Sang Yup Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7467778/publications.pdf Version: 2024-02-01

SANC YUD LEE

#	Article	IF	CITATIONS
1	antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Research, 2019, 47, W81-W87.	6.5	2,410
2	antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Research, 2015, 43, W237-W243.	6.5	1,764
3	antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Research, 2017, 45, W36-W41.	6.5	1,196
4	Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nature Chemical Biology, 2011, 7, 445-452.	3.9	984
5	Fermentative butanol production by clostridia. Biotechnology and Bioengineering, 2008, 101, 209-228.	1.7	909
6	High cell-density culture of Escherichia coli. Trends in Biotechnology, 1996, 14, 98-105.	4.9	747
7	Bacterial polyhydroxyalkanoates. Biotechnology and Bioengineering, 2000, 49, 1-14.	1.7	699
8	Production of succinic acid by bacterial fermentation. Enzyme and Microbial Technology, 2006, 39, 352-361.	1.6	669
9	Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nature Chemical Biology, 2012, 8, 536-546.	3.9	639
10	Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nature Biotechnology, 2013, 31, 170-174.	9.4	551
11	Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7797-7802.	3.3	514
12	Secretory and extracellular production of recombinant proteins using Escherichia coli. Applied Microbiology and Biotechnology, 2004, 64, 625-635.	1.7	512
13	Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nature Communications, 2014, 5, 3131.	5.8	488
14	Native-sized recombinant spider silk protein produced in metabolically engineered <i>Escherichia coli</i> results in a strong fiber. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14059-14063.	3.3	485
15	Current status and applications of genome-scale metabolic models. Genome Biology, 2019, 20, 121.	3.8	463
16	Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nature Communications, 2018, 9, 382.	5.8	449
17	Microbial cell-surface display. Trends in Biotechnology, 2003, 21, 45-52.	4.9	445
18	Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends in Biotechnology, 1996, 14, 431-438.	4.9	437

#	Article	IF	CITATIONS
19	Optical Biosensors for the Detection of Pathogenic Microorganisms. Trends in Biotechnology, 2016, 34, 7-25.	4.9	434
20	Systems strategies for developing industrial microbial strains. Nature Biotechnology, 2015, 33, 1061-1072.	9.4	433
21	Bacterial polyhydroxyalkanoates. , 1996, 49, 1.		431
22	Biorefineries for the production of top building block chemicals and their derivatives. Metabolic Engineering, 2015, 28, 223-239.	3.6	425
23	Microbial production of short-chain alkanes. Nature, 2013, 502, 571-574.	13.7	408
24	Machine learning-aided engineering of hydrolases for PET depolymerization. Nature, 2022, 604, 662-667.	13.7	396
25	Process analysis and economic evaluation for Poly(3-hydroxybutyrate) production by fermentation. Bioprocess and Biosystems Engineering, 1997, 17, 335.	0.5	394
26	A comprehensive metabolic map for production of bio-based chemicals. Nature Catalysis, 2019, 2, 18-33.	16.1	394
27	Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Applied Microbiology and Biotechnology, 1999, 51, 13-21.	1.7	391
28	Systems metabolic engineering of <i>Escherichia coli</i> for <scp>L</scp> â€threonine production. Molecular Systems Biology, 2007, 3, 149.	3.2	391
29	CRISPR-Cas9 Based Engineering of Actinomycetal Genomes. ACS Synthetic Biology, 2015, 4, 1020-1029.	1.9	365
30	Patterned Multiplex Pathogen DNA Detection by Au Particle-on-Wire SERS Sensor. Nano Letters, 2010, 10, 1189-1193.	4.5	351
31	Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering. Trends in Biotechnology, 2019, 37, 817-837.	4.9	345
32	Solution Chemistry of Self-Assembled Graphene Nanohybrids for High-Performance Flexible Biosensors. ACS Nano, 2010, 4, 2910-2918.	7.3	343
33	Bioâ€based production of C2–C6 platform chemicals. Biotechnology and Bioengineering, 2012, 109, 2437-2459.	1.7	329
34	Deep learning improves prediction of drug–drug and drug–food interactions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4304-E4311.	3.3	325
35	MEMOTE for standardized genome-scale metabolic model testing. Nature Biotechnology, 2020, 38, 272-276.	9.4	314
36	Rational Protein Engineering of Thermo-Stable PETase from <i>Ideonella sakaiensis</i> for Highly Efficient PET Degradation. ACS Catalysis, 2019, 9, 3519-3526.	5.5	307

#	Article	IF	CITATIONS
37	Production of poly(3-hydroxybutyric acid) by fed-batch culture ofAlcaligenes eutrophus with glucose concentration control. Biotechnology and Bioengineering, 1994, 43, 892-898.	1.7	294
38	Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nature Communications, 2017, 8, 15784.	5.8	287
39	Systems biotechnology for strain improvement. Trends in Biotechnology, 2005, 23, 349-358.	4.9	285
40	Metabolic Engineering of Escherichia coli for Enhanced Production of Succinic Acid, Based on Genome Comparison and In Silico Gene Knockout Simulation. Applied and Environmental Microbiology, 2005, 71, 7880-7887.	1.4	282
41	Promoter engineering: Recent advances in controlling transcription at the most fundamental level. Biotechnology Journal, 2013, 8, 46-58.	1.8	277
42	Metabolic engineering of <i>Escherichia coli</i> for the production of polylactic acid and its copolymers. Biotechnology and Bioengineering, 2010, 105, 161-171.	1.7	272
43	Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Applied Microbiology and Biotechnology, 2002, 58, 663-668.	1.7	270
44	Industrial scale production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Applied Microbiology and Biotechnology, 2001, 57, 50-55.	1.7	269
45	Production of recombinant proteins by high cell density culture of Escherichia coli. Chemical Engineering Science, 2006, 61, 876-885.	1.9	255
46	Succinic acid production with reduced by-product formation in the fermentation ofAnaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnology and Bioengineering, 2001, 72, 41-48.	1.7	254
47	Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metabolic Engineering, 2013, 15, 55-66.	3.6	251
48	<i>In Silico</i> Identification of Gene Amplification Targets for Improvement of Lycopene Production. Applied and Environmental Microbiology, 2010, 76, 3097-3105.	1.4	247
49	Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chemical Society Reviews, 2020, 49, 4615-4636.	18.7	246
50	Genome-Based Metabolic Engineering of Mannheimia succiniciproducens for Succinic Acid Production. Applied and Environmental Microbiology, 2006, 72, 1939-1948.	1.4	241
51	Butanol production from renewable biomass by clostridia. Bioresource Technology, 2012, 123, 653-663.	4.8	240
52	Control of fed-batch fermentations. Biotechnology Advances, 1999, 17, 29-48.	6.0	236
53	Production of succinic acid by metabolically engineered microorganisms. Current Opinion in Biotechnology, 2016, 42, 54-66.	3.3	229
54	Enhanced Butanol Production Obtained by Reinforcing the Direct Butanol-Forming Route in Clostridium acetobutylicum. MBio, 2012, 3, .	1.8	220

#	Article	IF	CITATIONS
55	Metabolic Engineering of Escherichia coli for Natural Product Biosynthesis. Trends in Biotechnology, 2020, 38, 745-765.	4.9	219
56	Metabolic engineering of <i>Escherichia coli</i> for the production of putrescine: A four carbon diamine. Biotechnology and Bioengineering, 2009, 104, 651-662.	1.7	217
57	Metabolic Engineering of Clostridium acetobutylicum ATCC 824 for Isopropanol-Butanol-Ethanol Fermentation. Applied and Environmental Microbiology, 2012, 78, 1416-1423.	1.4	213
58	Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nature Communications, 2014, 5, 4618.	5.8	209
59	The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters. Nucleic Acids Research, 2017, 45, D555-D559.	6.5	207
60	Micro total analysis system (�-TAS) in biotechnology. Applied Microbiology and Biotechnology, 2004, 64, 289-299.	1.7	206
61	Metabolic engineering of <i>Escherichia coli</i> for the production of cadaverine: A five carbon diamine. Biotechnology and Bioengineering, 2011, 108, 93-103.	1.7	202
62	Expanding the metabolic engineering toolbox: more options to engineer cells. Trends in Biotechnology, 2007, 25, 132-137.	4.9	200
63	Microbial production of building block chemicals and polymers. Current Opinion in Biotechnology, 2011, 22, 758-767.	3.3	199
64	Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnology Advances, 2014, 32, 255-268.	6.0	199
65	Recent advances in systems metabolic engineering tools and strategies. Current Opinion in Biotechnology, 2017, 47, 67-82.	3.3	185
66	The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nature Biotechnology, 2004, 22, 1275-1281.	9.4	184
67	One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Nature Biotechnology, 2016, 34, 435-440.	9.4	182
68	Recent advances in reconstruction and applications of genome-scale metabolic models. Current Opinion in Biotechnology, 2012, 23, 617-623.	3.3	181
69	CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metabolic Engineering, 2017, 42, 157-167.	3.6	181
70	Efficient and economical recovery of poly(3-hydroxybutyrate) from recombinantEscherichia coli by simple digestion with chemicals. , 1999, 62, 546-553.		178
71	Analysis of the mouse gut microbiome using full-length 16S rRNA amplicon sequencing. Scientific Reports, 2016, 6, 29681.	1.6	178
72	Production of Poly(3-Hydroxybutyrate) by Fed-Batch Culture of Recombinant Escherichia coli with a Highly Concentrated Whey Solution. Applied and Environmental Microbiology, 2000, 66, 3624-3627.	1.4	173

