Leon Ofman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7469399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRACE Observation of Damped Coronal Loop Oscillations: Implications for Coronal Heating. Science, 1999, 285, 862-864.	12.6	821
2	Determination of the coronal magnetic field by coronal loop oscillations. Astronomy and Astrophysics, 2001, 372, L53-L56.	5.1	424
3	Characteristics of transverse oscillations in a coronal loop arcade. Solar Physics, 2004, 223, 77-94.	2.5	234
4	Hot Coronal Loop Oscillations Observed by SUMER: Slow Magnetosonic Wave Damping by Thermal Conduction. Astrophysical Journal, 2002, 580, L85-L88.	4.5	231
5	Slow Magnetosonic Waves in Coronal Plumes. Astrophysical Journal, 1999, 514, 441-447.	4.5	225
6	Cone model for halo CMEs: Application to space weather forecasting. Journal of Geophysical Research, 2004, 109, .	3.3	223
7	Ultraviolet Coronagraph Spectrometer Observations of Density Fluctuations in the Solar Wind. Astrophysical Journal, 1997, 491, L111-L114.	4.5	187
8	Damping Time Scaling of Coronal Loop Oscillations Deduced from [ITAL]Transition Region and Coronal Explorer[/ITAL] Observations. Astrophysical Journal, 2002, 576, L153-L156.	4.5	182
9	Advances in Observing Various Coronal EUV Waves in the SDO Era and Their Seismological Applications (Invited Review). Solar Physics, 2014, 289, 3233-3277.	2.5	163
10	Interaction of EIT Waves with Coronal Active Regions. Astrophysical Journal, 2002, 574, 440-452.	4.5	156
11	Slow Solar Wind: Observations and Modeling. Space Science Reviews, 2016, 201, 55-108.	8.1	147
12	PERSISTENT DOPPLER SHIFT OSCILLATIONS OBSERVED WITH <i>HINODE </i> /EIS IN THE SOLAR CORONA: SPECTROSCOPIC SIGNATURES OF ALFVÉNIC WAVES AND RECURRING UPFLOWS. Astrophysical Journal, 2012, 759, 144.	4.5	134
13	QUASI-PERIODIC FAST-MODE WAVE TRAINS WITHIN A GLOBAL EUV WAVE AND SEQUENTIAL TRANSVERSE OSCILLATIONS DETECTED BY <i>SDO</i> /AIA. Astrophysical Journal, 2012, 753, 52.	4.5	131
14	DIRECT IMAGING OF QUASI-PERIODIC FAST PROPAGATING WAVES OF â^¼2000 km s ^{–1} IN THE SOLAR CORONA BY THE <i>SOLAR DYNAMICS OBSERVATORY</i> ATMOSPHERIC IMAGING ASSEMBLY. Astrophysical Journal Letters, 2011, 736, L13.	LOW 8.3	128
15	Coronal Heating by MHD Waves. Space Science Reviews, 2020, 216, 1.	8.1	127
16	<i>Hinode</i> observations of transverse waves with flows in coronal loops. Astronomy and Astrophysics, 2008, 482, L9-L12.	5.1	125
17	GROWING TRANSVERSE OSCILLATIONS OF A MULTISTRANDED LOOP OBSERVED BY <i>SDO</i> /AIA. Astrophysical Journal Letters, 2012, 751, L27.	8.3	113
18	Dissipation of Slow Magnetosonic Waves in Coronal Plumes. Astrophysical Journal, 2000, 533, 1071-1083.	4.5	106

#	Article	IF	CITATIONS
19	Coronal heating by the resonant absorption of Alfven waves: The effect of viscous stress tensor. Astrophysical Journal, 1994, 421, 360.	4.5	104
20	<i>SDO</i> /AIA OBSERVATION OF KELVIN–HELMHOLTZ INSTABILITY IN THE SOLAR CORONA. Astrophysical Journal Letters, 2011, 734, L11.	8.3	98
21	A Selfâ€consistent Model for the Resonant Heating of Coronal Loops: The Effects of Coupling with the Chromosphere. Astrophysical Journal, 1998, 493, 474-479.	4.5	95
22	Hinode/EIS observations of propagating low-frequency slow magnetoacoustic waves in fan-like coronal loops. Astronomy and Astrophysics, 2009, 503, L25-L28.	5.1	91
