Dolores Perez-Sala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7468402/publications.pdf

Version: 2024-02-01

130 papers 11,542 citations

45 h-index 28297 105 g-index

140 all docs 140 docs citations

140 times ranked

20710 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells Journal of Clinical Investigation, 1998, 101, 2711-2719.	8.2	680
3	Glutathionylation of the p50 Subunit of NF-κB:  a Mechanism for Redox-Induced Inhibition of DNA Binding. Biochemistry, 2001, 40, 14134-14142.	2.5	366
4	Intracellular Alkalinization Suppresses Lovastatin-induced Apoptosis in HL-60 Cells through the Inactivation of a pH-dependent Endonuclease. Journal of Biological Chemistry, 1995, 270, 6235-6242.	3.4	278
5	15-Deoxy-Δ12,14-prostaglandin J2Inhibition of NF-κB-DNA Binding through Covalent Modification of the p50 Subunit. Journal of Biological Chemistry, 2001, 276, 35530-35536.	3.4	274
6	Methylation and demethylation reactions of guanine nucleotide-binding proteins of retinal rod outer segments Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 3043-3046.	7.1	208
7	The gamma subunit of transducin is farnesylated Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 7673-7677.	7.1	188
8	Involvement of Rho GTPases in the Transcriptional Inhibition of Preproendothelin-1 Gene Expression by Simvastatin in Vascular Endothelial Cells. Circulation Research, 2000, 87, 616-622.	4.5	177
9	Betaine homocysteine S-methyltransferase: just a regulator of homocysteine metabolism?. Cellular and Molecular Life Sciences, 2006, 63, 2792-2803.	5.4	157
10	Removal of the 9-methyl group of retinal inhibits signal transduction in the visual process. A fourier transform infrared and biochemical investigation. Biochemistry, 1989, 28, 5954-5962.	2.5	156
11	Inhibition of Isoprenoid Biosynthesis Induces Apoptosis in Human Promyelocytic HL-60 Cells. Biochemical and Biophysical Research Communications, 1994, 199, 1209-1215.	2.1	142
12	Lipoxidation adducts with peptides and proteins: Deleterious modifications or signaling mechanisms?. Journal of Proteomics, 2013, 92, 110-131.	2.4	131
13	The cyclopentenone 15-deoxy-î" ^{12,14} -prostaglandin J ₂ binds to and activates H-Ras. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4772-4777.	7.1	124
14	Molecular Basis for the Direct Inhibition of AP-1 DNA Binding by 15-Deoxy-Δ12,14-prostaglandin J2. Journal of Biological Chemistry, 2003, 278, 51251-51260.	3.4	123
15	Vimentin filament organization and stress sensing depend on its single cysteine residue and zinc binding. Nature Communications, 2015, 6, 7287.	12.8	111
16	Vimentin as a Multifaceted Player and Potential Therapeutic Target in Viral Infections. International Journal of Molecular Sciences, 2020, 21, 4675.	4.1	109
17	Identification of Novel Protein Targets for Modification by 15-Deoxy-Δ12,14-Prostaglandin J2 in Mesangial Cells Reveals Multiple Interactions with the Cytoskeleton. Journal of the American Society of Nephrology: JASN, 2006, 17, 89-98.	6.1	92
18	Regulation of cell adhesion to collagen via \hat{l}^21 integrins is dependent on interactions of filamin A with vimentin and protein kinase C epsilon. Experimental Cell Research, 2010, 316, 1829-1844.	2.6	85

