscle hypertrophy and metabolic remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20314-20319.	3.3	48
66	Skeletal muscle PGC-1α controls whole-body lactate homeostasis through estrogen-related receptor α-dependent activation of LDH B and repression of LDH A. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8738-8743.	3.3	122
67	Myoblasts Inhibit Prostate Cancer Growth by Paracrine Secretion of Tumor Necrosis Factor-α. Journal of Urology, 2013, 189, 1952-1959.	0.2	19
68	PGC-1α Improves Glucose Homeostasis in Skeletal Muscle in an Activity-Dependent Manner. Diabetes, 2013, 62, 85-95.	0.3	91
69	New insights in the regulation of skeletal muscle PGC-1α by exercise and metabolic diseases. Drug Discovery Today: Disease Models, 2013, 10, e79-e85.	1.2	6
70	Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy. Skeletal Muscle, 2013, 3, 6.	1.9	122
71	The peroxisome proliferator-activated receptor γ coactivator 1α/β (PGC-1) coactivators repress the transcriptional activity of NF-βB in skeletal muscle cells Journal of Biological Chemistry, 2013, 288, 6589.	1.6	3
72	The Peroxisome Proliferator-activated Receptor γ Coactivator 1α/β (PGC-1) Coactivators Repress the Transcriptional Activity of NF-κB in Skeletal Muscle Cells. Journal of Biological Chemistry, 2013, 288, 2246-2260.	1.6	159

#	Article	IF	CITATIONS
73	Remodeling of calcium handling in skeletal muscle through PGC-1α: impact on force, fatigability, and fiber type. American Journal of Physiology - Cell Physiology, 2012, 302, C88-C99.	2.1	51
74	The Corepressor NCoR1 Antagonizes PGC-1 <i>α</i> and Estrogen-Related Receptor <i>α</i> in the Regulation of Skeletal Muscle Function and Oxidative Metabolism. Molecular and Cellular Biology, 2012, 32, 4913-4924.	1.1	74
75	A Functional Motor Unit in the Culture Dish: Co-culture of Spinal Cord Explants and Muscle Cells. Journal of Visualized Experiments, 2012, , .	0.2	12
76	205 IN VIVO ELECTROMAGNETIC STIMULATION SUPPORTS MUSCLE REGENERATION AFTER STEM CELL INJECTION BY BOOSTING MUSCULAR METABOLISM AND STIMULATING NERVE INGROWTH. Journal of Urology, 2012, 187, .	0.2	0
77	1064 Noninvasive electromagnetic stimulation for stress urinary incontinence improves regeneration of skeletal muscle, increases nerve ingrowth and acetylcholine receptor clustering. European Urology Supplements, 2012, 11, e1064-e1064a.	0.1	1
78	PGC-1 \hat{l} ± and exercise in the control of body weight. International Journal of Obesity, 2012, 36, 1428-1435.	1.6	39
79	PGC-1α Determines Light Damage Susceptibility of the Murine Retina. PLoS ONE, 2012, 7, e31272.	1.1	46
80	PGC-1α and Myokines in the Aging Muscle – A Mini-Review. Gerontology, 2011, 57, 37-43.	1.4	62
81	PGC-1 Coactivators and the Regulation of Skeletal Muscle Fiber-Type Determination. Cell Metabolism, 2011, 13, 351.	7.2	38
82	Coordinated balancing of muscle oxidative metabolism through PGC-1α increases metabolic flexibility and preserves insulin sensitivity. Biochemical and Biophysical Research Communications, 2011, 408, 180-185.	1.0	27
83	P5.74 The role of PGC-1alpha in the stabilization of the neuromuscular junction. Neuromuscular Disorders, 2011, 21, 746.	0.3	0
84	O.5 The miRNA profile of human SMA samples. Neuromuscular Disorders, 2011, 21, 681.	0.3	0
85	Peroxisome proliferator-activated receptor $\hat{1}^3$ coactivator $1\hat{1}^2$ (PGC- $1\hat{1}^2$) improves skeletal muscle mitochondrial function and insulin sensitivity. Diabetologia, 2011, 54, 1270-1272.	2.9	4
86	Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20808-20813.	3.3	38