23	Understanding coronal heating and solar wind acceleration: Case for in situ near-Sun measurements. Reviews of Geophysics, 2007, 45, .	23.0	85
24	Solar wind acceleration by large-amplitude nonlinear waves: Parametric study. Journal of Geophysical Research, 1998, 103, 23677-23690.	3.3	82
25	UVCS WLC Observations of Compressional Waves in the South Polar Coronal Hole. Astrophysical Journal, 2000, 529, 592-598.	4.5	82
26	Resistive tearing mode instability with shear flow and viscosity. Physics of Fluids B, 1991, 3, 1364-1373.	1.7	79
27	PROPAGATING SLOW MAGNETOACOUSTIC WAVES IN CORONAL LOOPS OBSERVED BY <i>HINODE</i> /EIS. Astrophysical Journal, 2009, 696, 1448-1460.	4.5	76
28	Wave Modeling of the Solar Wind. Living Reviews in Solar Physics, 2010, 7, 4.	22.0	76
29	Loop Density Enhancement by Nonlinear Magnetohydrodynamic Waves. Astrophysical Journal, 2004, 610, 523-531.	4.5	71
30	Coronal heating by the resonant absorption of Alfven waves: Wavenumber scaling laws Astrophysical Journal, 1995, 444, 471.	4.5	71
31	Solar Wind Acceleration by Solitary Waves in Coronal Holes. Astrophysical Journal, 1997, 476, 357-365.	4.5	66
32	MHD Waves and Heating in Coronal Holes. Space Science Reviews, 2005, 120, 67-94.	8.1	66
33	GLOBAL SIMULATION OF AN EXTREME ULTRAVIOLET IMAGING TELESCOPE WAVE. Astrophysical Journal, 2010, 713, 1008-1015.	4.5	66
34	Double tearing instability with shear flow. Physics of Fluids B, 1992, 4, 2751-2757.	1.7	65
35	Nonlinear studies of coronal heating by the resonant absorption of Alfvén waves. Geophysical Research Letters, 1994, 21, 2259-2262.	4.0	65
36	SLOW MAGNETOSONIC WAVES AND FAST FLOWS IN ACTIVE REGION LOOPS. Astrophysical Journal, 2012, 754, 111.	4.5	65

#	Article	IF	CITATIONS
37	EVIDENCE OF THERMAL CONDUCTION SUPPRESSION IN A SOLAR FLARING LOOP BY CORONAL SEISMOLOGY OF SLOW-MODE WAVES. Astrophysical Journal Letters, 2015, 811, L13.	8.3	63
38	STABILITY OF ROTATING MAGNETIZED JETS IN THE SOLAR ATMOSPHERE. I. KELVIN–HELMHOLTZ INSTABILITY. Astrophysical Journal, 2015, 813, 123.	4.5	63
39	Slow-Mode Magnetoacoustic Waves in Coronal Loops. Space Science Reviews, 2021, 217, 1.	8.1	62
40	Nonlinear resonant absorption of Alfvén waves in three dimensions, scaling laws, and coronal heating. Journal of Geophysical Research, 1995, 100, 23427.	3.3	57
41	Chromospheric Leakage of Alfvén Waves in Coronal Loops. Astrophysical Journal, 2002, 568, L135-L138.	4.5	56
42	Alfvén wave heating of coronal holes and the relation to the high-speed solar wind. Journal of Geophysical Research, 1995, 100, 23413.	3.3	55
43	Oscillations of Hard X-Ray Flare Emission Observed by RHESSI : Effects of Super-Alfvénic Beams?. Astrophysical Journal, 2006, 644, L149-L152.	4.5	55
44	Resonant heating and acceleration of ions in coronal holes driven by cyclotron resonant spectra. Journal of Geophysical Research, 2002, 107, SSH 9-1-SSH 9-9.	3.3	52
45	Consequences of proton and alpha anisotropies in the solar wind: Hybrid simulations. Journal of Geophysical Research, 2003, 108, .	3.3	51
46	Threeâ€dimensional MHD Model of Wave Activity in a Coronal Active Region. Astrophysical Journal, 2007, 655, 1134-1141.	4.5	51
47	Collisionless relaxation of ion distributions downstream of laminar quasiâ€perpendicular shocks. Journal of Geophysical Research, 2009, 114, .	3.3	51