#	Article	IF	CITATIONS
73	Systems metabolic engineering for chemicals and materials. Trends in Biotechnology, 2011, 29, 370-378.	4.9	173
74	Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications. Metabolic Engineering, 2013, 19, 88-97.	3.6	171
75	Application of systems biology for bioprocess development. Trends in Biotechnology, 2008, 26, 404-412.	4.9	169
76	Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances. Fungal Genetics and Biology, 2016, 89, 126-136.	0.9	166
77	Towards systems metabolic engineering of microorganisms for amino acid production. Current Opinion in Biotechnology, 2008, 19, 454-460.	3.3	163
78	Double-Gate Nanowire Field Effect Transistor for a Biosensor. Nano Letters, 2010, 10, 2934-2938.	4.5	162
79	Combined transcriptome and proteome analysis ofEscherichia coli during high cell density culture. Biotechnology and Bioengineering, 2003, 81, 753-767.	1.7	161
80	Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Applied Microbiology and Biotechnology, 2008, 80, 849-862.	1.7	161
81	Recent advances in polyhydroxyalkanoate production by bacterial fermentation: mini-review. International Journal of Biological Macromolecules, 1999, 25, 31-36.	3.6	160
82	Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase. Biotechnology and Bioengineering, 2010, 105, 150-160.	1.7	159
83	The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli. BMC Genomics, 2011, 12, 9.	1.2	159
84	Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends in Biotechnology, 2015, 33, 15-26.	4.9	159
85	Batch and continuous fermentation of succinic acid from wood hydrolysate by Mannheimia succiniciproducens MBEL55E. Enzyme and Microbial Technology, 2004, 35, 648-653.	1.6	158
86	Integrative genomeâ€scale metabolic analysis of <i>Vibrio vulnificus</i> for drug targeting and discovery. Molecular Systems Biology, 2011, 7, 460.	3.2	157
87	Design and use of synthetic regulatory small RNAs to control gene expression in Escherichia coli. Nature Protocols, 2013, 8, 1694-1707.	5.5	157
88	Metabolic engineering in the host Yarrowia lipolytica. Metabolic Engineering, 2018, 50, 192-208.	3.6	157
89	Complete Genome Sequence of the Metabolically Versatile Plant Growth-Promoting Endophyte <i>Variovorax paradoxus</i> S110. Journal of Bacteriology, 2011, 193, 1183-1190.	1.0	156
90	Comparative multi-omics systems analysis of Escherichia coli strains B and K-12. Genome Biology, 2012, 13, R37.	13.9	155

#	Article	IF	CITATIONS
91	Family of the major cold-shock protein, CspA (CS7.4), of Escherichia coli, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins. Molecular Microbiology, 1994, 11, 833-839.	1.2	152
92	Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13996-14001.	3.3	151
93	Advanced bacterial polyhydroxyalkanoates: Towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnology Advances, 2012, 30, 1196-1206.	6.0	150
94	Metabolic engineering of microorganisms for production of aromatic compounds. Microbial Cell Factories, 2019, 18, 41.	1.9	150
95	The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters. Nucleic Acids Research, 2019, 47, D625-D630.	6.5	150
96	The Escherichia coli Proteome: Past, Present, and Future Prospects. Microbiology and Molecular Biology Reviews, 2006, 70, 362-439.	2.9	147
97	Engineering synergy in biotechnology. Nature Chemical Biology, 2014, 10, 319-322.	3.9	147
98	Advances in microbial biosynthesis of metal nanoparticles. Applied Microbiology and Biotechnology, 2016, 100, 521-534.	1.7	144
99	Rewiring <i>Yarrowia lipolytica</i> toward triacetic acid lactone for materials generation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2096-2101.	3.3	144
100	Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnology Advances, 2012, 30, 989-1000.	6.0	143
101	Holographic deep learning for rapid optical screening of anthrax spores. Science Advances, 2017, 3, e1700606.	4.7	143
102	Metabolic flux analysis and metabolic engineering of microorganisms. Molecular BioSystems, 2008, 4, 113-120.	2.9	141
103	Recovery and characterization of poly(3-hydroxybutyric acid) synthesized in Alcaligenes eutrophus and recombinant Escherichia coli. Applied and Environmental Microbiology, 1995, 61, 34-39.	1.4	141
104	Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Metabolic Engineering, 2013, 16, 42-47.	3.6	140
105	Molecular mass of poly[(R  )-3-hydroxybutyric acid] produced in a recombinant Escherichia coli. Applied Microbiology and Biotechnology, 1997, 47, 140-143.	1.7	139
106	In Vivo Synthesis of Diverse Metal Nanoparticles by Recombinant <i>Escherichia coli</i> . Angewandte Chemie - International Edition, 2010, 49, 7019-7024.	7.2	138
107	Butanol production from renewable biomass: Rediscovery of metabolic pathways and metabolic engineering. Biotechnology Journal, 2012, 7, 186-198.	1.8	138
108	Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metabolic Engineering, 2020, 58, 47-81.	3.6	138

#	Article	IF	CITATIONS
109	Succinic acid production by Anaerobiospirillum succiniciproducens: effects of the H2/CO2 supply and glucose concentration. Enzyme and Microbial Technology, 1999, 24, 549-554.	1.6	134
110	Compartmentalized microbes and co-cultures in hydrogels for on-demand bioproduction and preservation. Nature Communications, 2020, 11, 563.	5.8	134
111	Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Metabolic Engineering, 2012, 14, 289-297.	3.6	131
112	Machine learning applications in systems metabolic engineering. Current Opinion in Biotechnology, 2020, 64, 1-9.	3.3	131
113	Comparison of recombinantEscherichia colistrains for synthesis and accumulation of poly-(3-hydroxybutyric acid) and morphological changes. Biotechnology and Bioengineering, 1994, 44, 1337-1347.	1.7	130
114	Model based engineering of Pichia pastoris central metabolism enhances recombinant protein production. Metabolic Engineering, 2014, 24, 129-138.	3.6	130
115	Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat. Scientific Reports, 2017, 7, 10130.	1.6	130
116	Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. Applied Microbiology and Biotechnology, 2012, 93, 1485-1494.	1.7	129
117	Organizational and Mutational Analysis of a Complete FR-008/Candicidin Gene Cluster Encoding a Structurally Related Polyene Complex. Chemistry and Biology, 2003, 10, 1065-1076.	6.2	127
118	Bio-based production of monomers and polymers by metabolically engineered microorganisms. Current Opinion in Biotechnology, 2015, 36, 73-84.	3.3	126
119	Cloning of the <i>Alcaligenes latus</i> Polyhydroxyalkanoate Biosynthesis Genes and Use of These Genes for Enhanced Production of Poly(3-hydroxybutyrate) in <i>Escherichia coli</i> . Applied and Environmental Microbiology, 1998, 64, 4897-4903.	1.4	125
120	Nonlinear partial differential equations and applications: Gaussian curvature and the equilibrium among bilayer cylinders, spheres, and discs. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15318-15322.	3.3	125
121	Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation ofPseudomonas putida under phosphorus limitation. , 2000, 68, 466-470.		124
122	CRISPR technologies for bacterial systems: Current achievements and future directions. Biotechnology Advances, 2016, 34, 1180-1209.	6.0	124
123	Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity. Metabolic Engineering, 2018, 49, 105-115.	3.6	124
124	Metabolite essentiality elucidates robustness of <i>Escherichia coli</i> metabolism. Proceedings of the United States of America, 2007, 104, 13638-13642.	3.3	122
125	MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis. Bioinformatics, 2003, 19, 2144-2146.	1.8	121
126	Metabolic engineering of microorganisms: general strategies and drug production. Drug Discovery Today, 2009, 14, 78-88.	3.2	121