87	Electric Pulse Stimulation of Cultured Murine Muscle Cells Reproduces Gene Expression Changes of Trained Mouse Muscle. PLoS ONE, 2010, 5, e10970.	1.1	68
88	ApoEâ^'/â^' PGC-1αâ^'/â^' Mice Display Reduced IL-18 Levels and Do Not Develop Enhanced Atherosclerosis. PLoS ONE, 2010, 5, e13539.	1.1	29
89	Peroxisome Proliferator-activated Receptor γ Coactivator 1α (PGC-1α) Promotes Skeletal Muscle Lipid Refueling in Vivo by Activating de Novo Lipogenesis and the Pentose Phosphate Pathway*. Journal of Biological Chemistry, 2010, 285, 32793-32800.	1.6	98
90	Regulation of skeletal muscle cell plasticity by the peroxisome proliferator-activated receptor Î ³ coactivator 1α. Journal of Receptor and Signal Transduction Research, 2010, 30, 376-384.	1.3	48

#	Article	IF	CITATIONS
91	SIRT1 reduces endothelial activation without affecting vascular function in ApoE-/- mice. Aging, 2010, 2, 353-360.	1.4	132
92	Peroxisome proliferatorâ€activated receptorâ€Î³ coactivatorâ€1α in muscle links metabolism to inflammation. Clinical and Experimental Pharmacology and Physiology, 2009, 36, 1139-1143.	0.9	34
93	The biology of PGC-11 \pm and its therapeutic potential. Trends in Pharmacological Sciences, 2009, 30, 322-329.	4.0	95
94	A high-mobility, low-cost phenotype defines human effector-memory CD8+ T cells. Blood, 2009, 113, 95-99.	0.6	3
95	The role of exercise and PGC1 \hat{I} ± in inflammation and chronic disease. Nature, 2008, 454, 463-469.	13.7	935
96	Paradoxical effects of increased expression of PGC-1α on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19926-19931.	3.3	257
97	A fundamental system of cellular energy homeostasis regulated by PGC-1Â. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7933-7938.	3.3	184
98	RANTES (Regulated on Activation, Normal T Cell Expressed and Secreted), Inflammation, Obesity, and the Metabolic Syndrome. Circulation, 2007, 115, 946-948.	1.6	62
99	PGC-1Â regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes and Development, 2007, 21, 770-783.	2.7	307
100	Skeletal Muscle Fiber-type Switching, Exercise Intolerance, and Myopathy in PGC-1α Muscle-specific Knock-out Animals. Journal of Biological Chemistry, 2007, 282, 30014-30021.	1.6	530
101	AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12017-12022.	3.3	2,045
102	Abnormal glucose homeostasis in skeletal muscle–specific PGC-1α knockout mice reveals skeletal muscle–pancreatic β cell crosstalk. Journal of Clinical Investigation, 2007, 117, 3463-3474.	3.9	302
103	Peroxisome Proliferator-Activated Receptor Î ³ Coactivator 1 Coactivators, Energy Homeostasis, and Metabolism. Endocrine Reviews, 2006, 27, 728-735.	8.9	986
104	Suppression of Reactive Oxygen Species and Neurodegeneration by the PGC-1 Transcriptional Coactivators. Cell, 2006, 127, 397-408.	13.5	1,948
105	PGC-1Â protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16260-16265.	3.3	841
106	Partnership of PGC-1α and HNF4α in the Regulation of Lipoprotein Metabolism*. Journal of Biological Chemistry, 2006, 281, 14683-14690.	1.6	76
107	Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1Â transcription and mitochondrial biogenesis in muscle cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14379-14384.	3.3	261
108	LXR deficiency and cholesterol feeding affect the expression and phenobarbital-mediated induction of cytochromes P450 in mouse liver. Journal of Lipid Research, 2005, 46, 1633-1642.	2.0	28

