
Jingfa Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7468804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intravitreal Injection of Erythropoietin Protects both Retinal Vascular and Neuronal Cells in Early Diabetes. , 2008, 49, 732.		223
2	ERK- and Akt-Dependent Neuroprotection by Erythropoietin (EPO) against Glyoxal-AGEs via Modulation of Bcl-xL, Bax, and BAD. , 2010, 51, 35.		117
3	TRIM46 contributes to high glucose-induced ferroptosis and cell growth inhibition in human retinal capillary endothelial cells by facilitating GPX4 ubiquitination. Experimental Cell Research, 2021, 407, 112800.	1.2	71
4	miR-365 promotes diabetic retinopathy through inhibiting Timp3 and increasing oxidative stress. Experimental Eye Research, 2018, 168, 89-99.	1.2	49
5	Glia maturation factor-β induces ferroptosis by impairing chaperone-mediated autophagic degradation of ACSL4 in early diabetic retinopathy. Redox Biology, 2022, 52, 102292.	3.9	48
6	The glucagon like peptide 1 analogue, exendin-4, attenuates oxidative stress-induced retinal cell death in early diabetic rats through promoting Sirt1 and Sirt3 expression. Experimental Eye Research, 2016, 151, 203-211.	1.2	46
7	Erythropoietin Exerts a Neuroprotective Function Against Clutamate Neurotoxicity in Experimental Diabetic Retina. Investigative Ophthalmology and Visual Science, 2014, 55, 8208-8222.	3.3	44
8	Erythropoietin protects the inner blood–retinal barrier by inhibiting microglia phagocytosis via Src/Akt/cofilin signalling in experimental diabetic retinopathy. Diabetologia, 2021, 64, 211-225.	2.9	43
9	Subretinal Delivery of AAV2-Mediated Human Erythropoietin Gene Is Protective and Safe in Experimental Diabetic Retinopathy. , 2014, 55, 1519.		36
10	Erythropoietin protects outer bloodâ€retinal barrier in experimental diabetic retinopathy by upâ€regulating ZOâ€1 and occludin. Clinical and Experimental Ophthalmology, 2019, 47, 1182-1197.	1.3	36
11	Melatonin maintains inner bloodâ€retinal barrier via inhibition of p38/TXNIP/NFâ€₽B pathway in diabetic retinopathy. Journal of Cellular Physiology, 2021, 236, 5848-5864.	2.0	30
12	Erythropoietin Protects Retinal Cells in Diabetic Rats Through Upregulating ZnT8 via Activating ERK Pathway and Inhibiting HIF-1α Expression. , 2015, 56, 8166.		28
13	EPO attenuates inflammatory cytokines by Muller cells in diabetic retinopathy. Frontiers in Bioscience - Elite, 2011, E3, 201-211.	0.9	24
14	Associations of sensory impairment and cognitive function in middle-aged and older Chinese population: The China Health and Retirement Longitudinal Study. Journal of Global Health, 2021, 11, 08008.	1.2	24
15	Protective Effects of Fucoidan on Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells and Progression of Proliferative Vitreoretinopathy. Cellular Physiology and Biochemistry, 2018, 46, 1704-1715.	1.1	23
16	miR-194 suppresses epithelial-mesenchymal transition of retinal pigment epithelial cells by directly targeting ZEB1. Annals of Translational Medicine, 2019, 7, 751-751.	0.7	23
17	Long noncoding RNA ERLR mediates epithelial-mesenchymal transition of retinal pigment epithelial cells and promotes experimental proliferative vitreoretinopathy. Cell Death and Differentiation, 2021, 28, 2351-2366.	5.0	23
18	TGF-β promotes pericyte-myofibroblast transition in subretinal fibrosis through the Smad2/3 and Akt/mTOR pathways. Experimental and Molecular Medicine, 2022, 54, 673-684.	3.2	23

