Marianne D Sadar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7468066/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cyclin-dependent Kinase 4/6 Inhibitor Palbociclib in Combination with Ralaniten Analogs for the Treatment of Androgen Receptor–positive Prostate and Breast Cancers. Molecular Cancer Therapeutics, 2022, 21, 294-309.	1.9	7
2	Differential Gene Expression Profiles between N-Terminal Domain and Ligand-Binding Domain Inhibitors of Androgen Receptor Reveal Ralaniten Induction of Metallothionein by a Mechanism Dependent on MTF1. Cancers, 2022, 14, 386.	1.7	4
3	Structure–Activity Relationships for the Marine Natural Product Sintokamides: Androgen Receptor N-Terminus Antagonists of Interest for Treatment of Metastatic Castration-Resistant Prostate Cancer. Journal of Natural Products, 2021, 84, 797-813.	1.5	10
4	Isolation and characterization of castration-resistant prostate cancer LNCaP95 clones. Human Cell, 2021, 34, 211-218.	1.2	10
5	Developing Inhibitors to the Amino-Terminus Domains of Steroid Hormone Receptors. , 2021, , 613-642.		Ο
6	Androgen Receptors in the Pathology of Disease. , 2021, , 411-461.		0
7	Pin1 inhibition improves the efficacy of ralaniten compounds that bind to the N-terminal domain of androgen receptor. Communications Biology, 2021, 4, 381.	2.0	10
8	Ralaniten Sensitizes Enzalutamide-Resistant Prostate Cancer to Ionizing Radiation in Prostate Cancer Cells that Express Androgen Receptor Splice Variants. Cancers, 2020, 12, 1991.	1.7	21
9	Combination therapy with androgen receptor Nâ€terminal domain antagonist EPlâ€7170 and enzalutamide yields synergistic activity in ARâ€V7â€positive prostate cancer. Molecular Oncology, 2020, 14, 2455-2470.	2.1	31
10	Discovery of drugs that directly target the intrinsically disordered region of the androgen receptor. Expert Opinion on Drug Discovery, 2020, 15, 551-560.	2.5	45
11	Incarnatapeptins A and B, Nonribosomal Peptides Discovered Using Genome Mining and ¹ H/ ¹⁵ N HSQC-TOCSY. Organic Letters, 2020, 22, 4053-4057.	2.4	14
12	Revealing Metabolic Liabilities of Ralaniten To Enhance Novel Androgen Receptor Targeted Therapies. ACS Pharmacology and Translational Science, 2019, 2, 453-467.	2.5	20
13	EPI-7386 is a novel N-terminal domain androgen receptor inhibitor for the treatment of prostate cancer. Annals of Oncology, 2019, 30, v189-v190.	0.6	6
14	Keys to unlock androgen receptor translocation. Journal of Biological Chemistry, 2019, 294, 8711-8712.	1.6	17
15	Abstract B117: Treatment of castrated resistant prostate cancer with EPI-7386, a second generation N-terminal domain androgen receptor inhibitor. Molecular Cancer Therapeutics, 2019, 18, B117-B117.	1.9	7
16	Lessons learned from the metastatic castration-resistant prostate cancer phase I trial of EPI-506, a first-generation androgen receptor N-terminal domain inhibitor Journal of Clinical Oncology, 2019, 37, 257-257.	0.8	19
17	Next generation N-terminal domain androgen receptor inhibitors with improved potency and metabolic stability in castration-resistant prostate cancer models Journal of Clinical Oncology, 2019, 37, 220-220.	0.8	2
18	Abstract 1292: A new generation of N-terminal domain androgen receptor inhibitors, with improved		1

pharmaceutical properties, in castration-resistant prostate cancer models. , 2019, , .