#	Article	IF	CITATIONS
109	Hyperlipidemic Effects of Dietary Saturated Fats Mediated through PGC-1Î ² Coactivation of SREBP. Cell, 2005, 120, 261-273.	13.5	579
110	Nutritional Regulation of Hepatic Heme Biosynthesis and Porphyria through PGC-1α. Cell, 2005, 122, 505-515.	13.5	347
111	Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell Metabolism, 2005, 1, 259-271.	7.2	608
112	Metabolic control through the PGC-1 family of transcription coactivators. Cell Metabolism, 2005, 1, 361-370.	7.2	1,826
113	Regulatory network of lipid-sensing nuclear receptors: roles for CAR, PXR, LXR, and FXR. Archives of Biochemistry and Biophysics, 2005, 433, 387-396.	1.4	157
114	Species-specific mechanisms for cholesterol 7α-hydroxylase (CYP7A1) regulation by drugs and bile acids. Archives of Biochemistry and Biophysics, 2005, 434, 75-85.	1.4	8
115	Estrogen-related receptor α (ERRα): A novel target in type 2 diabetes. Drug Discovery Today: Therapeutic Strategies, 2005, 2, 151-156.	0.5	16
116	Identification of the xenosensors regulating human 5-aminolevulinate synthase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9127-9132.	3.3	99
117	Err and Gabpa/b specify PGC-1Â-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6570-6575.	3.3	627
118	The evolution of drug-activated nuclear receptors: one ancestral gene diverged into two xenosensor genes in mammals. Nuclear Receptor, 2004, 2, 7.	10.0	37
119	Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1Â: modulation by p38 MAPK. Genes and Development, 2004, 18, 278-289.	2.7	263
120	Molecular cloning and characterization of chicken orphan nuclear receptor cTR21. General and Comparative Endocrinology, 2003, 132, 474-484.	0.8	3
121	Induction of Drug Metabolism: The Role of Nuclear Receptors. Pharmacological Reviews, 2003, 55, 649-673.	7.1	430
122	An autoregulatory loop controls peroxisome proliferator-activated receptor coactivator 1Â expression in muscle. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7111-7116.	3.3	633
123	In silico approaches, and in vitro and in vivo experiments to predict induction of drug metabolism. Drug News and Perspectives, 2003, 16, 423.	1.9	10
124	Cholesterol and Bile Acids Regulate Xenosensor Signaling in Drug-mediated Induction of Cytochromes P450. Journal of Biological Chemistry, 2002, 277, 29561-29567.	1.6	54
125	NUBIScan, an in Silico Approach for Prediction of Nuclear Receptor Response Elements. Molecular Endocrinology, 2002, 16, 1269-1279.	3.7	181
126	A Link between Cholesterol Levels and Phenobarbital Induction of Cytochromes P450. Biochemical and Biophysical Research Communications, 2002, 291, 378-384.	1.0	23

#	Article	IF	CITATIONS
127	Conservation of Signaling Pathways of Xenobiotic-Sensing Orphan Nuclear Receptors, Chicken Xenobiotic Receptor, Constitutive Androstane Receptor, and Pregnane X Receptor, from Birds to Humans. Molecular Endocrinology, 2001, 15, 1571-1585.	3.7	47
128	Multiple enhancer units mediate drug induction of CYP2H1 by xenobiotic-sensing orphan nuclear receptor chicken xenobiotic receptor. Molecular Pharmacology, 2001, 60, 681-9.	1.0	22
129	A Conserved Nuclear Receptor Consensus Sequence (DR-4) Mediates Transcriptional Activation of the Chicken CYP2H1 Gene by Phenobarbital in a Hepatoma Cell Line. Journal of Biological Chemistry, 2000, 275, 13362-13369.	1.6	39
130	CXR, a chicken xenobiotic-sensing orphan nuclear receptor, is related to both mammalian pregnane X receptor (PXR) and constitutive androstane receptor (CAR). Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 10769-10774.	3.3	113