#	Article	IF	CITATIONS
19	Vimentin filaments interact with the actin cortex in mitosis allowing normal cell division. Nature Communications, 2019, 10, 4200.	12.8	83
20	Inhibition of N-linked glycosylation induces early apoptosis in human promyelocytic HL-60 cells. Journal of Cellular Physiology, 1995, 163, 523-531.	4.1	78
21	Protein Thiol Modification by 15-deoxy-î"12,14-Prostaglandin J2 Addition in Mesangial Cells: Role in the Inhibition of Pro-inflammatory Genes. Molecular Pharmacology, 2004, 66, 1349-1358.	2.3	77
22	Protein lipoxidation: Detection strategies and challenges. Redox Biology, 2015, 5, 253-266.	9.0	75
23	Novel application of S-nitrosoglutathione–Sepharose to identify proteins that are potential targets for S-nitrosoglutathione-induced mixed-disulphide formation. Biochemical Journal, 2000, 349, 567-578.	3.7	73
24	Conformational signals in the Câ€terminal domain of methionine adenosyltransferase I/III determine its nucleocytoplasmic distribution. FASEB Journal, 2009, 23, 3347-3360.	0.5	73
25	Turn-on fluorescent probes for nitric oxide sensing based on the ortho-hydroxyamino structure showing no interference with dehydroascorbic acid. Chemical Communications, 2014, 50, 3579.	4.1	73
26	Protein haptenation by amoxicillin: High resolution mass spectrometry analysis and identification of target proteins in serum. Journal of Proteomics, 2012, 77, 504-520.	2.4	71
27	Bcl-2 differentially targets K-, N-, and H-Ras to mitochondria in IL-2 supplemented or deprived cells: Implications in prevention of apoptosis. Oncogene, 1999, 18, 4930-4939.	5.9	69
28	Vimentin intermediate filament assembly regulates fibroblast invasion in fibrogenic lung injury. JCI Insight, 2019, 4, .	5.0	69
29	Apoptosis Induced by IL-2 Withdrawal Is Associated with an Intracellular Acidification. Experimental Cell Research, 1995, 218, 581-585.	2.6	67
30	Regulation of Cyclooxygenase-2 Expression by Nitric Oxide in Cells. Antioxidants and Redox Signaling, 2001, 3, 231-248.	5.4	64
31	PPAR Agonists Amplify iNOS Expression While Inhibiting NF-ή: Implications for Mesangial Cell Activation by Cytokines. Journal of the American Society of Nephrology: JASN, 2002, 13, 2223-2231.	6.1	64
32	Modification and Activation of Ras Proteins by Electrophilic Prostanoids with Different Structure are Site-Selective. Biochemistry, 2007, 46, 6607-6616.	2.5	62
33	Dual Effect of Nitric Oxide Donors on Cyclooxygenase-2 Expression in Human Mesangial Cells. Journal of the American Society of Nephrology: JASN, 1999, 10, 943-952.	6.1	61
34	Interactions between autophagic and endo-lysosomal markers in endothelial cells. Histochemistry and Cell Biology, 2013, 139, 659-670.	1.7	60
35	Isoprenylation of RhoB Is Necessary for Its Degradation. Journal of Biological Chemistry, 2002, 277, 49389-49396.	3.4	58
36	Pharmacogenomics in Aspirin Intolerance. Current Drug Metabolism, 2009, 10, 998-1008.	1.2	58