#	Article	IF	CITATIONS
19	Abstract 1000: Targeting androgen receptors and cyclin-dependent kinases 4 and 6 in breast cancer. , 2019, , .		0
20	Abstract 1023: Combining all-trans retinoic acid therapy with androgen receptor N-terminal domain inhibitors for the treatment of castration-resistant prostate cancer. , 2019, , .		0
21	Order within a Disordered Structure. Structure, 2018, 26, 4-6.	1.6	31
22	Does increased expression of glucocorticoid receptor support application of antagonists to this receptor for the treatment of castration resistant prostate cancer?. AME Medical Journal, 2018, 3, 66-66.	0.4	7
23	Androgen Receptor Splice Variant 7 Drives the Growth of Castration Resistant Prostate Cancer without Being Involved in the Efficacy of Taxane Chemotherapy. Journal of Clinical Medicine, 2018, 7, 444.	1.0	17
24	Enzalutamide and blocking androgen receptor in advanced prostate cancer: lessons learnt from the history of drug development of antiandrogens. Research and Reports in Urology, 2018, Volume 10, 23-32.	0.6	42
25	MP83-06 COMBINATION THERAPY WITH EPI-002 AND PARP INHIBITOR FOR CASTRATION-RESISTANT PROSTATE CANCER. Journal of Urology, 2017, 197, .	0.2	1
26	Non-Genomic Actions of the Androgen Receptor in Prostate Cancer. Frontiers in Endocrinology, 2017, 8, 2.	1.5	100
27	Inhibition of androgen receptor by decoy molecules delays progression to castration-recurrent prostate cancer. PLoS ONE, 2017, 12, e0174134.	1.1	10
28	Abstract 1583: Inhibition of proline isomerase Pin1 interrupts the function of the androgen receptor N-terminal domain and suppresses androgen-independent growth of prostate cancer cells. , 2017, , .		0
29	Abstract 1516: Androgen-repressed and androgen-induced genes: challenging the traditional dogma of prostate cancer therapy. , 2017, , .		0
30	Abstract 5220: Chronic exposure to a novel AR-NTD inhibitor induces resistance via a selective metabolism pathway. , 2017, , .		0
31	Targeting Androgen Receptor Activation Function-1 with EPI to Overcome Resistance Mechanisms in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2016, 22, 4466-4477.	3.2	87
32	Androgen receptor targeted therapies in castrationâ€resistant prostate cancer: Bench to clinic. International Journal of Urology, 2016, 23, 654-665.	0.5	65
33	Sintokamide A Is a Novel Antagonist of Androgen Receptor That Uniquely Binds Activation Function-1 in Its Amino-terminal Domain. Journal of Biological Chemistry, 2016, 291, 22231-22243.	1.6	47
34	Targeting the N-Terminal Domain of the Androgen Receptor: A New Approach for the Treatment of Advanced Prostate Cancer. Oncologist, 2016, 21, 1427-1435.	1.9	60
35	Cotargeting Androgen Receptor Splice Variants and mTOR Signaling Pathway for the Treatment of Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2016, 22, 2744-2754.	3.2	52
36	An imaging agent to detect androgen receptor and its active splice variants in prostate cancer. JCI Insight, 2016, 1, .	2.3	16