48	MODELING SUPER-FAST MAGNETOSONIC WAVES OBSERVED BY <i>SDO</i> IN ACTIVE REGION FUNNELS. Astrophysical Journal Letters, 2011, 740, L33.	8.3	50
49	<i>STEREO</i> OBSERVATIONS OF FAST MAGNETOSONIC WAVES IN THE EXTENDED SOLAR CORONA ASSOCIATED WITH EIT/EUV WAVES. Astrophysical Journal, 2013, 766, 55.	4.5	48
50	Nonlinear evolution of resistive tearing mode instability with shear flow and viscosity. Physics of Fluids B, 1993, 5, 376-387.	1.7	47
51	Three-fluid model of the heating and acceleration of the fast solar wind. Journal of Geophysical Research, 2004, 109, .	3.3	47
52	Rossby Waves in Astrophysics. Space Science Reviews, 2021, 217, 1.	8.1	47
53	Threeâ€dimensional Magnetohydrodynamic Wave Behavior in Active Regions: Individual Loop Density Structure. Astrophysical Journal, 2008, 682, 1338-1350.	4.5	44
54	Numerical Simulations of Slow Standing Waves in a Curved Solar Coronal Loop. Astrophysical Journal, 2007, 668, L83-L86.	4.5	43

#	Article	IF	CITATIONS
55	Constraints on the O[TSUP]+5[/TSUP] Anisotropy in the Solar Corona. Astrophysical Journal, 2001, 547, L175-L178.	4.5	41
56	THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC MODELS OF TWISTED MULTITHREADED CORONAL LOOP OSCILLATIONS. Astrophysical Journal, 2009, 694, 502-511.	4.5	41
57	Pitch Angle Scattering of Subâ€MeV Relativistic Electrons by Electromagnetic Ion Cyclotron Waves. Journal of Geophysical Research: Space Physics, 2019, 124, 5610-5626.	2.4	41
58	Magnetohydrodynamic Waves in Open Coronal Structures. Space Science Reviews, 2021, 217, 1.	8.1	41
59	Multiple ions resonant heating and acceleration by Alfvén/cyclotron fluctuations in the corona and the solar wind. Journal of Geophysical Research, 2004, 109, .	3.3	40
60	ENERGY RELEASE FROM IMPACTING PROMINENCE MATERIAL FOLLOWING THE 2011 JUNE 7 ERUPTION. Astrophysical Journal Letters, 2013, 776, L12.	8.3	40
61	A Truly Global Extreme Ultraviolet Wave from the SOL2017-09-10 X8.2+ Solar Flare-Coronal Mass Ejection. Astrophysical Journal Letters, 2018, 864, L24.	8.3	40
62	Winds from Luminous Lateâ€Type Stars. I. The Effects of Nonlinear Alfven Waves. Astrophysical Journal, 2000, 528, 965-971.	4.5	40
63	Turbulent heating and acceleration of He ⁺⁺ ions by spectra of Alfvénâ€cyclotron waves in the expanding solar wind: 1.5â€D hybrid simulations. Journal of Geophysical Research: Space Physics, 2013, 118, 2842-2853.	2.4	39
64	THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC MODELING OF PROPAGATING DISTURBANCES IN FAN-LIKE CORONAL LOOPS. Astrophysical Journal Letters, 2013, 775, L23.	8.3	39
65	Electromagnetic heavy ion cyclotron instability: Anisotropy constraint in the solar corona. Journal of Geophysical Research, 2001, 106, 10715-10722.	3.3	37
66	WINDS FROM LUMINOUS LATE-TYPE STARS. II. BROADBAND FREQUENCY DISTRIBUTION OF ALFVÉN WAVES. Astrophysical Journal, 2010, 723, 1210-1218.	4.5	36
67	Do First Results from [ITAL]SOHO[/ITAL] UVCS Indicate that the Solar Wind is Accelerated by Solitary Waves?. Astrophysical Journal, 1997, 476, L51-L54.	4.5	35
68	Twoâ€dimensional hybrid simulations of quasiâ€perpendicular collisionless shock dynamics: Gyrating downstream ion distributions. Journal of Geophysical Research: Space Physics, 2013, 118, 1828-1836.	2.4	35