JINGFA ZHANG

#	Article	IF	CITATIONS
19	Inhibitory Effect of Bone Morphogenetic Protein 4 in Retinal Pigment Epithelial-Mesenchymal Transition. Scientific Reports, 2016, 6, 32182.	1.6	22
20	Regionâ€ s pecific ischemia, neovascularization and macular oedema in treatmentâ€naÃ⁻ve proliferative diabetic retinopathy. Clinical and Experimental Ophthalmology, 2018, 46, 757-766.	1.3	22
21	Time-dependent changes in hypoxia- and gliosis-related factors in experimental diabetic retinopathy. Eye, 2019, 33, 600-609.	1.1	22
22	Study on microscope hyperspectral medical imaging method for biomedical quantitative analysis. Science Bulletin, 2008, 53, 1431-1434.	4.3	21
23	Enhancing fractalkine/CX3CR1 signalling pathway can reduce neuroinflammation by attenuating microglia activation in experimental diabetic retinopathy. Journal of Cellular and Molecular Medicine, 2022, 26, 1229-1244.	1.6	21
24	Melatonin Maintains Inner Blood–Retinal Barrier by Regulating Microglia via Inhibition of PI3K/Akt/Stat3/NF-κB Signaling Pathways in Experimental Diabetic Retinopathy. Frontiers in Immunology, 2022, 13, 831660.	2.2	21
25	Anti-VEGF effects of intravitreal erythropoietin in early diabetic retinopathy. Frontiers in Bioscience - Elite, 2010, E2, 912-927.	0.9	20
26	EPO reduces reactive gliosis and stimulates neurotrophin expression in Muller cells. Frontiers in Bioscience - Elite, 2011, E3, 1541-1555.	0.9	20
27	Erythropoietin maintains VE-cadherin expression and barrier function in experimental diabetic retinopathy via inhibiting VEGF/VEGFR2/Src signaling pathway. Life Sciences, 2020, 259, 118273.	2.0	18
28	A cell culture condition that induces the mesenchymal-epithelial transition of dedifferentiated porcine retinal pigment epithelial cells. Experimental Eye Research, 2018, 177, 160-172.	1.2	15
29	MicroRNA-24 protects retina from degeneration in rats by down-regulating chitinase-3-like protein 1. Experimental Eye Research, 2019, 188, 107791.	1.2	14
30	The Interplay Between E-Cadherin, Connexin 43, and Zona Occludens 1 in Retinal Pigment Epithelial Cells. , 2019, 60, 5104.		14
31	Transplantation Site Affects the Outcomes of Adipose-Derived Stem Cell-Based Therapy for Retinal Degeneration. Stem Cells International, 2020, 2020, 1-12.	1.2	14
32	Imaging Hyperreflective Foci as an Inflammatory Biomarker after Anti-VEGF Treatment in Neovascular Age-Related Macular Degeneration Patients with Optical Coherence Tomography Angiography. BioMed Research International, 2021, 2021, 1-7.	0.9	14
33	Anti-VEGF therapy prevents Müller intracellular edema by decreasing VEGF-A in diabetic retinopathy. Eye and Vision (London, England), 2021, 8, 13.	1.4	14
34	FTY720 ameliorates Dry Eye Disease in NOD mice: Involvement of leukocytes inhibition and goblet cells regeneration in ocular surface tissue. Experimental Eye Research, 2015, 138, 145-152.	1.2	13
35	OFD1, as a Ciliary Protein, Exhibits Neuroprotective Function in Photoreceptor Degeneration Models. PLoS ONE, 2016, 11, e0155860.	1.1	13
36	HMGB2 causes photoreceptor death via down-regulating Nrf2/HO-1 and up-regulating NF-κB/NLRP3 signaling pathways in light-induced retinal degeneration model. Free Radical Biology and Medicine, 2022, 181, 14-28.	1.3	11

JINGFA ZHANG

#	Article	IF	CITATIONS
37	Effectively Intervening Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells With a Combination of ROCK and TGF- \hat{I}^2 Signaling Inhibitors. , 2021, 62, 21.		10
38	Centromere protein E as a novel biomarker and potential therapeutic target for retinoblastoma. Bioengineered, 2021, 12, 5950-5970.	1.4	10
39	Hyperreflective Foci and Subretinal Fluid Are Potential Imaging Biomarkers to Evaluate Anti-VEGF Effect in Diabetic Macular Edema. Frontiers in Physiology, 2021, 12, 791442.	1.3	9
40	A modified histoimmunochemistry-assisted method for in situ RPE evaluation. Frontiers in Bioscience - Elite, 2012, E4, 1571.	0.9	8
41	Activated microglia–induced neuroinflammatory cytokines lead to photoreceptor apoptosis in Aβ-injected mice. Journal of Molecular Medicine, 2021, 99, 713-728.	1.7	8
42	Selecting highly sensitive non-obese diabetic mice for improving the study of Sjögren's syndrome. Graefe's Archive for Clinical and Experimental Ophthalmology, 2009, 247, 59-66.	1.0	7
43	Metformin Protects ARPE-19 Cells from Glyoxal-Induced Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1740943.	1.9	7
44	Identification of two novel RHO mutations in Chinese retinitis pigmentosa patients. Experimental Eye Research, 2019, 188, 107726.	1.2	5
45	Identification of novel key molecular signatures in the pathogenesis of experimental diabetic retinopathy. IUBMB Life, 2021, 73, 1307-1324.	1.5	5
46	Glia Maturation Factor Beta as a Novel Biomarker and Therapeutic Target for Hepatocellular Carcinoma. Frontiers in Oncology, 2021, 11, 744331.	1.3	5
47	Silencing Nogo-B improves the integrity of blood-retinal barrier in diabetic retinopathy via regulating Src, PI3K/Akt and ERK pathways. Biochemical and Biophysical Research Communications, 2021, 581, 96-102.	1.0	4
48	An in vitro cell model to study microglia activation in diabetic retinopathy. Cell Biology International, 2022, 46, 129-138.	1.4	3
49	Nonhomogenous Hyperreflectivity in the Choriocapillaris Layer on Optical Coherence Tomography Angiography Implies Early Treatment with Anti-VEGF for Central Serous Chorioretinopathy. Ophthalmic Research, 2022, 65, 506-515.	1.0	2
50	Development and Validation of a Novel Metabolic Signature-Based Prognostic Model for Uveal Melanoma. Translational Vision Science and Technology, 2022, 11, 9.	1.1	2
51	The Petri Dish-N2B27 Culture Condition Maintains RPE Phenotype by Inhibiting Cell Proliferation and mTOR Activation. Journal of Ophthalmology, 2020, 2020, 1-12.	0.6	1
52	Inhibition of PARP activity improves therapeutic effect of ARPE-19 transplantation in RCS rats through decreasing photoreceptor death. Experimental Eye Research, 2021, 204, 108448.	1.2	1
53	Optical Coherence Tomography Angiography Characteristics Serve as Retinal Vein Occlusion Therapeutic Biomarkers for Dexamethasone Intravitreal Implant. Disease Markers, 2021, 2021, 1-21.	0.6	1
54	Neovascular Remodeling and Subretinal Fibrosis as Biomarkers for Predicting Incomplete Response to Anti-VECF Therapy in Neovascular Age-Related Macular Degeneration. Frontiers in Bioscience, 2022, 27, 135.	0.8	1

#	Article	IF	CITATIONS
55	Hyperrefective foci in diabetic macular edema with subretinal fluid: association with visual outcomes after anti-VEGF treatment. Ophthalmic Research, 0, , .	1.0	0