#	Article	IF	CITATIONS
37	Directing abiraterone metabolism: balancing the scales between clinical relevance and experimental observation. Translational Cancer Research, 2016, 5, S529-S531.	0.4	0
38	MP61-12 AN ANDROGEN RECEPTOR SPLICE VARIANT-TARGETED COMBINATION THERAPY FOR CASTRATION-RESISTANT PROSTATE CANCER USING EPI-002 AND A PI3K/MTOR DUAL INHIBITOR. Journal of Urology, 2015, 193, .	0.2	0
39	Proteomics and Prostate Cancer. , 2015, , 143-174.		Ο
40	MP66-07 TARGETING ANDROGEN RECEPTOR N-TERMINAL DOMAIN FOR PROSTATE CANCER IMAGING AND THERAPY. Journal of Urology, 2015, 193, .	0.2	0
41	Nâ€ŧerminal targeting of androgen receptor variant enhances response of castration resistant prostate cancer to taxane chemotherapy. Molecular Oncology, 2015, 9, 628-639.	2.1	52
42	Development of an imaging approach to detect splice variants of androgen receptor in prostate cancer Journal of Clinical Oncology, 2015, 33, 5058-5058.	0.8	1
43	A phase 1/2 open-label study of safety and antitumor activity of EPI-506, a novel AR N-terminal domain inhibitor, in men with metastatic castration-resistant prostate cancer (mCRPC) with progression after enzalutamide or abiraterone Journal of Clinical Oncology, 2015, 33, TPS5072-TPS5072.	0.8	15
44	MP24-02 DEVELOPMENT OF AN IMAGING APPROACH TO DETECT SPLICE VARIANTS OF ANDROGEN RECEPTOR IN PROSTATE CANCER. Journal of Urology, 2014, 191, .	0.2	0
45	Characterization of Niphatenones that Inhibit Androgen Receptor N-Terminal Domain. PLoS ONE, 2014, 9, e107991.	1.1	35
46	Abstract 610: Preclinical evaluation of novel androgen receptor N-terminal domain inhibitor EPI-002 for the treatment of castration-resistant prostate cancer. Cancer Research, 2014, 74, 610-610.	0.4	4
47	Androgen-Responsive Gene Expression in Prostate Cancer Progression. , 2013, , 135-153.		2
48	Spongian Diterpenoids Inhibit Androgen Receptor Activity. Molecular Cancer Therapeutics, 2013, 12, 621-631.	1.9	12
49	An androgen receptor N-terminal domain antagonist for treating prostate cancer. Journal of Clinical Investigation, 2013, 123, 2948-2960.	3.9	262
50	Niphatenones, Glycerol Ethers from the Sponge <i>Niphates digitalis</i> Block Androgen Receptor Transcriptional Activity in Prostate Cancer Cells: Structure Elucidation, Synthesis, and Biological Activity. Journal of Medicinal Chemistry, 2012, 55, 503-514.	2.9	60
51	Large scale phosphoproteome analysis of LNCaP human prostate cancer cells. Molecular BioSystems, 2012, 8, 2174.	2.9	11
52	Advances in small molecule inhibitors of androgen receptor for the treatment of advanced prostate cancer. World Journal of Urology, 2012, 30, 311-318.	1.2	33
53	FUS/TLS Is a Co-Activator of Androgen Receptor in Prostate Cancer Cells. PLoS ONE, 2011, 6, e24197.	1.1	29
54	Androgen receptor and its splice variants in prostate cancer. Cellular and Molecular Life Sciences, 2011, 68, 3971-3981.	2.4	90