#	Article	IF	Citations
37	The C-Terminal Sequence of RhoB Directs Protein Degradation through an Endo-Lysosomal Pathway. PLoS ONE, 2009, 4, e8117.	2.5	56
38	Novel application of S-nitrosoglutathioneâ€'Sepharose to identify proteins that are potential targets for S-nitrosoglutathione-induced mixed-disulphide formation. Biochemical Journal, 2000, 349, 567.	3.7	55
39	Protein isoprenylation in biology and disease: general overview and perspectives from studies with genetically engineered animals. Frontiers in Bioscience - Landmark, 2007, 12, 4456.	3.0	53
40	Posttranscriptional regulation of human iNOS by the NO/cGMP pathway. American Journal of Physiology - Renal Physiology, 2001, 280, F466-F473.	2.7	51
41	Differential selectivity of protein modification by the cyclopentenone prostaglandins PGA1and 15-deoxy-Δ12,14-PGJ2: Role of glutathione. FEBS Letters, 2005, 579, 5803-5808.	2.8	49
42	Prostanoids with Cyclopentenone Structure as Tools for the Characterization of Electrophilic Lipid-Protein Interactomes. Annals of the New York Academy of Sciences, 2006, 1091, 548-570.	3.8	49
43	Identification of Aldo-Keto Reductase AKR1B10 as a Selective Target for Modification and Inhibition by Prostaglandin A1: Implications for Antitumoral Activity. Cancer Research, 2011, 71, 4161-4171.	0.9	49
44	Interleukin-13 inhibits inducible nitric oxide synthase expression in human mesangial cells. Biochemical Journal, 1996, 313, 641-646.	3.7	46
45	Mechanisms involved in the contraction of endothelial cells by hydrogen peroxide. Free Radical Biology and Medicine, 1999, 26, 501-510.	2.9	43
46	Requirements for proximal tubule epithelial cell detachment in response to ischemia: Role of oxidative stress. Experimental Cell Research, 2006, 312, 3711-3727.	2.6	43
47	Study of protein targets for covalent modification by the antitumoral and antiâ€inflammatory prostaglandin PGA ₁ : focus on vimentin. Journal of Mass Spectrometry, 2007, 42, 1474-1484.	1.6	43
48	Modification of cysteine residues by cyclopentenone prostaglandins: Interplay with redox regulation of protein function. Mass Spectrometry Reviews, 2014, 33, 110-125.	5.4	43
49	Vimentin disruption by lipoxidation and electrophiles: Role of the cysteine residue and filament dynamics. Redox Biology, 2019, 23, 101098.	9.0	42
50	Study of Protein Haptenation by Amoxicillin Through the Use of a Biotinylated Antibiotic. PLoS ONE, 2014, 9, e90891.	2.5	40
51	Role of Tetrahydrobiopterin Availability in the Regulation of Nitric-oxide Synthase Expression in Human Mesangial Cells. Journal of Biological Chemistry, 1996, 271, 14290-14295.	3.4	39
52	Cyclopentenone Prostaglandins with Dienone Structure Promote Cross-Linking of the Chemoresistance-Inducing Enzyme Glutathione Transferase P1-1. Molecular Pharmacology, 2010, 78, 723-733.	2.3	39
53	Anti-Inflammatory Prostanoids: Focus on the Interactions between Electrophile Signaling and Resolution of Inflammation. Scientific World Journal, The, 2010, 10, 655-675.	2.1	38
54	Increased nitric oxide synthase expression in arterial vessels of cirrhotic rats with ascites. Hepatology, 1996, 24, 1481-1486.	7.3	38

#	Article	IF	CITATIONS
55	Involvement of transcriptional mechanisms in the inhibition of NOS2 expression by dexamethasone in rat mesangial cells. Kidney International, 1998, 53, 38-49.	5.2	37
56	Novel aspects of Ras proteins biology: regulation and implications. Cell Death and Differentiation, 1999, 6, 722-728.	11,2	37
57	Potentiation of tumor formation by topical administration of 15-deoxy-Δ 12,14 -prostaglandin J 2 in a model of skin carcinogenesis. Carcinogenesis, 2006, 27, 328-336.	2.8	37
58	Early effects of copper accumulation on methionine metabolism. Cellular and Molecular Life Sciences, 2008, 65, 2080-2090.	5.4	36
59	Proteomic studies on protein modification by cyclopentenone prostaglandins: Expanding our view on electrophile actions. Journal of Proteomics, 2011, 74, 2243-2263.	2.4	35
60	A-type lamins and Hutchinson-Gilford progeria syndrome: pathogenesis and therapy. Frontiers in Bioscience - Scholar, 2011, S3, 1133.	2.1	35
61	Amoxicillin haptenates intracellular proteins that can be transported in exosomes to target cells. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 385-396.	5.7	35
62	Type III intermediate filaments as targets and effectors of electrophiles and oxidants. Redox Biology, 2020, 36, 101582.	9.0	35
63	Direct evidence for the covalent modification of glutathione-S-transferase P1-1 by electrophilic prostaglandins: Implications for enzyme inactivation and cell survival. Archives of Biochemistry and Biophysics, 2007, 457, 150-159.	3.0	34
64	Contribution of Covalent Protein Modification to the Antiinflammatory Effects of Cyclopentenone Prostaglandins. Annals of the New York Academy of Sciences, 2002, 973, 533-536.	3.8	33
65	Betaine homocysteine S-methyltransferase emerges as a new player of the nuclear methionine cycle. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1165-1182.	4.1	33
66	Identification of an antigenic determinant of clavulanic acid responsible for IgEâ€mediated reactions. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1490-1501.	5.7	33
67	Detoxifying Enzymes at the Cross-Roads of Inflammation, Oxidative Stress, and Drug Hypersensitivity: Role of Glutathione Transferase P1-1 and Aldose Reductase. Frontiers in Pharmacology, 2016, 7, 237.	3.5	31
68	The pharmacophore of debromoaplysiatoxin responsible for protein kinase C activation Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 1973-1976.	7.1	30
69	Addition of electrophilic lipids to actin alters filament structure. Biochemical and Biophysical Research Communications, 2006, 349, 1387-1393.	2.1	30
70	The C-Terminus of H-Ras as a Target for the Covalent Binding of Reactive Compounds Modulating Ras-Dependent Pathways. PLoS ONE, 2011, 6, e15866.	2.5	30
71	Mass Spectrometric Strategies for the Identification and Characterization of Human Serum Albumin Covalently Adducted by Amoxicillin: <i>Ex Vivo</i> Studies. Chemical Research in Toxicology, 2014, 27, 1566-1574.	3.3	29
72	Phospholipidome of endothelial cells shows a different adaptation response upon oxidative, glycative and lipoxidative stress. Scientific Reports, 2018, 8, 12365.	3.3	29