#	Article	IF	CITATIONS
127	Nanogap Fieldâ€Effect Transistor Biosensors for Electrical Detection of Avian Influenza. Small, 2009, 5, 2407-2412.	5.2	121
128	Prediction of novel synthetic pathways for the production of desired chemicals. BMC Systems Biology, 2010, 4, 35.	3.0	121
129	Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	121
130	Construction of plasmids, estimation of plasmid stability, and use of stable plasmids for the production of poly(3-hydroxybutyric acid) by recombinant Escherichia coli. Journal of Biotechnology, 1994, 32, 203-211.	1.9	120
131	Proteome Analysis of Metabolically Engineered Escherichia coli Producing Poly(3-Hydroxybutyrate). Journal of Bacteriology, 2001, 183, 301-308.	1.0	120
132	Aptamer-functionalized localized surface plasmon resonance sensor for the multiplexed detection of different bacterial species. Talanta, 2015, 132, 112-117.	2.9	120
133	Metabolic engineering of <i>Escherichia coli</i> for the production of fumaric acid. Biotechnology and Bioengineering, 2013, 110, 2025-2034.	1.7	119
134	Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metabolic Engineering, 2015, 32, 66-73.	3.6	119
135	Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20366-20375.	3.3	119
136	Chiral compounds from bacterial polyesters: Sugars to plastics to fine chemicals. , 1999, 65, 363-368.		118
137	Protein Nanopatterns and Biosensors Using Gold Binding Polypeptide as a Fusion Partner. Analytical Chemistry, 2006, 78, 7197-7205.	3.2	117
138	Metabolic engineering of <i>Clostridium acetobutylicum</i> M5 for highly selective butanol production. Biotechnology Journal, 2009, 4, 1432-1440.	1.8	117
139	CRISPy-web: An online resource to design sgRNAs for CRISPR applications. Synthetic and Systems Biotechnology, 2016, 1, 118-121.	1.8	117
140	Metabolic engineering of Escherichia coli for the production of malic acid. Biochemical Engineering Journal, 2008, 40, 312-320.	1.8	115
141	Fermentative production of branched chain amino acids: a focus on metabolic engineering. Applied Microbiology and Biotechnology, 2010, 85, 491-506.	1.7	115
142	Engineering 4-coumaroyl-CoA derived polyketide production in Yarrowia lipolytica through a β-oxidation mediated strategy. Metabolic Engineering, 2020, 57, 174-181.	3.6	115
143	Recent Trends in Nanomaterialsâ€Based Colorimetric Detection of Pathogenic Bacteria and Viruses. Small Methods, 2018, 2, 1700351.	4.6	114
144	Poly-(3-hydroxybutyrate) production from whey by high-density cultivation of recombinant Escherichia coli. Applied Microbiology and Biotechnology, 1998, 50, 30-33.	1.7	112

#	Article	IF	CITATIONS
145	Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 2012, 93, 273-283.	1.7	112
146	Genomeâ€scale metabolic model of methylotrophic yeast <i>Pichia pastoris</i> and its use for <i>in silico</i> analysis of heterologous protein production. Biotechnology Journal, 2010, 5, 705-715.	1.8	111
147	Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by high-cell-density cultivation of Aeromonas hydrophila. Biotechnology and Bioengineering, 2000, 67, 240-244.	1.7	110
148	Systems biology as a foundation for genome-scale synthetic biology. Current Opinion in Biotechnology, 2006, 17, 488-492.	3.3	109
149	Synthetic biology and metabolic engineering of actinomycetes for natural product discovery. Biotechnology Advances, 2019, 37, 107366.	6.0	109
150	Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens. Biotechnology Letters, 2003, 25, 111-114.	1.1	108
151	High cell density cultivation of Escherichia coli W using sucrose as a carbon source. Biotechnology Letters, 1993, 15, 971-974.	1.1	107
152	Generalizing a hybrid synthetic promoter approach in Yarrowia lipolytica. Applied Microbiology and Biotechnology, 2013, 97, 3037-3052.	1.7	107
153	Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9835-9844.	3.3	107
154	Synthetic Biology Expands the Industrial Potential of Yarrowia lipolytica. Trends in Biotechnology, 2018, 36, 1085-1095.	4.9	107
155	Microbial production of 2,3-butanediol for industrial applications. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1583-1601.	1.4	107
156	High-Level Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) by Fed-Batch Culture of Recombinant Escherichia coli. Applied and Environmental Microbiology, 1999, 65, 4363-4368.	1.4	107
157	Title is missing!. Biotechnology Letters, 2001, 23, 235-240.	1.1	106
158	In vivo continuous evolution of genes and pathways in yeast. Nature Communications, 2016, 7, 13051.	5.8	106
159	Display of Polyhistidine Peptides on the <i>Escherichia coli</i> Cell Surface by Using Outer Membrane Protein C as an Anchoring Motif. Applied and Environmental Microbiology, 1999, 65, 5142-5147.	1.4	106
160	Constraints-based genome-scale metabolic simulation for systems metabolic engineering. Biotechnology Advances, 2009, 27, 979-988.	6.0	105
161	Effects of dissolved CO2 levels on the growth ofMannheimia succiniciproducens and succinic acid production. Biotechnology and Bioengineering, 2007, 98, 1296-1304.	1.7	104
162	Recent advances in production of recombinant spider silk proteins. Current Opinion in Biotechnology, 2012, 23, 957-964.	3.3	104

#	Article	IF	CITATIONS
163	Metabolic engineering for the production of dicarboxylic acids and diamines. Metabolic Engineering, 2020, 58, 2-16.	3.6	104
164	Metabolic engineering of <i>Escherichia coli</i> for the production of phenol from glucose. Biotechnology Journal, 2014, 9, 621-629.	1.8	103
165	Recombinant <i>Escherichia coli</i> as a biofactory for various single- and multi-element nanomaterials. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5944-5949.	3.3	103
166	Novel gene members in the Pho regulon ofEscherichia coli. FEMS Microbiology Letters, 2006, 264, 104-109.	0.7	100
167	High cell density fed-batch cultivation of Escherichia coli using exponential feeding combined with pH-stat. Bioprocess and Biosystems Engineering, 2004, 26, 147-150.	1.7	99
168	The urgent need for microbiology literacy in society. Environmental Microbiology, 2019, 21, 1513-1528.	1.8	99
169	Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces. Current Opinion in Biotechnology, 2013, 24, 1023-1030.	3.3	98
170	Biosensorâ€Enabled Directed Evolution to Improve Muconic Acid Production in <i>Saccharomyces cerevisiae</i> . Biotechnology Journal, 2017, 12, 1600687.	1.8	98
171	Removal of Endotoxin during Purification of Poly(3-Hydroxybutyrate) from Gram-Negative Bacteria. Applied and Environmental Microbiology, 1999, 65, 2762-2764.	1.4	97
172	Construction and optimization of synthetic pathways in metabolic engineering. Current Opinion in Microbiology, 2010, 13, 363-370.	2.3	97
173	Graphene-based electrochemical biosensor for pathogenic virus detection. Biochip Journal, 2011, 5, 123-128.	2.5	97
174	Enabling tools for high-throughput detection of metabolites: Metabolic engineering and directed evolution applications. Biotechnology Advances, 2017, 35, 950-970.	6.0	97
175	Assimilation of formic acid and CO ₂ by engineered <i>Escherichia coli</i> equipped with reconstructed one-carbon assimilation pathways. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9271-E9279.	3.3	97
176	Covalent Attachment and Hybridization of DNA Oligonucleotides on Patterned Single-Walled Carbon Nanotube Films. Langmuir, 2004, 20, 8886-8891.	1.6	96
177	Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid. Microbial Cell Factories, 2016, 15, 174.	1.9	96
178	Biosynthesis of inorganic nanomaterials using microbial cells and bacteriophages. Nature Reviews Chemistry, 2020, 4, 638-656.	13.8	96
179	Effective purification of succinic acid from fermentation broth produced by Mannheimia succiniciproducens. Process Biochemistry, 2006, 41, 1461-1465.	1.8	95
180	Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica. Journal of Biotechnology, 2013, 165, 184-194.	1.9	95