MARIANNE D SADAR

#	Article	IF	CITATIONS
55	Small Molecule Inhibitors Targeting the "Achilles' Heel―of Androgen Receptor Activity. Cancer Research, 2011, 71, 1208-1213.	0.4	137
56	Regression of Castrate-Recurrent Prostate Cancer by a Small-Molecule Inhibitor of the Amino-Terminus Domain of the Androgen Receptor. Cancer Cell, 2010, 17, 535-546.	7.7	452
57	LNCaP Atlas: Gene expression associated with in vivoprogression to castration-recurrent prostate cancer. BMC Medical Genomics, 2010, 3, 43.	0.7	73
58	Development of metastatic and nonâ€metastatic tumor lines from a patient's prostate cancer specimen—identification of a small subpopulation with metastatic potential in the primary tumor. Prostate, 2010, 70, 1636-1644.	1.2	31
59	Induction of neuronal apoptosis inhibitory protein expression in response to androgen deprivation in prostate cancer. Cancer Letters, 2010, 292, 176-185.	3.2	22
60	Osteoblast-Derived Factors Induce an Expression Signature that Identifies Prostate Cancer Metastasis and Hormonal Progression. Cancer Research, 2009, 69, 3433-3442.	0.4	15
61	Connective Tissue-Activating Peptide III: A Novel Blood Biomarker for Early Lung Cancer Detection. Journal of Clinical Oncology, 2009, 27, 2787-2792.	0.8	68
62	Identification of novel androgen-responsive genes by sequencing of LongSAGE libraries. BMC Genomics, 2009, 10, 476.	1.2	75
63	Novel Biomarkers for Prostate Cancer Including Noncoding Transcripts. American Journal of Pathology, 2009, 175, 2264-2276.	1.9	107
64	The Role of Cyclic AMP in Regulating the Androgen Receptor. , 2009, , 465-503.		1
65	ANDROGEN RECEPTOR SUPPRESSES THE EXPRESSION OF SESN1, A POTENTIAL TUMOR SUPPRESSOR. Journal of Urology, 2008, 179, 104-104.	0.2	0
66	Sintokamides A to E, Chlorinated Peptides from the Sponge <i>Dysidea</i> sp. that Inhibit Transactivation of the N-Terminus of the Androgen Receptor in Prostate Cancer Cells. Organic Letters, 2008, 10, 4947-4950.	2.4	130
67	Crosstalk between the Androgen Receptor and β-Catenin in Castrate-Resistant Prostate Cancer. Cancer Research, 2008, 68, 9918-9927.	0.4	131
68	<i>ASAP1</i> , a Gene at 8q24, Is Associated with Prostate Cancer Metastasis. Cancer Research, 2008, 68, 4352-4359.	0.4	87
69	Androgen receptor decoy molecules block the growth of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1331-1336.	3.3	82
70	14-3-3 sigma increases the transcriptional activity of the androgen receptor in the absence of androgens. Cancer Letters, 2007, 254, 137-145.	3.2	18
71	Novel expressed sequences identified in a model of androgen independent prostate cancer. BMC Genomics, 2007, 8, 32.	1.2	3
72	A truncated isoform of TMEFF2 encodes a secreted protein in prostate cancer cells. Genomics, 2006, 87, 633-637.	1.3	15

MARIANNE D SADAR

#	Article	IF	CITATIONS
73	Identification of genes targeted by the androgen and PKA signaling pathways in prostate cancer cells. Oncogene, 2006, 25, 7311-7323.	2.6	72
74	Molecular analysis and characterization of PrEc, commercially available prostate epithelial cells. In Vitro Cellular and Developmental Biology - Animal, 2006, 42, 33-39.	0.7	15
75	Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genomics, 2006, 7, 246.	1.2	173
76	Amino-terminus domain of the androgen receptor as a molecular target to prevent the hormonal progression of prostate cancer. Journal of Cellular Biochemistry, 2006, 98, 36-53.	1.2	30
77	MOLECULAR ANALYSIS AND CHARACTERIZATION OF PrEC, COMMERCIALLY AVAILABLE PROSTATE EPITHELIAL CELLS. In Vitro Cellular and Developmental Biology - Animal, 2006, 42, 33.	0.7	1
78	Proteomic analyses to identify novel therapeutic targets for the treatment of advanced prostate cancer. Cellscience, 2006, 3, 61-81.	0.3	13
79	An orthotopic metastatic prostate cancer model in SCID mice via grafting of a transplantable human prostate tumor line. Laboratory Investigation, 2005, 85, 1392-1404.	1.7	107
80	Development and characterization of efficient xenograft models for benign and malignant human prostate tissue. Prostate, 2005, 64, 149-159.	1.2	162
81	Identification of Serum Amyloid A as a Biomarker to Distinguish Prostate Cancer Patients with Bone Lesions. Clinical Chemistry, 2005, 51, 695-707.	1.5	105
82	CELL LINES USED IN PROSTATE CANCER RESEARCH: A COMPENDIUM OF OLD AND NEW LINES—PART 1. Journal of Urology, 2005, 173, 342-359.	0.2	308
83	CELL LINES USED IN PROSTATE CANCER RESEARCH: A COMPENDIUM OF OLD AND NEW LINES—PART 2. Journal of Urology, 2005, 173, 360-372.	0.2	145
84	Interleukin-4 in patients with prostate cancer. Anticancer Research, 2005, 25, 4595-8.	0.5	24
85	Protein Profiling of Microdissected Prostate Tissue Links Growth Differentiation Factor 15 to Prostate Carcinogenesis. Cancer Research, 2004, 64, 5929-5933.	0.4	89
86	Osteoblast-Derived Factors Induce Androgen-Independent Proliferation and Expression of Prostate-Specific Antigen in Human Prostate Cancer Cells. Clinical Cancer Research, 2004, 10, 1860-1869.	3.2	64
87	Quantitative profiling of LNCaP prostate cancer cells using isotope-coded affinity tags and mass spectrometry. Proteomics, 2004, 4, 1116-1134.	1.3	58
88	Androgens and androgen receptor in prostate and ovarian malignancies. Frontiers in Bioscience - Landmark, 2003, 8, D780-800.	3.0	20
89	Ligand-independent Activation of the Androgen Receptor by Interleukin-6 and the Role of Steroid Receptor Coactivator-1 in Prostate Cancer Cells. Journal of Biological Chemistry, 2002, 277, 38087-38094.	1.6	264
90	Activation of the Androgen Receptor N-terminal Domain by Interleukin-6 via MAPK and STAT3 Signal Transduction Pathways. Journal of Biological Chemistry, 2002, 277, 7076-7085.	1.6	326