#	Article	IF	CITATIONS
73	Localization of rap1 and rap2 proteins in the gelatinase-containing granules of human neutrophils. FEBS Letters, 1993, 326, 209-214.	2.8	28
74	Structure-activity studies on the retinal rod outer segment isoprenylated protein methyltransferase. Journal of the American Chemical Society, 1992, 114, 3966-3973.	13.7	27
75	The cysteine residue of glial fibrillary acidic protein is a critical target for lipoxidation and required for efficient network organization. Free Radical Biology and Medicine, 2018, 120, 380-394.	2.9	27
76	Mammalian Sulfur Amino Acid Metabolism: A Nexus Between Redox Regulation, Nutrition, Epigenetics, and Detoxification. Antioxidants and Redox Signaling, 2018, 29, 408-452.	5.4	26
77	Protein Lipoxidation: Basic Concepts and Emerging Roles. Antioxidants, 2021, 10, 295.	5.1	26
78	Drawbacks of Dialysis Procedures for Removal of EDTA. PLoS ONE, 2017, 12, e0169843.	2.5	25
79	A biotinylated analog of the anti-proliferative prostaglandin A1 allows assessment of PPAR-independent effects and identification of novel cellular targets for covalent modification. Chemico-Biological Interactions, 2010, 183, 212-221.	4.0	24
80	Proteomics in immunological reactions to drugs. Current Opinion in Allergy and Clinical Immunology, 2011, 11, 305-312.	2.3	24
81	The influence of the carrier molecule on amoxicillin recognition by specific IgE in patients with immediate hypersensitivity reactions to betalactams. Scientific Reports, 2016, 6, 35113.	3.3	24
82	A-class prostaglandins: Early findings and new perspectives for overcoming tumor chemoresistance. Cancer Letters, 2012, 320, 150-157.	7.2	22
83	<i>Salmonella</i> exploits host Rho GTPase signalling pathways through the phosphatase activity of SopB. Cellular Microbiology, 2018, 20, e12938.	2.1	22
84	Modification of Proteins by Cyclopentenone Prostaglandins is Differentially Modulated by GSH in Vitro. Annals of the New York Academy of Sciences, 2007, 1096, 78-85.	3.8	21
85	Analogs of farnesylcysteine induce apoptosis in HL-60 cells. FEBS Letters, 1998, 426, 319-324.	2.8	20
86	Regulation of cyclooxygenase-2 expression in human mesangial cells - transcriptional inhibition by IL-13. FEBS Journal, 1999, 260, 268-274.	0.2	18
87	Electrophilic eicosanoids: Signaling and targets. Chemico-Biological Interactions, 2011, 192, 96-100.	4.0	18
88	How are mammalian methionine adenosyltransferases regulated in the liver? A focus on redox stress. FEBS Letters, 2013, 587, 1711-1716.	2.8	18
89	Selective binding of the fluorescent dye 1-anilinonaphthalene-8-sulfonic acid to peroxisome proliferator-activated receptor \hat{I}^3 allows ligand identification and characterization. Analytical Biochemistry, 2010, 399, 84-92.	2.4	16
90	Structural Determinants Allowing Endolysosomal Sorting and Degradation of Endosomal GTPases. Traffic, 2010, 11, 1221-1233.	2.7	16