#	Article	IF	CITATIONS
181	Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metabolic Engineering, 2015, 30, 121-129.	3.6	95
182	Advances in CRISPR-Cas systems for RNA targeting, tracking and editing. Biotechnology Advances, 2019, 37, 708-729.	6.0	95
183	Formation and functionalization of membraneless compartments in Escherichia coli. Nature Chemical Biology, 2020, 16, 1143-1148.	3.9	95
184	Metabolic flux analysis for succinic acid production by recombinantEscherichia coli with amplified malic enzyme activity. Biotechnology and Bioengineering, 2001, 74, 89-95.	1.7	94
185	Metabolic engineering of Escherichia coli for the production of 1-propanol. Metabolic Engineering, 2012, 14, 477-486.	3.6	94
186	Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnology Advances, 2015, 33, 1455-1466.	6.0	94
187	Production of poly-γ-glutamic acid by fed-batch culture of Bacillus licheniformis. Biotechnology Letters, 2000, 22, 585-588.	1.1	93
188	Batch and continuous cultures of Mannheimia succiniciproducens MBEL55E for the production of succinic acid from whey and corn steep liquor. Bioprocess and Biosystems Engineering, 2003, 26, 63-67.	1.7	93
189	Identification and Characterization of a New Enoyl Coenzyme A Hydratase Involved in Biosynthesis of Medium-Chain-Length Polyhydroxyalkanoates in Recombinant Escherichia coli. Journal of Bacteriology, 2003, 185, 5391-5397.	1.0	93
190	Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE. Molecular BioSystems, 2010, 6, 339-348.	2.9	93
191	One hundred years of clostridial butanol fermentation. FEMS Microbiology Letters, 2016, 363, fnw001.	0.7	93
192	Genome-scale analysis of Mannheimia succiniciproducens metabolism. Biotechnology and Bioengineering, 2007, 97, 657-671.	1.7	92
193	Production of poly(3-hydroxybutyric-co-3-hydroxyvaleric acid) by fed-batch culture of Alcaligenes eutrophus with substrate control using on-line glucose analyzer. Enzyme and Microbial Technology, 1994, 16, 556-561.	1.6	91
194	Fermentative Production of Chemicals That Can Be Used for Polymer Synthesis. Macromolecular Bioscience, 2004, 4, 157-164.	2.1	91
195	Comparison of the extracellular proteomes of <i>Escherichia coli</i> B and Kâ€12 strains during high cell density cultivation. Proteomics, 2008, 8, 2089-2103.	1.3	91
196	<i>In silico</i> genomeâ€scale metabolic analysis of <i>Pseudomonas putida</i> KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival. Biotechnology Journal, 2010, 5, 739-750.	1.8	91
197	Metabolic engineering of microbial cell factories for production of nutraceuticals. Microbial Cell Factories, 2019, 18, 46.	1.9	91
198	High-Level Production of Human Leptin by Fed-Batch Cultivation of Recombinant <i>Escherichia coli</i> and Its Purification. Applied and Environmental Microbiology, 1999, 65, 3027-3032.	1.4	90

#	Article	IF	CITATIONS
199	A systems approach to traditional oriental medicine. Nature Biotechnology, 2015, 33, 264-268.	9.4	90
200	Metabolic Engineering of <i>Escherichia coli</i> for the Production of 3-Hydroxypropionic Acid and Malonic Acid through I²-Alanine Route. ACS Synthetic Biology, 2016, 5, 1256-1263.	1.9	90
201	Efficient production of polylactic acid and its copolymers by metabolically engineered Escherichia coli. Journal of Biotechnology, 2011, 151, 94-101.	1.9	88
202	CRISPR/Cas-based genome engineering in natural product discovery. Natural Product Reports, 2019, 36, 1262-1280.	5.2	88
203	Production of poly(3-hydroxybutyric acid) by recombinant <i>Escherichia coli</i> strains: genetic and fermentation studies. Canadian Journal of Microbiology, 1995, 41, 207-215.	0.8	87
204	Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production. Applied Microbiology and Biotechnology, 2014, 98, 8155-8164.	1.7	87
205	Current state and applications of microbial genome-scale metabolic models. Current Opinion in Systems Biology, 2017, 2, 10-18.	1.3	87
206	Modeling of batch fermentation kinetics for succinic acid production by Mannheimia succiniciproducens. Biochemical Engineering Journal, 2008, 40, 107-115.	1.8	86
207	Global physiological understanding and metabolic engineering of microorganisms based on omics studies. Applied Microbiology and Biotechnology, 2005, 68, 567-579.	1.7	84
208	A self-assembled fusion protein-based surface plasmon resonance biosensor for rapid diagnosis of severe acute respiratory syndrome. Talanta, 2009, 79, 295-301.	2.9	84
209	One-step fermentative production of aromatic polyesters from glucose by metabolically engineered Escherichia coli strains. Nature Communications, 2018, 9, 79.	5.8	84
210	Structural Insights into Polyhydroxyalkanoates Biosynthesis. Trends in Biochemical Sciences, 2018, 43, 790-805.	3.7	84
211	Production of poly-?-hydroxybutyrate by fed-batch culture of recombinantEscherichia coli. Biotechnology Letters, 1992, 14, 811-816.	1.1	83
212	Development of a Glucose Biosensor Using Advanced Electrode Modified by Nanohybrid Composing Chemically Modified Graphene and Ionic Liquid. Electroanalysis, 2010, 22, 1223-1228.	1,5	83
213	Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity. Metabolic Engineering, 2014, 23, 165-174.	3.6	83
214	Gene Expression Knockdown by Modulating Synthetic Small RNA Expression in Escherichia coli. Cell Systems, 2017, 5, 418-426.e4.	2.9	83
215	The power of synthetic biology for bioproduction, remediation and pollution control. EMBO Reports, 2018, 19, .	2.0	83
216	Metabolic Engineering of Microorganisms for the Production of Natural Compounds. Advanced Biology, 2018, 2, 1700190.	3.0	83

#	Article	IF	CITATIONS
217	Proteomeâ€based identification of fusion partner for highâ€level extracellular production of recombinant proteins in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2008, 101, 587-601.	1.7	82
218	Synthetic biology for microbial heavy metal biosensors. Analytical and Bioanalytical Chemistry, 2018, 410, 1191-1203.	1.9	82
219	Microbial production of methyl anthranilate, a grape flavor compound. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10749-10756.	3.3	81
220	Escherichia coli is engineered to grow on CO2 and formic acid. Nature Microbiology, 2020, 5, 1459-1463.	5.9	81
221	Au Nanowireâ€onâ€Film SERRS Sensor for Ultrasensitive Hg ²⁺ Detection. Chemistry - A European Journal, 2011, 17, 2211-2214.	1.7	80
222	An Underlap Channel-Embedded Field-Effect Transistor for Biosensor Application in Watery and Dry Environment. IEEE Nanotechnology Magazine, 2012, 11, 390-394.	1.1	80
223	Yarrowia lipolytica: more than an oleaginous workhorse. Applied Microbiology and Biotechnology, 2019, 103, 9251-9262.	1.7	80
224	The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies. Microbial Cell Factories, 2010, 9, 94.	1.9	79
225	Enhanced succinic acid production by Mannheimia employing optimal malate dehydrogenase. Nature Communications, 2020, 11, 1970.	5.8	79
226	Batch and continuous cultivation of Anaerobiospirillum succiniciproducens for the production of succinic acid from whey. Applied Microbiology and Biotechnology, 2000, 54, 23-27.	1.7	78
227	Acetone–butanol–ethanol production with high productivity using <i>Clostridium acetobutylicum</i> BKM19. Biotechnology and Bioengineering, 2013, 110, 1646-1653.	1.7	78
228	Metabolic pathways and fermentative production of <scp>L</scp> â€aspartate family amino acids. Biotechnology Journal, 2010, 5, 560-577.	1.8	77
229	Applications of genome-scale metabolic network model in metabolic engineering. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 339-348.	1.4	77
230	Efficient secretory production of alkaline phosphatase by high cell density culture of recombinant Escherichia coli using the Bacillus sp. endoxylanase signal sequence. Applied Microbiology and Biotechnology, 2000, 53, 640-645.	1.7	76
231	Fedâ€batch culture of <i>Escherichia coli</i> for <scp>L</scp> â€valine production based on in silico flux response analysis. Biotechnology and Bioengineering, 2011, 108, 934-946.	1.7	76
232	Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose. Applied Microbiology and Biotechnology, 2014, 98, 95-104.	1.7	76
233	Engineering of an oleaginous bacterium for the production of fatty acids and fuels. Nature Chemical Biology, 2019, 15, 721-729.	3.9	76