MARIANNE D SADAR

#	Article	IF	CITATIONS
91	Characterization of a new in vivo hollow fiber model for the study of progression of prostate cancer to androgen independence. Molecular Cancer Therapeutics, 2002, 1, 629-37.	1.9	24
92	REGULATION OF CYTOCHROME P450 IN A PRIMARY CULTURE OF RAINBOW TROUT HEPATOCYTES. In Vitro Cellular and Developmental Biology - Animal, 2001, 37, 180.	0.7	10
93	Prostate cancer: molecular biology of early progression to androgen independence Endocrine-Related Cancer, 1999, 6, 487-502.	1.6	128
94	Androgen-independent Induction of Prostate-specific Antigen Gene Expression via Cross-talk between the Androgen Receptor and Protein Kinase A Signal Transduction Pathways. Journal of Biological Chemistry, 1999, 274, 7777-7783.	1.6	237
95	Butyrate analogue, isobutyramide, inhibits tumor growth and time to androgen-independent progression in the human prostate LNCaP tumor model. , 1998, 69, 271-281.		31
96	Androgenic Induction of Prostate-specific Antigen Gene Is Repressed by Protein-Protein Interaction between the Androgen Receptor and AP-1/c-Jun in the Human Prostate Cancer Cell Line LNCaP. Journal of Biological Chemistry, 1997, 272, 17485-17494.	1.6	184
97	Characterization of 5α-reductase gene expression in stroma and epithelium of human prostate. Journal of Steroid Biochemistry and Molecular Biology, 1996, 59, 397-404.	1.2	79
98	Phenobarbital Induction of Cytochrome P4501A1 Is Regulated by cAMP-Dependent Protein Kinase-Mediated Signaling Pathways in Rainbow Trout Hepatocytes. Biochemical and Biophysical Research Communications, 1996, 225, 455-461.	1.0	19
99	Induction of CYP1A1 by GABA Receptor Ligands. Biochemical and Biophysical Research Communications, 1996, 229, 231-237.	1.0	15
100	Phenobarbital Induction of Gene Expression in a Primary Culture of Rainbow Trout Hepatocytes. Journal of Biological Chemistry, 1996, 271, 17635-17643.	1.6	51
101	Picrotoxin Is a CYP1A1 Inducer in Rainbow Trout Hepatocytes. Biochemical and Biophysical Research Communications, 1995, 214, 1060-1066.	1.0	9
102	Uptake of Selected Organochlorine Contaminants in Fishes Resident in the Fraser River Estuary, Vancouver, British Columbia. Water Quality Research Journal of Canada, 1992, 27, 733-750.	1.2	5
103	Promotion of growth in diploid and triploid coho salmon with parenteral delivery of a recombinant porcine somatotropin. Aquatic Living Resources, 1991, 4, 155-160.	0.5	17