#	Article	IF	Citations
91	15-Deoxy-Δ 12,14-Prostaglandin J2 Exerts Pro- and Anti-Inflammatory Effects in Mesangial Cells in a Concentration-Dependent Manner. Inflammation and Allergy: Drug Targets, 2012, 11, 58-65.	1.8	16
92	Molecular Interactions and Implications of Aldose Reductase Inhibition by PGA ₁ and Clinically Used Prostaglandins. Molecular Pharmacology, 2016, 89, 42-52.	2.3	16
93	Zinc Differentially Modulates the Assembly of Soluble and Polymerized Vimentin. International Journal of Molecular Sciences, 2020, 21, 2426.	4.1	16
94	Cell surface detection of vimentin, ACE2 and SARS-CoV-2 Spike proteins reveals selective colocalization at primary cilia. Scientific Reports, 2022, 12, 7063.	3.3	16
95	Acute Liver Injury Induces Nucleocytoplasmic Redistribution of Hepatic Methionine Metabolism Enzymes. Antioxidants and Redox Signaling, 2014, 20, 2541-2554.	5.4	15
96	Dynamic posttranslational modifications of cytoskeletal proteins unveil hot spots under nitroxidative stress. Redox Biology, 2021, 44, 102014.	9.0	15
97	Impact of inhibition of the autophagy-lysosomal pathway on biomolecules carbonylation and proteome regulation in rat cardiac cells. Redox Biology, 2019, 23, 101123.	9.0	14
98	An Isoprenylation and Palmitoylation Motif Promotes Intraluminal Vesicle Delivery of Proteins in Cells from Distant Species. PLoS ONE, 2014, 9, e107190.	2.5	14
99	Insight into the cellular effects of nitrated phospholipids: Evidence for pleiotropic mechanisms of action. Free Radical Biology and Medicine, 2019, 144, 192-202.	2.9	13
100	Amoxicillin Inactivation by Thiol-Catalyzed Cyclization Reduces Protein Haptenation and Antibacterial Potency. Frontiers in Pharmacology, 2020, 11 , 189 .	3.5	13
101	Adduct Formation and Context Factors in Drug Hypersensitivity: Insight from Proteomic Studies. Current Pharmaceutical Design, 2017, 22, 6748-6758.	1.9	13
102	Photosensitivity to Triflusal: Formation of a Photoadduct with Ubiquitin Demonstrated by Photophysical and Proteomic Techniques. Frontiers in Pharmacology, 2016, 7, 277.	3.5	12
103	Heteroatom requirements for substrate recognition by GTP-binding protein methyltransferase. Journal of the American Chemical Society, 1991, 113, 6299-6300.	13.7	11
104	Modulation of GSTP1-1 Oligomerization by Electrophilic Inflammatory Mediators and Reactive Drugs. Inflammation and Allergy: Drug Targets, 2013, 12, 162-171.	1.8	11
105	Advancing Target Identification of Nitrated Phospholipids in Biological Systems by HCD Specific Fragmentation Fingerprinting in Orbitrap Platforms. Molecules, 2020, 25, 2120.	3.8	10
106	Molecular Insight into the Regulation of Vimentin by Cysteine Modifications and Zinc Binding. Antioxidants, 2021, 10, 1039.	5.1	10
107	Vimentin Tail Segments Are Differentially Exposed at Distinct Cellular Locations and in Response to Stress. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	10
108	Tetrahydrobiopterin Modulates Cyclooxygenase-2 Expression in Human Mesangial Cells. Biochemical and Biophysical Research Communications, 1997, 241, 7-12.	2.1	9

