
Victoria Eugenia Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7468476/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the succinic acid production from xylose by growing and resting cells of Actinobacillus succinogenes: a comparison. Biomass Conversion and Biorefinery, 2024, 14, 6533-6546.	4.6	4
2	Immobilization-Stabilization of $\hat{1}^2$ -Glucosidase for Implementation of Intensified Hydrolysis of Cellobiose in Continuous Flow Reactors. Catalysts, 2022, 12, 80.	3.5	10
3	Production of Fumaric Acid by Rhizopus arrhizus NRRL 1526: A Simple Production Medium and the Kinetic Modelling of the Bioprocess. Fermentation, 2022, 8, 64.	3.0	6
4	Extraction of Antioxidants from Grape and Apple Pomace: Solvent Selection and Process Kinetics. Applied Sciences (Switzerland), 2022, 12, 4901.	2.5	5
5	Modulating redox metabolism to improve isobutanol production in Shimwellia blattae. Biotechnology for Biofuels, 2021, 14, 8.	6.2	15
6	Multi-feedstock lignocellulosic biorefineries based on biological processes: An overview. Industrial Crops and Products, 2021, 172, 114062.	5.2	20
7	Kinetic modelling of 2,3-butanediol production by Raoultella terrigena CECT 4519 resting cells: Effect of fluid dynamics conditions and initial glycerol concentration. Biochemical Engineering Journal, 2021, 176, 108185.	3.6	7
8	High 2,3-butanediol production from glycerol by Raoultella terrigena CECT 4519. Bioprocess and Biosystems Engineering, 2020, 43, 685-692.	3.4	18
9	Fluid dynamic conditions and oxygen availability effects on microbial cultures in STBR: An overview. Biochemical Engineering Journal, 2020, 164, 107803.	3.6	16
10	Kinetic Modelling of the Coproduction Process of Fumaric and Malic Acids by Rhizopus arrhizus NRRL 1526. Processes, 2020, 8, 188.	2.8	4
11	Production of Oligosaccharides from Agrofood Wastes. Fermentation, 2020, 6, 31.	3.0	42
12	d-lactic acid production from orange waste enzymatic hydrolysates with L. delbrueckii cells in growing and resting state. Industrial Crops and Products, 2020, 146, 112176.	5.2	22
13	Kinetic Modeling of Dihydroxyacetone Production from Glycerol by Gluconobacter oxydans ATCC 621 Resting Cells: Effect of Fluid Dynamics Conditions. Catalysts, 2020, 10, 101.	3.5	11
14	Utilisation/upgrading of orange peel waste from a biological biorefinery perspective. Applied Microbiology and Biotechnology, 2019, 103, 5975-5991.	3.6	64
15	Effects of fluid-dynamic conditions in Shimwellia blattae (p424lbPSO) cultures in stirred tank bioreactors: Hydrodynamic stress and change of metabolic routes by oxygen availability. Biochemical Engineering Journal, 2019, 149, 107238.	3.6	9
16	Influence of oxygen transfer and uptake rates on dihydroxyacetone production from glycerol by Gluconobacter oxydans in resting cells operation. Biochemical Engineering Journal, 2019, 147, 20-28.	3.6	14
17	Orange peel waste upstream integrated processing to terpenes, phenolics, pectin and monosaccharides: Optimization approaches. Industrial Crops and Products, 2019, 134, 370-381.	5.2	49
18	Production of D-lactic acid by L. delbrueckii growing on orange peel waste hydrolysates and model monosaccharide solutions: effects of pH and temperature on process kinetics. Biomass Conversion and Biorefinery, 2019, 9, 565-575.	4.6	17

#	Article	IF	CITATIONS
19	Dihydroxyacetone production from glycerol using Gluconobacter oxydans : Study of medium composition and operational conditions in shaken flasks. Biotechnology Progress, 2019, 35, e2803.	2.6	11
20	On the use of resting L. delbrueckii spp. delbrueckii cells for D-lactic acid production from orange peel wastes hydrolysates. Biochemical Engineering Journal, 2019, 145, 162-169.	3.6	43
21	Kinetic Modeling of the Isobutanol Production from Glucose Using <i>Shimwellia blattae</i> (p424lbPSO) Strain: Effect of Initial Substrate Concentration. Industrial & Engineering Chemistry Research, 2019, 58, 1502-1512.	3.7	4
22	Carbon flux distribution in the metabolism of <i>Shimwellia blattae</i> (p424lbPSO) for isobutanol production from glucose as function of oxygen availability. Journal of Chemical Technology and Biotechnology, 2019, 94, 850-858.	3.2	6
23	Stirred Tank Bioreactors. , 2019, , 270-290.		1
24	Behavior of several <i>pseudomonas putida</i> strains growth under different agitation and oxygen supply conditions. Biotechnology Progress, 2018, 34, 900-909.	2.6	8
25	Isobutanol production by a recombinant biocatalyst Shimwellia blattae (p424lbPSO): Study of the operational conditions. Biochemical Engineering Journal, 2018, 133, 21-27.	3.6	11