69	Source regions of the slow solar wind in coronal streamers. Geophysical Research Letters, 2000, 27, 2885-2888.	4.0	34
70	Two-dimensional hybrid model of wave and beam heating of multi-ion solar wind plasma. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	31
71	Progress, Challenges, and Perspectives of the 3D MHD Numerical Modeling of Oscillations in the Solar Corona. Space Science Reviews, 2009, 149, 153-174.	8.1	31
72	STOCHASTIC COUPLING OF SOLAR PHOTOSPHERE AND CORONA. Astrophysical Journal, 2013, 769, 62.	4.5	31

#	Article	IF	CITATIONS
73	Alfvén wave phase mixing driven by velocity shear in two-dimensional open magnetic configurations. Journal of Geophysical Research, 1999, 104, 17057-17068.	3.3	29
74	Three dimensional MHD models of active region loops. Advances in Space Research, 2005, 36, 1572-1578.	2.6	29
75	MEASURING TEMPERATURE-DEPENDENT PROPAGATING DISTURBANCES IN CORONAL FAN LOOPS USING MULTIPLE <i>SDO</i> /AIA CHANNELS AND THE SURFING TRANSFORM TECHNIQUE. Astrophysical Journal, 2013, 778, 26.	4.5	29
76	Relative drifts and temperature anisotropies of protons and <i>α</i> particles in the expanding solar wind: 2.5D hybrid simulations. Astronomy and Astrophysics, 2015, 578, A85.	5.1	29
77	Thermally conductive magnetohydrodynamic flows in helmet-streamer coronal structures. Astrophysical Journal, 1990, 350, 846.	4.5	29
78	Hybrid model of inhomogeneous solar wind plasma heating by Alfvén wave spectrum: Parametric studies. Journal of Geophysical Research, 2010, 115, .	3.3	28
79	Estimating random transverse velocities in the fast solar wind from EISCAT Interplanetary Scintillation measurements. Annales Geophysicae, 2002, 20, 1265-1277.	1.6	28
80	Quasi-periodic Counter-propagating Fast Magnetosonic Wave Trains from Neighboring Flares: SDO/AIA Observations and 3D MHD Modeling. Astrophysical Journal, 2018, 860, 54.	4.5	27
81	Threeâ€Fluid 2.5â€dimensional Magnetohydrodynamic Model of the Effective Temperature in Coronal Holes. Astrophysical Journal, 2001, 553, 935-940.	4.5	26
82	3-D numerical simulations of coronal loops oscillations. Annales Geophysicae, 2009, 27, 3899-3908.	1.6	25
83	High-frequency Alfvén waves in multi-ion coronal plasma: Observational implications. Journal of Geophysical Research, 2005, 110, .	3.3	24
84	GLOBAL CORONAL SEISMOLOGY IN THE EXTENDED SOLAR CORONA THROUGH FAST MAGNETOSONIC WAVES OBSERVED BY <i>STEREO</i> SECCHI COR1. Astrophysical Journal, 2013, 776, 55.	4.5	24
85	Twoâ€dimensional hybrid models of H ⁺ â€He ⁺⁺ expanding solar wind plasma heating. Journal of Geophysical Research: Space Physics, 2014, 119, 4223-4238.	2.4	24
86	Effect of Transport Coefficients on Excitation of Flare-induced Standing Slow-mode Waves in Coronal Loops. Astrophysical Journal, 2018, 860, 107.	4.5	24
87	Improved input to the empirical coronal mass ejection (CME) driven shock arrival model from CME cone models. Space Weather, 2006, 4, n/a-n/a.	3.7	23
88	THE ROLE OF ACTIVE REGION LOOP GEOMETRY. II. SYMMETRY BREAKING IN THREE-DIMENSIONAL ACTIVE REGION: WHY ARE VERTICAL KINK OSCILLATIONS OBSERVED SO RARELY?. Astrophysical Journal, 2011, 728, 87.	4.5	23
89	ION HEATING IN INHOMOGENEOUS EXPANDING SOLAR WIND PLASMA: THE ROLE OF PARALLEL AND OBLIQUE ION-CYCLOTRON WAVES. Astrophysical Journal, 2015, 799, 77.	4.5	23