Metabolic Engineering of Escherichia coli for Production of Enantiomerically Pure (R) Tj ETQq0 0 0 rgBT /Overlock 10.75 Td ()-(a^{-2})-1.4

#	Article	IF	CITATIONS
235	Metabolic engineering of Escherichia coli for secretory production of free haem. Nature Catalysis, 2018, 1, 720-728.	16.1	75
236	Effect of fermentation performance on the economics of poly(3-hydroxybutyrate) production byAlcaligenes latus. Polymer Degradation and Stability, 1998, 59, 387-393.	2.7	74
237	Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams. Metabolic Engineering, 2017, 41, 82-91.	3.6	74
238	Metabolic engineering of <i>Corynebacterium glutamicum</i> for the production of Lâ€ornithine. Biotechnology and Bioengineering, 2015, 112, 416-421.	1.7	73
239	The contribution of microbial biotechnology to sustainable development goals. Microbial Biotechnology, 2017, 10, 984-987.	2.0	73
240	Deciphering Clostridium tyrobutyricum Metabolism Based on the Whole-Genome Sequence and Proteome Analyses. MBio, 2016, 7, .	1.8	72
241	Occurrence, evolution, and functions of DNA phosphorothioate epigenetics in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2988-E2996.	3.3	72
242	Recovery of succinic acid produced by fermentation of a metabolically engineered Mannheimia succiniciproducens strain. Journal of Biotechnology, 2007, 132, 445-452.	1.9	71
243	Enhanced Production of Insulin-Like Growth Factor I Fusion Protein in Escherichia coli by Coexpression of the Down-Regulated Genes Identified by Transcriptome Profiling. Applied and Environmental Microbiology, 2003, 69, 4737-4742.	1.4	70
244	Validating genome-wide CRISPR-Cas9 function improves screening in the oleaginous yeast Yarrowia lipolytica. Metabolic Engineering, 2019, 55, 102-110.	3.6	70
245	Plasmonic Properties of the Multispot Copper-Capped Nanoparticle Array Chip and Its Application to Optical Biosensors for Pathogen Detection of Multiplex DNAs. Analytical Chemistry, 2011, 83, 6215-6222.	3.2	69
246	Metabolic engineering of <i>Clostridium acetobutylicum</i> for the enhanced production of isopropanolâ€butanolâ€ethanol fuel mixture. Biotechnology Progress, 2013, 29, 1083-1088.	1.3	69
247	Prospects of microbial cell factories developed through systems metabolic engineering. Microbial Biotechnology, 2016, 9, 610-617.	2.0	69
248	Effect of complex nitrogen source on the synthesis and accumulation of poly(3-hydroxybutyric acid) by recombinantEscherichia coli in flask and fed-batch cultures. Journal of Polymers and the Environment, 1994, 2, 169-176.	0.8	68
249	Effects of medium components on the growth of Anaerobiospirillum succiniciproducens and succinic acid production. Process Biochemistry, 1999, 35, 49-55.	1.8	68
250	Do genomeâ€scale models need exact solvers or clearer standards?. Molecular Systems Biology, 2015, 11, 831.	3.2	68
251	A well-ordered flower-like gold nanostructure for integrated sensors via surface-enhanced Raman scattering. Nanotechnology, 2009, 20, 235302.	1.3	67
252	Optimization of a Yeast RNA Interference System for Controlling Gene Expression and Enabling Rapid Metabolic Engineering. ACS Synthetic Biology, 2014, 3, 307-313.	1.9	67

#	Article	IF	CITATIONS
253	Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine. Scientific Reports, 2015, 5, 13040.	1.6	67
254	Surveying the lipogenesis landscape in Yarrowia lipolytica through understanding the function of a Mga2p regulatory protein mutant. Metabolic Engineering, 2015, 31, 102-111.	3.6	66
255	A comparative analysis of single cell and droplet-based FACS for improving production phenotypes: Riboflavin overproduction in Yarrowia lipolytica. Metabolic Engineering, 2018, 47, 346-356.	3.6	66
256	Poly(3-hydroxybutyrate) production from xylose by recombinant Escherichia coli. Bioprocess and Biosystems Engineering, 1998, 18, 397.	0.5	65
257	Fermentative production of succinic acid from glucose and corn steep liquor byAnaerobiospirillum succiniciproducens. Biotechnology and Bioprocess Engineering, 2000, 5, 379-381.	1.4	65
258	Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production. BMC Systems Biology, 2011, 5, 101.	3.0	65
259	Development of label-free optical diagnosis for sensitive detection of influenza virus with genetically engineered fusion protein. Talanta, 2012, 89, 246-252.	2.9	65
260	Systems metabolic engineering, industrial biotechnology and microbial cell factories. Microbial Cell Factories, 2012, 11, 156.	1.9	65
261	Microbial Polyhydroxyalkanoates and Nonnatural Polyesters. Advanced Materials, 2020, 32, e1907138.	11.1	65
262	Highâ€level conversion of <scp>L</scp> â€lysine into 5â€aminovalerate that can be used for nylon 6,5 synthesis. Biotechnology Journal, 2014, 9, 1322-1328.	1.8	64
263	Metabolic engineering for the production of hydrocarbon fuels. Current Opinion in Biotechnology, 2015, 33, 15-22.	3.3	64
264	Effect of post-induction nutrient feeding strategies on the production of bioadhesive protein inEscherichia coli. , 1998, 60, 271-276.		63
265	Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) by metabolically engineeredEscherichia coli strains. Biotechnology and Bioengineering, 2001, 74, 82-87.	1.7	63
266	Development of chemically defined medium for Mannheimia succiniciproducens based on its genome sequence. Applied Microbiology and Biotechnology, 2008, 79, 263-272.	1.7	63
267	Tailor-made type II Pseudomonas PHA synthases and their use for the biosynthesis of polylactic acid and its copolymer in recombinant Escherichia coli. Applied Microbiology and Biotechnology, 2011, 90, 603-614.	1.7	63
268	<i>Escherichia coli</i> W as a new platform strain for the enhanced production of <scp>L</scp> â€Valine by systems metabolic engineering. Biotechnology and Bioengineering, 2011, 108, 1140-1147.	1.7	63
269	Metabolic engineering of Ralstonia eutropha for the biosynthesis of 2-hydroxyacid-containing polyhydroxyalkanoates. Metabolic Engineering, 2013, 20, 20-28.	3.6	63
270	Metabolite-centric approaches for the discovery of antibacterials using genome-scale metabolic networks. Metabolic Engineering, 2010, 12, 105-111.	3.6	62

