Ivan Stoianov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7468225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PIPENETa wireless sensor network for pipeline monitoring. , 2007, , .		215
2	The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part Il—model development, calibration and verification. Journal of Hydraulic Research/De Recherches Hydrauliques, 2005, 43, 56-70.	1.7	208
3	Power-Extraction Circuits for Piezoelectric Energy Harvesters in Miniature and Low-Power Applications. IEEE Transactions on Power Electronics, 2012, 27, 4514-4529.	7.9	198
4	The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part l—experimental analysis and creep characterization. Journal of Hydraulic Research/De Recherches Hydrauliques, 2004, 42, 517-532.	1.7	164
5	A Graph-Theoretic Framework for Assessing the Resilience of Sectorised Water Distribution Networks. Water Resources Management, 2016, 30, 1685-1699.	3.9	132
6	Pipe Failure Analysis and Impact of Dynamic Hydraulic Conditions in Water Supply Networks. Procedia Engineering, 2015, 119, 253-262.	1.2	92
7	Demonstrating demand response from water distribution system through pump scheduling. Applied Energy, 2016, 170, 377-387.	10.1	82
8	In-pipe water quality monitoring in water supply systems under steady and unsteady state flow conditions: A quantitative assessment. Water Research, 2012, 46, 235-246.	11.3	70
9	Water hammer in pressurized polyethylene pipes: conceptual model and experimental analysis. Urban Water Journal, 2004, 1, 177-197.	2.1	67
10	Control of water distribution networks with dynamic DMA topology using strictly feasible sequential convex programming. Water Resources Research, 2015, 51, 9925-9941.	4.2	64
11	Adaptive water distribution networks with dynamically reconfigurable topology. Journal of Hydroinformatics, 2014, 16, 1280-1301.	2.4	57
12	Exploring Optimal Pump Scheduling in Water Distribution Networks with Branch and Bound Methods. Water Resources Management, 2016, 30, 5333-5349.	3.9	38
13	Biofouling and in situ electrochemical cleaning of a boron-doped diamond free chlorine sensor. Electrochemistry Communications, 2016, 71, 79-83.	4.7	31
14	Sparse Null Space Algorithms for Hydraulic Analysis of Large-Scale Water Supply Networks. Journal of Hydraulic Engineering, 2016, 142, .	1.5	24
15	Quadratic head loss approximations for optimisation problems in water supply networks. Journal of Hydroinformatics, 2017, 19, 493-506.	2.4	23
16	Continuous Chlorine Detection in Drinking Water and a Review of New Detection Methods. Johnson Matthey Technology Review, 2019, 63, 103-118.	1.0	23
17	Approximation of System Components for Pump Scheduling Optimisation. Procedia Engineering, 2015, 119, 1059-1068.	1.2	22
18	Pipe breaks and estimating the impact of pressure control in water supply networks. Reliability Engineering and System Safety, 2021, 210, 107525.	8.9	21