90	Rippled quasiâ€perpendicular collisionless shocks: Local and global normals. Journal of Geophysical Research: Space Physics, 2013, 118, 5999-6006.	2.4	22

#	Article	IF	CITATIONS
91	Numerical simulations of vertical oscillations of a multi-stranded coronal loop. Astronomy and Astrophysics, 2006, 460, 887-892.	5.1	21
92	Standing fast magnetoacoustic kink waves of solar coronal loops with field-aligned flow. Astronomy and Astrophysics, 2008, 488, 757-761.	5.1	21
93	Web-Based Data Processing System for Automated Detection of Oscillations with Applications to the Solar Atmosphere. Solar Physics, 2010, 266, 349-367.	2.5	20
94	Hybrid models of solar wind plasma heating. Annales Geophysicae, 2011, 29, 1071-1079.	1.6	20
95	H <i>α</i> Doppler shifts in a tornado in the solar corona. Astronomy and Astrophysics, 2017, 597, A109.	5.1	20
96	Determination of Transport Coefficients by Coronal Seismology of Flare-induced Slow-mode Waves: Numerical Parametric Study of a 1D Loop Model. Astrophysical Journal, 2019, 886, 2.	4.5	20
97	SUMER Observations of the Evolution and the Disappearance of a Solar Prominence. Solar Physics, 1998, 183, 97-106.	2.5	18
98	Reconnection remnants in the magnetic cloud of October 18-19, 1995: A shock, monochromatic wave, heat flux dropout, and energetic ion beam. Journal of Geophysical Research, 2001, 106, 15985-16000.	3.3	18
99	THE ROLE OF ACTIVE REGION TOPOLOGY IN EXCITATION, TRAPPING, AND DAMPING OF CORONAL LOOP OSCILLATIONS. Astrophysical Journal, 2010, 714, 170-177.	4.5	18
100	THE ROLE OF ACTIVE REGION LOOP GEOMETRY. I. HOW CAN IT AFFECT CORONAL SEISMOLOGY?. Astrophysical Journal, 2011, 726, 42.	4.5	18
101	The origin of the slow solar wind in coronal streamers. Advances in Space Research, 2004, 33, 681-688.	2.6	17
102	Semiempirically derived heating function of the corona heliosphere during the Whole Sun Month. Journal of Geophysical Research, 2006, 111, .	3.3	17
103	MULTI-FLUID MODEL OF A STREAMER AT SOLAR MINIMUM AND COMPARISON WITH OBSERVATIONS. Astrophysical Journal, 2011, 734, 30.	4.5	16
104	Attenuation of Alfvén waves in straight and curved coronal slabs. Astronomy and Astrophysics, 2007, 469, 1117-1121.	5.1	15
105	Excitation of flare-induced waves in coronal loops and the effects of radiative cooling. Advances in Space Research, 2018, 61, 645-654.	2.6	15
106	Nonlinear Excitation of Global Modes and Heating in Randomly Driven Coronal Loops. Astrophysical Journal, 1996, 456, .	4.5	14
107	Signatures of Global Mode Alfvén Resonance Heating in Coronal Loops. Astrophysical Journal, 1996, 459, .	4.5	13
108	PROBING THE THERMODYNAMICS AND KINEMATICS OF SOLAR CORONAL STREAMERS. Astrophysical Journal, 2011, 728, 67.	4.5	13

#	Article	IF	CITATIONS
109	Kelvin–Helmholtz instability in a twisting solar polar coronal hole jet observed by SDO/AIA. Advances in Space Research, 2018, 61, 628-638.	2.6	13
110	The effects of inhomogeneous protonâ€ <i>α</i> drifts on the heating of the solar wind. Journal of Geophysical Research: Space Physics, 2017, 122, 5839-5855.	2.4	13
111	On the dispersion of ion cyclotron waves in H ⁺ â^'He ^{+ +} solar windâ€ŀike magnetized plasmas. Journal of Geophysical Research, 1988, 93, 2533-2538.	3.3	12
112	NONLINEAR MHD WAVES IN A PROMINENCE FOOT. Astrophysical Journal, 2015, 813, 124.	4.5	12