#	Article	IF	CITATIONS
271	Development of a Point-of-Care Testing Platform With a Nanogap-Embedded Separated Double-Gate Field Effect Transistor Array and Its Readout System for Detection of Avian Influenza. IEEE Sensors Journal, 2011, 11, 351-360.	2.4	62
272	Single-step multiplex detection of toxic metal ions by Au nanowires-on-chip sensor using reporter elimination. Lab on A Chip, 2012, 12, 3077.	3.1	62
273	Flux variability scanning based on enforced objective flux for identifying gene amplification targets. BMC Systems Biology, 2012, 6, 106.	3.0	62
274	Production of bulk chemicals via novel metabolic pathways in microorganisms. Biotechnology Advances, 2013, 31, 925-935.	6.0	62
275	Metabolic engineering of <i>Ralstonia eutropha</i> for the production of polyhydroxyalkanoates from sucrose. Biotechnology and Bioengineering, 2015, 112, 638-643.	1.7	62
276	Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli. Nature Communications, 2017, 8, 15689.	5.8	62
277	Developing a <i>piggyBac</i> Transposon System and Compatible Selection Markers for Insertional Mutagenesis and Genome Engineering in <i>Yarrowia lipolytica</i> . Biotechnology Journal, 2018, 13, e1800022.	1.8	62
278	High cell density culture of metabolically engineeredEscherichia coli for the production of poly(3-hydroxybutyrate) in a defined medium. , 1998, 58, 325-328.		61
279	Metabolic and kinetic analysis of poly(3-hydroxybutyrate) production by recombinantEscherichia coli. Biotechnology and Bioengineering, 2001, 74, 70-81.	1.7	61
280	Development of a markerless gene knock-out system for <i>Mannheimia succiniciproducens</i> using a temperature-sensitive plasmid. FEMS Microbiology Letters, 2008, 278, 78-85.	0.7	61
281	Development of the electrochemical biosensor for organophosphate chemicals using CNT/ionic liquid bucky gel electrode. Electrochemistry Communications, 2009, 11, 672-675.	2.3	61
282	Metabolic Engineering of Microorganisms for the Production of Higher Alcohols. MBio, 2014, 5, e01524-14.	1.8	61
283	Regulatory effects of cellular nicotinamide nucleotides and enzyme activities on poly(3-hydroxybutyrate) synthesis in recombinant Escherichia coli. , 2000, 52, 707-712.		59
284	Kinetic study for the extraction of succinic acid with TOA in fermentation broth; effects of pH, salt and contaminated acid. Biochemical Engineering Journal, 2007, 36, 8-13.	1.8	59
285	Strategies for systemsâ€level metabolic engineering. Biotechnology Journal, 2008, 3, 612-623.	1.8	59
286	Genome engineering and gene expression control for bacterial strain development. Biotechnology Journal, 2015, 10, 56-68.	1.8	59
287	Metabolic engineering of <i>Escherichia coli</i> for the enhanced production of <scp>l</scp> â€tyrosine. Biotechnology and Bioengineering, 2018, 115, 2554-2564.	1.7	59
288	Metabolic engineering strategies toward production of biofuels. Current Opinion in Chemical Biology, 2020, 59, 1-14.	2.8	59

#	Article	IF	CITATIONS
289	E. coli moves into the plastic age. Nature Biotechnology, 1997, 15, 17-18.	9.4	58
290	Production and degradation of polyhydroxyalkanoates in waste environment. Waste Management, 1999, 19, 133-139.	3.7	58
291	Importance of redox balance on the production of succinic acid by metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 2002, 58, 286-290.	1.7	57
292	Display of Bacterial Lipase on the Escherichia coli Cell Surface by Using FadL as an Anchoring Motif and Use of the Enzyme in Enantioselective Biocatalysis. Applied and Environmental Microbiology, 2004, 70, 5074-5080.	1.4	57
293	Engineering of Escherichia coli fatty acid metabolism for the production of polyhydroxyalkanoates. Enzyme and Microbial Technology, 2005, 36, 579-588.	1.6	57
294	An underlap field-effect transistor for electrical detection of influenza. Applied Physics Letters, 2010, 96, .	1.5	57
295	Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis. Scientific Reports, 2016, 6, 21155.	1.6	57
296	Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S,S)-2,3-butanediol. Metabolic Engineering, 2016, 36, 57-67.	3.6	57
297	Crystal structure of <i>Ralstonia eutropha</i> polyhydroxyalkanoate synthase Câ€ŧerminal domain and reaction mechanisms. Biotechnology Journal, 2017, 12, 1600648.	1.8	57
298	A safe and sustainable bacterial cellulose nanofiber separator for lithium rechargeable batteries. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19288-19293.	3.3	57
299	Microwave-assisted synthesis of highly water-soluble graphene towards electrical DNA sensor. Nanoscale, 2010, 2, 2692.	2.8	56
300	Glutaric acid production by systems metabolic engineering of an <scp>l</scp> -lysine–overproducing <i>Corynebacterium glutamicum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30328-30334.	3.3	56
301	Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels. Current Opinion in Chemical Biology, 2016, 35, 10-21.	2.8	55
302	Bacterial cellulose as an example product for sustainable production and consumption. Microbial Biotechnology, 2017, 10, 1181-1185.	2.0	55
303	Production of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Metabolically EngineeredEscherichiacoliStrains. Biomacromolecules, 2001, 2, 248-254.	2.6	54
304	Efficient recovery of ?-poly (glutamic acid) from highly viscous culture broth. Biotechnology and Bioengineering, 2001, 76, 219-223.	1.7	54
305	Adsorption of Pyruvic and Succinic Acid by Amine-Functionalized SBA-15 for the Purification of Succinic Acid from Fermentation Broth. Journal of Physical Chemistry C, 2007, 111, 13076-13086.	1.5	54
306	Catalytic characteristics of specialty carbon blacks in decomposition of methane for hydrogen production. Carbon, 2008, 46, 1978-1986.	5.4	54

#	Article	IF	CITATIONS
307	Microbial small heat shock proteins and their use in biotechnology. Biotechnology Advances, 2008, 26, 591-609.	6.0	54
308	Redox-switch regulatory mechanism of thiolase from Clostridium acetobutylicum. Nature Communications, 2015, 6, 8410.	5.8	54
309	Current status of pan-genome analysis for pathogenic bacteria. Current Opinion in Biotechnology, 2020, 63, 54-62.	3.3	54
310	Engineering Escherichia coli for Increased Productivity of Serine-Rich Proteins Based on Proteome Profiling. Applied and Environmental Microbiology, 2003, 69, 5772-5781.	1.4	53
311	Highly selective production of succinic acid by metabolically engineered <i>Mannheimia succiniciproducens</i> and its efficient purification. Biotechnology and Bioengineering, 2016, 113, 2168-2177.	1.7	53
312	Homo-succinic acid production by metabolically engineered Mannheimia succiniciproducens. Metabolic Engineering, 2016, 38, 409-417.	3.6	53
313	Characterisation of the antibacterial properties of the recombinant phage endolysins AP50-31 and LysB4 as potent bactericidal agents against Bacillus anthracis. Scientific Reports, 2018, 8, 18.	1.6	53
314	Markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida. Metabolic Engineering, 2018, 47, 463-474.	3.6	53
315	Production of poly(hydroxyalkanoic acid). Advances in Biochemical Engineering/Biotechnology, 1995, 52, 27-58.	0.6	52
316	Poly(3-hydroxybutyrate) production from whey using recombinant Escherichia coli. Biotechnology Letters, 1997, 19, 1033-1035.	1.1	52
317	Secretory production of human leptin inEscherichia coli. , 2000, 67, 398-407.		52
318	Metabolic engineering ofEscherichia colifor the production of medium-chain-length polyhydroxyalkanoates rich in specific monomers. FEMS Microbiology Letters, 2002, 214, 217-222.	0.7	52
319	Identification of the Cadmium-Inducible Hansenula polymorpha SEO1 Gene Promoter by Transcriptome Analysis and Its Application to Whole-Cell Heavy-Metal Detection Systems. Applied and Environmental Microbiology, 2007, 73, 5990-6000.	1.4	52
320	Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites. Natural Product Reports, 2016, 33, 933-941.	5.2	52
321	Production of α-linolenic acid in Yarrowia lipolytica using low-temperature fermentation. Applied Microbiology and Biotechnology, 2018, 102, 8809-8816.	1.7	52
322	Characterizing <i>Escherichia coli</i> DH5α growth and metabolism in a complex medium using genomeâ€scale flux analysis. Biotechnology and Bioengineering, 2009, 102, 923-934.	1.7	51
323	Directed Selfâ€Assembly of Gold Nanoparticles on Graphene″onic Liquid Hybrid for Enhancing Electrocatalytic Activity. Electroanalysis, 2011, 23, 850-857.	1.5	51
324	Reconstruction of genome-scale human metabolic models using omics data. Integrative Biology (United Kingdom), 2015, 7, 859-868.	0.6	51