26	Resting cells isobutanol production byShimwellia blattae(p424IbPSO): Influence of growth culture conditions. Biotechnology Progress, 2018, 34, 1073-1080.	2.6	8
27	Production of d-lactic acid by Lactobacillus delbrueckii ssp. delbrueckii from orange peel waste: techno-economical assessment of nitrogen sources. Applied Microbiology and Biotechnology, 2018, 102, 10511-10521.	3.6	44
28	Fumaric Acid Production: A Biorefinery Perspective. Fermentation, 2018, 4, 33.	3.0	53
29	Influence of fluid dynamic conditions on 1,3â€propanediol production from glycerol by <i>Shimwellia blattae</i> : carbon flux and cell response. Journal of Chemical Technology and Biotechnology, 2017, 92, 2050-2059.	3.2	5
30	Metabolic and process engineering for biodesulfurization in Gram-negative bacteria. Journal of Biotechnology, 2017, 262, 47-55.	3.8	58
31	Study on the effects of several operational variables on the enzymatic batch saccharification of orange solid waste. Bioresource Technology, 2017, 245, 906-915.	9.6	32
32	Metabolic kinetic model for dibenzothiophene desulfurization through 4S pathway using intracellular compound concentrations. Biochemical Engineering Journal, 2017, 117, 89-96.	3.6	12
33	Kinetic modeling of 1,3-propanediol production from raw glycerol by Shimwellia blattae : Influence of the initial substrate concentration. Biochemical Engineering Journal, 2017, 117, 57-65.	3.6	22
34	Effect of fluid dynamic conditions on 2,3â€butanediol production by <i>Raoultella terrigena</i> in <scp>SBTR</scp> : oxygen transfer and uptake rates. Journal of Chemical Technology and Biotechnology, 2017, 92, 1266-1275.	3.2	16
35	Optimization of the Enzymatic Saccharification Process of Milled Orange Wastes. Fermentation, 2017, 3, 37.	3.0	9
36	Influence of oxygen transfer on Pseudomonas putida effects on growth rate and biodesulfurization capacity. Bioprocess and Biosystems Engineering, 2016, 39, 545-554.	3.4	21

#	Article	IF	CITATIONS
37	Novel biocatalysts for glycerol conversion into 2,3-butanediol. Process Biochemistry, 2016, 51, 740-748.	3.7	24
38	Biodesulfurization of dibenzothiophene by resting cells of <i>Pseudomonas putida</i> <scp>CECT5279</scp> : influence of the oxygen transfer rate in the scaleâ€up from shaken flask to stirred tank reactor. Journal of Chemical Technology and Biotechnology, 2016, 91, 184-189.	3.2	24
39	1,3-Propanediol production from glycerol with a novel biocatalyst Shimwellia blattae ATCC 33430: Operational conditions and kinetics in batch cultivations. Bioresource Technology, 2016, 200, 830-837.	9.6	33
40	1,3-Propanediol production by Klebsiella oxytoca NRRL-B199 from glycerol. Medium composition and operational conditions. Biotechnology Reports (Amsterdam, Netherlands), 2015, 6, 100-107.	4.4	17
41	Effect of fluiddynamic conditions on growth rate and biodesulfurization capacity of Rhodococcus erythropolis IGTS8. Biochemical Engineering Journal, 2015, 99, 138-146.	3.6	18
42	Enhancement of the biodesulfurization capacity of Pseudomonas putida CECT5279 by co-substrate addition. Process Biochemistry, 2015, 50, 119-124.	3.7	42
43	The effect of hydrodynamic stress on the growth of Xanthomonas campestris cultures in a stirred and sparged tank bioreactor. Bioprocess and Biosystems Engineering, 2013, 36, 911-925.	3.4	39
44	The effect of ATP and NADH induced by acetic acid as co-substrate in the 4S route of DBT biodesulphurization by Pseudomonas putida CECT 5279 with mixture of resting whole cells with different age. New Biotechnology, 2012, 29, S51.	4.4	0
45	Viability study of biofilm-former strains from paper industry by flow cytometry with application to kinetic models. Biochemical Engineering Journal, 2012, 68, 199-206.	3.6	3
46	Extended kinetic model for DBT desulfurization using Pseudomonas Putida CECT5279 in resting cells. Biochemical Engineering Journal, 2012, 66, 52-60.	3.6	14
47	Esterification of benzoic acid and glycerol to α-monobenzoate glycerol in solventless media using an industrial free Candida antarctica lipase B. Process Biochemistry, 2012, 47, 243-250.	3.7	32
48	Stirred Tank Bioreactors. , 2011, , 179-198.		3
49	Mixtures of Pseudomonas putida CECT 5279 cells of different ages: Optimization as biodesulfurization catalyst. Process Biochemistry, 2011, 46, 1323-1328.	3.7	25
50	Oxygen uptake rate in microbial processes: An overview. Biochemical Engineering Journal, 2010, 49, 289-307.	3.6	344