#	Article	IF	CITATIONS
109	Allergic reactions to penicillins and cephalosporins: diagnosis, assessment of cross-reactivity and management. Expert Review of Clinical Immunology, 2019, 15, 707-721.	3.0	9
110	[5-(Benzyloxy)-1H-indol-1-yl]acetic acid, an aldose reductase inhibitor and PPAR \hat{I}^3 ligand. Acta Biochimica Polonica, 2015, 62, 523-528.	0.5	7
111	Integrated approaches to unravel the impact of protein lipoxidation on macromolecular interactions. Free Radical Biology and Medicine, 2019, 144, 203-217.	2.9	7
112	The stereochemical requirement for protein kinase C activation by 3-methyldiglycerides matches that found in naturally occurring tumor promoters aplysiatoxins. FEBS Letters, 1990, 274, 203-206.	2.8	6
113	FKBP, thought to be identical to PKCI-2, does not inhibit protein kinase C. Bioorganic and Medicinal Chemistry Letters, 1991, 1, 205-210.	2.2	6
114	Lipoxidation targets: From basic mechanisms to pathophysiology. Redox Biology, 2019, 23, 101208.	9.0	5
115	Joining European Scientific Forces to Face Pandemics. Trends in Microbiology, 2021, 29, 92-97.	7.7	5
116	Asthma and allergic rhinitis associate with the <i>rs2229542</i> variant that induces a p.Lys90Glu mutation and compromises AKR1B1 protein levels. Human Mutation, 2018, 39, 1081-1091.	2.5	4
117	Sprouty2 and Spred1-2 Proteins Inhibit the Activation of the ERK Pathway Elicited by Cyclopentenone Prostanoids. PLoS ONE, 2011, 6, e16787.	2.5	4
118	Vimentin gets a new glow from zinc. Oncotarget, 2015, 6, 15742-15743.	1.8	4
119	Understanding the nitrolipidome: From chemistry to mass spectrometry and biological significance of modified complex lipids. Progress in Lipid Research, 2022, 87, 101176.	11.6	4
120	The interaction of cycloserine with pyruvate and other biologically relevant \hat{l}_{\pm} -ketoacids. Biochemical Pharmacology, 1989, 38, 1037-1044.	4.4	3
121	Taking a lipidation-dependent path toward endolysosomes. Communicative and Integrative Biology, 2015, 8, e1078041.	1.4	2
122	Molecular basis for the direct inhibition of AP-1 DNA binding by 15-deoxy-î"12,14-prostaglandin J2. Vol. 278 (2003) 51251-51260. Journal of Biological Chemistry, 2004, 279, 5048.	3.4	2
123	Biotin-Labelled Clavulanic Acid to Identify Proteins Target for Haptenation in Serum: Implications in Allergy Studies. Frontiers in Pharmacology, 2020, 11, 594755.	3.5	2
124	3.P.216 Effects of HMG-CoA reductase inhibitors (atorvastatin and simvastatin) on the vasoactive pathways mediated by endothelin-1 and nitric oxide in vascular endothelial cells. Atherosclerosis, 1997, 134, 243.	0.8	1
125	Amoxicillin Haptenation of \hat{l}_{\pm} -Enolase is Modulated by Active Site Occupancy and Acetylation. Frontiers in Pharmacology, 2021, 12, 807742.	3.5	1
126	Structure-performance relationships of four lysosomal markers used for the imaging of HT-29 cancer cells and a cellular model of lysosomal storage disease (Niemann-Pick C). Dyes and Pigments, 2022, 201, 110236.	3.7	1

#	Article	IF	CITATIONS
127	Protein Haptenation by Amoxicillin: Immunological Detection with Monoclonal Anti-Amoxicillin Antibodies and Identification of Candidate Target Proteins in Human Serum. Journal of Allergy and Clinical Immunology, 2013, 131, AB234.	2.9	0
128	Interaction of nitrated/nitroxidized phospholipids with vimentin. Free Radical Biology and Medicine, 2017, 108, S52.	2.9	0
129	Alterations in Nucleocytoplasmic Localization of the Methionine Cycle Induced by Oxidative Stress During Liver Disease., 2018,, 21-41.		0
130	Combined Biophysical and Cell-Based Approaches for the Assessment of Ligand Binding to PPARÎ ³ . Methods in Molecular Biology, 2013, 952, 237-252.	0.9	0