#	Article	IF	CITATIONS
325	Efficient gene knockdown in <i>Clostridium acetobutylicum</i> by synthetic small regulatory RNAs. Biotechnology and Bioengineering, 2017, 114, 374-383.	1.7	51
326	Site-specific immobilization of gold binding polypeptide on gold nanoparticle-coated graphene sheet for biosensor application. Nanoscale, 2011, 3, 2950.	2.8	50
327	Metabolic engineering of strains: from industrial-scale to lab-scale chemical production. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 423-436.	1.4	50
328	Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical. Metabolic Engineering, 2019, 51, 99-109.	3.6	50
329	CRISPR–Cas9, CRISPRi and CRISPR-BEST-mediated genetic manipulation in streptomycetes. Nature Protocols, 2020, 15, 2470-2502.	5.5	50
330	Preparation of alkyl (R)-(â^')-3-hydroxybutyrate by acidic alcoholysis of poly-(R)-(â^')-3-hydroxybutyrate. Enzyme and Microbial Technology, 2000, 27, 33-36.	1.6	49
331	What's in a name?. Nature Biotechnology, 2009, 27, 1071-1073.	9.4	49
332	Metabolic network modeling and simulation for drug targeting and discovery. Biotechnology Journal, 2012, 7, 330-342.	1.8	49
333	Genomic and transcriptomic landscape of Escherichia coli BL21(DE3). Nucleic Acids Research, 2017, 45, 5285-5293.	6.5	49
334	Engineering a Glucosamine-6-phosphate Responsive <i>glmS</i> Ribozyme Switch Enables Dynamic Control of Metabolic Flux in <i>Bacillus subtilis</i> for Overproduction of <i>N</i> -Acetylglucosamine. ACS Synthetic Biology, 2018, 7, 2423-2435.	1.9	49
335	A versatile genetic engineering toolkit for E. coli based on CRISPR-prime editing. Nature Communications, 2021, 12, 5206.	5.8	49
336	Applications of artificial intelligence to enzyme and pathway design for metabolic engineering. Current Opinion in Biotechnology, 2022, 73, 101-107.	3.3	49
337	Prediction of metabolic fluxes by incorporating genomic context and flux-converging pattern analyses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14931-14936.	3.3	48
338	Applications of DNA microarray in disease diagnostics. Journal of Microbiology and Biotechnology, 2009, 19, 635-46.	0.9	48
339	Excretion of Human β-Endorphin into Culture Medium by Using Outer Membrane Protein F as a Fusion Partner in Recombinant Escherichia coli. Applied and Environmental Microbiology, 2002, 68, 4979-4985.	1.4	47
340	Roles and applications of small heat shock proteins in the production of recombinant proteins inEscherichia coli. Biotechnology and Bioengineering, 2004, 88, 426-436.	1.7	47
341	Characterization of active sites for methane decomposition on carbon black through acetylene chemisorption. Carbon, 2008, 46, 342-348.	5.4	47
342	Multi-stage high cell continuous fermentation for high productivity and titer. Bioprocess and Biosystems Engineering, 2011, 34, 419-431.	1.7	47

#	Article	IF	CITATIONS
343	Bio-synthesis of food additives and colorants-a growing trend in future food. Biotechnology Advances, 2021, 47, 107694.	6.0	47
344	Development of sucrose-utilizing Escherichia coli K-12 strain by cloning β-fructofuranosidases and its application for l-threonine production. Applied Microbiology and Biotechnology, 2010, 88, 905-913.	1.7	46
345	Label-free optical diagnosis of hepatitis B virus with genetically engineered fusion proteins. Talanta, 2010, 82, 803-809.	2.9	46
346	Rapid oneâ€ s tep inactivation of single or multiple genes in <i>Escherichia coli</i> . Biotechnology Journal, 2013, 8, 776-784.	1.8	46
347	Surface engineering for enhancement of sensitivity in an underlap-FET biosensor by control of wettability. Biosensors and Bioelectronics, 2013, 41, 867-870.	5.3	46
348	Genomic and metabolic analysis of <i>Komagataeibacter xylinus</i> DSM 2325 producing bacterial cellulose nanofiber. Biotechnology and Bioengineering, 2019, 116, 3372-3381.	1.7	46
349	Stimulatory effects of amino acids and oleic acid on poly(3-hydroxybutyric acid) synthesis by recombinant Escherichia coli. Journal of Bioscience and Bioengineering, 1995, 79, 177-180.	0.9	45
350	Secretory Production of Human Granulocyte Colony-Stimulating Factor in Escherichia coli. Protein Expression and Purification, 2001, 23, 311-318.	0.6	45
351	Title is missing!. Biotechnology Letters, 2002, 24, 185-189.	1.1	45
352	High level production of supra molecular weight poly (3-hydroxybutyrate) by metabolically engineeredEscherichia coli. Biotechnology and Bioprocess Engineering, 2004, 9, 196-200.	1.4	45
353	Cell Surface Display of Lipase in Pseudomonas putida KT2442 Using OprF as an Anchoring Motif and Its Biocatalytic Applications. Applied and Environmental Microbiology, 2005, 71, 8581-8586.	1.4	45
354	The proteome ofMannheimia succiniciproducens, a capnophilic rumen bacterium. Proteomics, 2006, 6, 3550-3566.	1.3	45
355	Isolation and genetic manipulation of the antibiotic down-regulatory gene, wblA ortholog for doxorubicin-producing Streptomyces strain improvement. Applied Microbiology and Biotechnology, 2010, 86, 1145-1153.	1.7	45
356	Combining a Nanowire SERRS Sensor and a Target Recycling Reaction for Ultrasensitive and Multiplex Identification of Pathogenic Fungi. Small, 2011, 7, 3371-3376.	5.2	45
357	An engineered Escherichia coli having a high intracellular level of ATP and enhanced recombinant protein production. Applied Microbiology and Biotechnology, 2012, 94, 1079-1086.	1.7	45
358	Production of 5-aminovaleric acid in recombinant Corynebacterium glutamicum strains from a Miscanthus hydrolysate solution prepared by a newly developed Miscanthus hydrolysis process. Bioresource Technology, 2017, 245, 1692-1700.	4.8	45
359	Engineering and application of synthetic nar promoter for fine-tuning the expression of metabolic pathway genes in Escherichia coli. Biotechnology for Biofuels, 2018, 11, 103.	6.2	45
360	Systems Metabolic Engineering Meets Machine Learning: A New Era for Dataâ€Driven Metabolic Engineering. Biotechnology Journal, 2019, 14, e1800416.	1.8	45

#	Article	IF	CITATIONS
361	Microdroplet-Assisted Screening of Biomolecule Production for Metabolic Engineering Applications. Trends in Biotechnology, 2020, 38, 701-714.	4.9	45
362	DeepTFactor: A deep learning-based tool for the prediction of transcription factors. Proceedings of the United States of America, 2021, 118, .	3.3	45
363	Colored Petri net modeling and simulation of signal transduction pathways. Metabolic Engineering, 2006, 8, 112-122.	3.6	44
364	Data integration and analysis of biological networks. Current Opinion in Biotechnology, 2010, 21, 78-84.	3.3	44
365	Rapid separation of bacteriorhodopsin using a laminar-flow extraction system in a microfluidic device. Biomicrofluidics, 2010, 4, 014103.	1.2	44
366	Metabolic engineering of clostridia for the production of chemicals. Biofuels, Bioproducts and Biorefining, 2015, 9, 211-225.	1.9	44
367	Biomass, strain engineering, and fermentation processes for butanol production by solventogenic clostridia. Applied Microbiology and Biotechnology, 2016, 100, 8255-8271.	1.7	44
368	From genome sequence to integrated bioprocess for succinic acid production by Mannheimia succiniciproducens. Applied Microbiology and Biotechnology, 2008, 79, 11-22.	1.7	43
369	Expanding the metabolic engineering toolbox with directed evolution. Biotechnology Journal, 2013, 8, 1397-1410.	1.8	43
370	Metabolic engineering of microorganisms for the production of L-arginine and its derivatives. Microbial Cell Factories, 2014, 13, 166.	1.9	43
371	Increasing expression level and copy number of a <i>Yarrowia lipolytica</i> plasmid through regulated centromere function. FEMS Yeast Research, 2014, 14, n/a-n/a.	1.1	43
372	In silico prediction and validation of the importance of the Entner-Doudoroff pathway in poly(3-hydroxybutyrate) production by metabolically engineeredEscherichia coli. Biotechnology and Bioengineering, 2003, 83, 854-863.	1.7	42
373	Selective Immobilization of Fusion Proteins on Poly(hydroxyalkanoate) Microbeads. Analytical Chemistry, 2005, 77, 5755-5759.	3.2	42
374	Functionalization Effects of Single-Walled Carbon Nanotubes as Templates for the Synthesis of Silica Nanorods and Study of Growing Mechanism of Silica. ACS Nano, 2010, 4, 3933-3942.	7.3	42
375	Rational Design of <i>Escherichia coli</i> for <scp>l</scp> -Isoleucine Production. ACS Synthetic Biology, 2012, 1, 532-540.	1.9	42
376	<i>In Vitro</i> Biosynthesis of Metal Nanoparticles in Microdroplets. ACS Nano, 2012, 6, 6998-7008.	7.3	42
377	Development of rice bran treatment process and its use for the synthesis of polyhydroxyalkanoates from rice bran hydrolysate solution. Bioresource Technology, 2015, 181, 283-290.	4.8	42
378	Polyketide Bioderivatization Using the Promiscuous Acyltransferase KirCII. ACS Synthetic Biology, 2017, 6, 421-427.	1.9	42