113	Automated identification of transiting exoplanet candidates in NASA Transiting Exoplanets Survey Satellite (TESS) data with machine learning methods. New Astronomy, 2022, 91, 101693.	1.8	12
114	Simulating the Solar Minimum Corona in UV Wavelengths with Forward Modeling II. Doppler Dimming and Microscopic Anisotropy Effect. Astrophysical Journal, 2021, 912, 141.	4.5	11
115	Excitation of vertical kink waves in a solar coronal arcade loop by a periodic driver. Astronomy and Astrophysics, 2010, 512, A76.	5.1	10
116	OBSERVATIONS AND MODELS OF SLOW SOLAR WIND WITH Mg ^{9 +} IONS IN QUIESCENT STREAMERS. Astrophysical Journal, 2013, 762, 18.	4.5	10
117	Growth and nonlinear saturation of electromagnetic ion cyclotron waves in multiâ€ion species magnetospheric plasma. Journal of Geophysical Research: Space Physics, 2017, 122, 6469-6484.	2.4	10
118	Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind. Solar Physics, 2019, 294, 1.	2.5	10
119	Three-dimensional MHD modeling of vertical kink oscillations in an active region plasma curtain. Astronomy and Astrophysics, 2015, 582, A75.	5.1	8
120	Motions in Prominence Barbs Observed on the Solar Limb. Astrophysical Journal, 2018, 859, 121.	4.5	8
121	Excitation and Damping of Slow Magnetosonic Waves in Flaring Hot Coronal Loops: Effects of Compressive Viscosity. Astrophysical Journal, 2022, 926, 64.	4.5	8
122	Understanding the Role of <i>α</i> Particles in Oblique Heliospheric Shock Oscillations. Journal of Geophysical Research: Space Physics, 2019, 124, 2393-2405.	2.4	7
123	Modeling Ion Beams, Kinetic Instabilities, and Waves Observed by the Parker Solar Probe near Perihelia. Astrophysical Journal, 2022, 926, 185.	4.5	7
124	Hybrid simulation of ion-acoustic waves excitation by non-linear Alfvén wave. Advances in Space Research, 2011, 48, 25-31.	2.6	6
125	Development of Multidimensional MHD Model for the Solar Corona and Solar Wind. AIP Conference Proceedings, 2003, , .	0.4	5
126	SLOW MAGNETOACOUSTIC WAVE OSCILLATION OF AN EXPANDING CORONAL LOOP. Astrophysical Journal, 2011, 739, 75.	4.5	5

#	Article	IF	CITATIONS
127	Three-dimensional multi-fluid model of a coronal streamer belt with a tilted magnetic dipole. Annales Geophysicae, 2015, 33, 47-53.	1.6	5
128	Inference of magnetic field in the coronal streamer invoking kink wave motions generated by multiple EUV waves. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1409-1415.	4.4	5
129	Hybrid Simulation of Solar-Wind-Like Turbulence. Solar Physics, 2019, 294, 1.	2.5	5
130	Nonlinear aspects of collective, electromagnetic interactions in magnetized plasmas with anisotropic protons and isotropic alpha particles. Journal of Plasma Physics, 1986, 36, 387-405.	2.1	4
131	Two-fluid 2.5D MHD model of the fast solar wind and the effective proton temperature. , 1999, , .		4
132	Wave acceleration of the fast solar wind. Advances in Space Research, 2006, 38, 64-74.	2.6	4
133	Magnetic reconnection and current-sheet formation at X-type neutral points. Geophysical Monograph Series, 1995, , 189-196.	0.1	3
134	Title is missing!. Space Science Reviews, 1999, 87, 165-168.	8.1	3
135	Numerical simulations of trapped slow magnetosonic waves in solar coronal plumes. Advances in Space Research, 2000, 25, 1909-1912.	2.6	3
136	Hybrid simulation of the shock wave trailing the Moon. Journal of Geophysical Research, 2012, 117, .	3.3	3