51	Analysis of Dibenzothiophene Desulfurization in a Recombinant Pseudomonas putida Strain. Applied and Environmental Microbiology, 2009, 75, 875-877.	3.1	34
52	Study of influence of oxygen transport conditions on oxygen uptake rate of Pseudomonas putida CECT5279 cultures. New Biotechnology, 2009, 25, S216.	4.4	0
53	Biodesulfurization of DBT using Pseudomonas putida CECT5279 resting cells: an improvement by using cosubstrates. New Biotechnology, 2009, 25, S156-S157.	4.4	0
54	Biodesulfurization of Dibenzothiophene (DBT) Using Pseudomonas putida CECT 5279: A Biocatalyst Formulation Comparison. Energy & Fuels, 2009, 23, 5491-5495.	5.1	32

#	Article	IF	CITATIONS
55	Kinetic model for DBT desulphurization by resting whole cells of Pseudomonas putida CECT5279. Biochemical Engineering Journal, 2008, 39, 486-495.	3.6	17
56	Desulfurization of dibenzothiophene using the 4S enzymatic route: Influence of operational conditions on initial reaction rates. Biocatalysis and Biotransformation, 2007, 25, 286-294.	2.0	6
57	Oxygen-Uptake and Mass-Transfer Rates on the Growth ofPseudomonasputidaCECT5279:  Influence on Biodesulfurization (BDS) Capability. Energy & Fuels, 2006, 20, 1565-1571.	5.1	47
58	Oxygen transport rate on Rhodococcus erythropolis cultures: Effect on growth and BDS capability. Chemical Engineering Science, 2006, 61, 4595-4604.	3.8	33
59	Oxygen uptake rate measurements both by the dynamic method and during the process growth of Rhodococcus erythropolis IGTS8: Modelling and difference in results. Biochemical Engineering Journal, 2006, 32, 198-204.	3.6	22
60	Modeling the production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: Influence of media composition. Enzyme and Microbial Technology, 2005, 37, 157-166.	3.2	55
61	Production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: influence of operational conditions. Biochemical Engineering Journal, 2005, 22, 229-237.	3.6	67
62	Biodesulfurisation of DBT with Pseudomonas putida CECT5279 by resting cells: Influence of cell growth time on reducing equivalent concentration and HpaC activity. Biochemical Engineering Journal, 2005, 26, 168-175.	3.6	40
63	Production of a Biocatalyst ofPseudomonas putidaCECT5279 for DBT Biodesulfurization:  Influence of the Operational Conditions. Energy & Fuels, 2005, 19, 775-782.	5.1	52
64	Structured kinetic model for Xanthomonas campestris growth. Enzyme and Microbial Technology, 2004, 34, 583-594.	3.2	10
65	Use of flow cytometry for growth structured kinetic model development. Enzyme and Microbial Technology, 2004, 34, 399-406.	3.2	16
66	Chemical structured kinetic model for xanthan production. Enzyme and Microbial Technology, 2004, 35, 284-292.	3.2	27
67	Production of a Biocatalyst of Pseudomonas putida CECT5279 for Dibenzothiophene (DBT) Biodesulfurization for Different Media Compositions. Energy & Fuels, 2004, 18, 851-857.	5.1	55
68	Oxygen transfer and uptake rates during xanthan gum production. Enzyme and Microbial Technology, 2000, 27, 680-690.	3.2	151
69	Xanthan gum production under several operational conditions: molecular structure and rheological propertiesâ~†. Enzyme and Microbial Technology, 2000, 26, 282-291.	3.2	148
70	Xanthan gum: production, recovery, and properties. Biotechnology Advances, 2000, 18, 549-579.	11.7	1,166
71	Kinetic Model for Anaerobic Digestion of Livestock Manure. Enzyme and Microbial Technology, 1999, 25, 55-60.	3.2	50
72	Title is missing!. World Journal of Microbiology and Biotechnology, 1999, 15, 269-276.	3.6	23

#	Article	IF	CITATIONS
73	Title is missing!. World Journal of Microbiology and Biotechnology, 1999, 15, 309-316.	3.6	6
74	Production and Isolation of Xanthan Gum. Methods in Biotechnology, 1999, , 7-21.	0.2	4
75	Intracellular compounds quantification by means of flow cytometry in bacteria: Application to xanthan production byXanthomonas campestris. , 1998, 57, 87-94.		13
76	Metabolic structured kinetic model for xanthan production. Enzyme and Microbial Technology, 1998, 23, 75-82.	3.2	37
77	Simulation of xanthan gum production by a chemically structured kinetic model. Mathematics and Computers in Simulation, 1996, 42, 187-195.	4.4	12
78	Xanthan gum production: An unstructured kinetic model. Enzyme and Microbial Technology, 1995, 17, 206-217.	3.2	48
79	Nutritional study of Xanthomonas campestris in xanthan gum production by factorial design of experiments. Enzyme and Microbial Technology, 1992, 14, 991-996.	3.2	47