Ivan Stoianov

#	Article	IF	CITATIONS
19	A comparative study of statistical and machine learning methods to infer causes of pipe breaks in water supply networks. Urban Water Journal, 2020, 17, 534-548.	2.1	20
20	Scalable Pareto set generation for multiobjective co-design problems in water distribution networks: a continuous relaxation approach. Structural and Multidisciplinary Optimization, 2017, 55, 857-869.	3.5	19
21	Model Reduction and Outer Approximation for Optimizing the Placement of Control Valves in Complex Water Networks. Journal of Water Resources Planning and Management - ASCE, 2019, 145, .	2.6	19
22	Decreasing the Discoloration Risk of Drinking Water Distribution Systems through Optimized Topological Changes and Optimal Flow Velocity Control. Journal of Water Resources Planning and Management - ASCE, 2018, 144, .	2.6	18
23	Optimal control of water distribution networks without storage. European Journal of Operational Research, 2020, 284, 345-354.	5.7	18
24	Graph-theoretic Surrogate Measures for Analysing the Resilience of Water Distribution Networks. Procedia Engineering, 2015, 119, 1241-1248.	1.2	17
25	Global optimality bounds for the placement of control valves in water supply networks. Optimization and Engineering, 2019, 20, 457-495.	2.4	16
26	An MINLP-Based Approach for the Design-for-Control of Resilient Water Supply Systems. IEEE Systems Journal, 2020, 14, 4579-4590.	4.6	14
27	Impact of network sectorisation on water quality management. Journal of Hydroinformatics, 2018, 20, 424-439.	2.4	13
28	Localizing Leakage Hotspots in Water Distribution Networks via the Regularization of an Inverse Problem. Journal of Hydraulic Engineering, 2020, 146, 04020025.	1.5	13
29	Mathematical Programming Methods for Pressure Management in Water Distribution Systems. Procedia Engineering, 2015, 119, 937-946.	1.2	12
30	Penalty and relaxation methods for the optimal placement and operation of control valves in water supply networks. Computational Optimization and Applications, 2017, 67, 201-223.	1.6	11
31	Regularization of an Inverse Problem for Parameter Estimation in Water Distribution Networks. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	2.6	10
32	Relax-tighten-round algorithm for optimal placement and control of valves and chlorine boosters in water networks. European Journal of Operational Research, 2021, 295, 690-698.	5.7	9
33	Analytical and experimental investigation of chlorine decay in water supply systems under unsteady hydraulic conditions. Journal of Hydroinformatics, 2014, 16, 690-709.	2.4	7
34	Investigating the Impact of Sectorized Networks on Discoloration. Procedia Engineering, 2015, 119, 407-415.	1.2	7
35	Efficient Preconditioned Iterative Methods for Hydraulic Simulation of Large Scale Water Distribution Networks. Procedia Engineering, 2015, 119, 623-632.	1.2	6
36	Investigating trade-offs between the operating cost and green house gas emissions from water distribution systems. Sustainable Energy Technologies and Assessments, 2017, 21, 13-22.	2.7	6

Ivan Stoianov

#	Article	IF	CITATIONS
37	Outer approximation methods for the solution of co-design optimisation problems in water distribution networks * *This work was supported by the NEC-Imperial SmartWater Systems project. The authors acknowledge the EPSRC Industrial CASE Studentship project EP/I501444/1, from which the case study model BWFLnet was derived IFAC-PapersOnLine, 2017, 50, 5373-5379.	0.9	6
38	Convex Heuristics for Optimal Placement and Operation of Valves and Chlorine Boosters in Water Networks. Journal of Water Resources Planning and Management - ASCE, 2022, 148, .	2.6	6
39	Constraint-Preconditioned Inexact Newton Method for Hydraulic Simulation of Large-Scale Water Distribution Networks. IEEE Transactions on Control of Network Systems, 2017, 4, 610-619.	3.7	5
40	Redundant flow estimation methods for robust hydraulic control in water supply networks. Journal of Hydroinformatics, 2019, 21, 571-592.	2.4	5
41	Sequential Convex Optimization for Detecting and Locating Blockages in Water Distribution Networks. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	2.6	5
42	Bi-objective design-for-control of water distribution networks with global bounds. Optimization and Engineering, 2022, 23, 527-577.	2.4	5
43	Prior Assumptions for Leak Localisation in Water Distribution Networks with Uncertainties. Water Resources Management, 2021, 35, 5105-5118.	3.9	3
44	Adaptive Model Predictive Control for Fire Incidents in Water Distribution Networks. Journal of Water Resources Planning and Management - ASCE, 2022, 148, .	2.6	3
45	Optimization-Based Selection of Hydrants and Valves Control in Water Distribution Networks for Fire Incidents Management. IEEE Systems Journal, 2023, 17, 134-145.	4.6	2
46	Closure to "Regularization of an Inverse Problem for Parameter Estimation in Water Distribution Systems―by Alexander Waldron, Filippo Pecci, and Ivan Stoianov. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	2.6	1