137	Quasi-periodic fast-mode magnetosonic wave trains within coronal waveguides associated with flares and CMEs. AIP Conference Proceedings, 2016, , .	0.4	3
138	Parallel electric field in the auroral ionosphere: excitation of acoustic waves by Alfvén waves. Annales Geophysicae, 2004, 22, 2797-2804.	1.6	3
139	Alfveln wave phase mixing driven by velocity shear in two dimensions. , 1999, , .		2
140	Flows in coronal loops driven by Alfveln waves: 1.5 MHD simulations with transparent boundary conditions. AIP Conference Proceedings, 2003, , .	0.4	2
141	Three-dimensional MHD modeling of waves in active region loops. Proceedings of the International Astronomical Union, 2008, 4, 151-154.	0.0	2
142	Streamers study at solar minimum: combination of UV observations and numerical modeling. , 2010, , .		2
143	Evidence of thermal conduction suppression in hot coronal loops: supplementary results. Proceedings of the International Astronomical Union, 2015, 11, 202-208.	0.0	2
144	UV core dimming in coronal streamer belt and the projection effects. Astronomy and Astrophysics, 2019, 623, A95.	5.1	2

#	Article	IF	CITATIONS
145	Fast Magnetosonic Waves and Flows in a Solar Prominence Foot: Observations and Modeling. Astrophysical Journal, 2020, 899, 99.	4.5	2
146	Soho Observations of Density Fluctuations in Coronal Holes. Space Science Reviews, 1999, 87, 287-290.	8.1	1
147	Three-fluid 2.5D MHD models of waves in solar coronal holes and the relation to SOHO/UVCS observations. AIP Conference Proceedings, 2000, , .	0.4	1
148	Oblique High Mach Number Heliospheric Shocks: The Role of α Particles. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028962.	2.4	1
149	Magnetic configurations for axisymmetric tandem mirror devices. Computer Physics Communications, 1986, 42, 217-232.	7.5	0
150	Reply to "Comment on nonlinear studies of coronal heating by the resonant absorption of Alfvén waves―by J. V. Hollweg. Geophysical Research Letters, 1995, 22, 2679-2680.	4.0	0
151	Heating of coronal holes by the resonant absorption and dissipation of Alfveln waves. AIP Conference Proceedings, 1996, , .	0.4	0
152	Solitary waves in coronal holes-predicted signatures close to the sun. AIP Conference Proceedings, 1997, , .	0.4	0
153	Imaging the Sun In Extreme Ultraviolet and in X-Rays with Spaceborne Instruments. Optics and Photonics News, 2000, 11, 54.	0.5	0
154	The effect of broad-band Alfveln-cyclotron waves spectra on the preferential heating and differential acceleration of He[sup ++] ions in the solar wind. , 2013, , .		0
155	Heating and acceleration of solar wind ions by turbulent wave spectrum in inhomogeneous expanding plasma. AIP Conference Proceedings, 2016, , .	0.4	0
156	Energy Release in the Solar Atmosphere from a Stream of Infalling Prominence Debris. Astrophysical Journal Letters, 2017, 847, L17.	8.3	0
157	Collisionless relaxation of the ion ring distribution in space plasma. Planetary and Space Science, 2019, 165, 75-84.	1.7	0
158	Wave Heating and Acceleration of the Fast Solar Wind. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2003, , 349-365.	0.1	0
159	Can Rotating Hot Plasma Jets In The Solar Corona Become Unstable?. , 2018, , .		0
160	ACCELERATION AND HEATING OF SOLAR WIND IONS BY NONLINEAR WAVES. , 0, , 1-20.		0