#	Article	IF	CITATIONS
379	Display of lipase on the cell surface ofEscherichia coli using OprF as an anchor and its application to enantioselective resolution in organic solvent. Biotechnology and Bioengineering, 2005, 90, 223-230.	1.7	41
380	Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid. Applied Microbiology and Biotechnology, 2013, 97, 9355-9363.	1.7	41
381	Micropatterns of Spores Displaying Heterologous Proteins. Journal of the American Chemical Society, 2004, 126, 10512-10513.	6.6	40
382	Enhanced production of poly(3-hydroxybutyrate) by filamentation-suppressed recombinantEscherichia coli in a defined medium. Journal of Polymers and the Environment, 1996, 4, 131-134.	0.8	39
383	Economic considerations in the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by bacterial fermentation. Applied Microbiology and Biotechnology, 2000, 53, 646-649.	1.7	39
384	Multiplex electrical detection of avian influenza and human immunodeficiency virus with an underlap-embedded silicon nanowire field-effect transistor. Biosensors and Bioelectronics, 2014, 55, 162-167.	5.3	39
385	Recent advancements in fungal-derived fuel and chemical production and commercialization. Current Opinion in Biotechnology, 2019, 57, 1-9.	3.3	39
386	Production of Poly(?-Hydroxybutyric Acid) by Recombinant Escherichia colia. Annals of the New York Academy of Sciences, 1994, 721, 43-52.	1.8	38
387	Enhanced Production of Recombinant Proteins in Escherichia coli by Filamentation Suppression. Applied and Environmental Microbiology, 2003, 69, 1295-1298.	1.4	38
388	Complementary identification of multiple flux distributions and multiple metabolic pathways. Metabolic Engineering, 2005, 7, 182-200.	3.6	38
389	Optimal Production of Poly-γ-glutamic Acid by Metabolically Engineered Escherichia coli. Biotechnology Letters, 2006, 28, 1241-1246.	1.1	38
390	Solution behavior of synthetic silk peptides and modified recombinant silk proteins. Applied Physics A: Materials Science and Processing, 2006, 82, 193-203.	1.1	38
391	Biosynthesis of enantiopure (S)-3-hydroxybutyric acid in metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 2008, 79, 633-641.	1.7	38
392	DNA microarray-based identification of bacterial and fungal pathogens in bloodstream infections. Molecular and Cellular Probes, 2010, 24, 44-52.	0.9	38
393	Homogeneous Biogenic Paramagnetic Nanoparticle Synthesis Based on a Microfluidic Droplet Generator. Angewandte Chemie - International Edition, 2012, 51, 5634-5637.	7.2	38
394	Propionyl-CoA dependent biosynthesis of 2-hydroxybutyrate containing polyhydroxyalkanoates in metabolically engineered Escherichia coli. Journal of Biotechnology, 2013, 165, 93-98.	1.9	38
395	Metabolic engineering of Escherichia coli for the production of indirubin from glucose. Journal of Biotechnology, 2018, 267, 19-28.	1.9	38
396	Production of ethylene glycol from xylose by metabolically engineered <i>Escherichia coli</i> . AICHE Journal, 2018, 64, 4193-4200.	1.8	38

#	Article	IF	CITATIONS
397	Phylogenetic analysis based on genome-scale metabolic pathway reaction content. Applied Microbiology and Biotechnology, 2004, 65, 203-10.	1.7	37
398	Long-term continuous adaptation of Escherichia coli to high succinate stress and transcriptome analysis of the tolerant strain. Journal of Bioscience and Bioengineering, 2011, 111, 26-30.	1.1	37
399	Design and development of synthetic microbial platform cells for bioenergy. Frontiers in Microbiology, 2013, 4, 92.	1.5	37
400	Metabolic Engineering of Escherichia coli for the Production of Hyaluronic Acid From Glucose and Galactose. Frontiers in Bioengineering and Biotechnology, 2019, 7, 351.	2.0	37
401	Expanded synthetic small regulatory RNA expression platforms for rapid and multiplex gene expression knockdown. Metabolic Engineering, 2019, 54, 180-190.	3.6	37
402	Direct production of fatty alcohols from glucose using engineered strains of Yarrowia lipolytica. Metabolic Engineering Communications, 2020, 10, e00105.	1.9	37
403	Enhanced spore production ofBacillus thuringiensis by fed-batch culture. Biotechnology Letters, 1992, 14, 721-726.	1.1	36
404	Kinetic study on succinic acid and acetic acid formation during continuous cultures of Anaerobiospirillum succiniciproducens grown on glycerol. Bioprocess and Biosystems Engineering, 2010, 33, 465-471.	1.7	36
405	Evaluating the influence of selection markers on obtaining selected pools and stable cell lines in human cells. Biotechnology Journal, 2013, 8, 811-821.	1.8	36
406	Reconstruction of context-specific genome-scale metabolic models using multiomics data to study metabolic rewiring. Current Opinion in Systems Biology, 2019, 15, 1-11.	1.3	36
407	Production of Carminic Acid by Metabolically Engineered <i>Escherichia coli</i> . Journal of the American Chemical Society, 2021, 143, 5364-5377.	6.6	36
408	Acetate accumulation through alternative metabolic pathways in ackA â^' pta â^' poxB â^' triple mutant in E. coli B (BL21). Biotechnology Letters, 2010, 32, 1897-1903.	1.1	35
409	Biosynthesis of lactateâ€containing polyesters by metabolically engineered bacteria. Biotechnology Journal, 2012, 7, 199-212.	1.8	35
410	Electrotriggered, Spatioselective, Quantitative Gene Delivery into a Single Cell Nucleus by Au Nanowire Nanoinjector. Nano Letters, 2013, 13, 2431-2435.	4.5	35
411	Engineering the xyloseâ€catabolizing Dahms pathway for production of poly(d â€lactate―co â€glycolate) and poly(d â€lactate―co â€glycolate―co ―d â€2â€hydroxybutyrate) in Escherichia coli. Microbial Biotechnol 2017, 10, 1353-1364.	ogyĢ	35
412	Structure and function of the Nâ€ŧerminal domain of <i>Ralstonia eutropha</i> polyhydroxyalkanoate synthase, and the proposed structure and mechanisms of the whole enzyme. Biotechnology Journal, 2017, 12, 1600649.	1.8	35
413	Highâ€level production of 3â€hydroxypropionic acid from glycerol as a sole carbon source using metabolically engineered <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2020, 117, 2139-2152.	1.7	35
414	Enhancement of Secretion and Extracellular Stability of Staphylokinase in Bacillus subtilis by wprA Gene Disruption. Applied and Environmental Microbiology, 2000, 66, 476-480.	1.4	34

#	Article	IF	CITATIONS
415	The role of Cra in regulating acetate excretion and osmotic tolerance in E. coli K-12 and E. coli B at high density growth. Microbial Cell Factories, 2011, 10, 52.	1.9	34
416	Precisely Determining Ultralow level UO22+ in Natural Water with Plasmonic Nanowire Interstice Sensor. Scientific Reports, 2016, 6, 19646.	1.6	34
417	Recent development of computational resources for new antibiotics discovery. Current Opinion in Microbiology, 2017, 39, 113-120.	2.3	34
418	Expanding the Chemical Palette of Industrial Microbes: Metabolic Engineering for Type III PKSâ€Derived Polyketides. Biotechnology Journal, 2019, 14, e1700463.	1.8	34
419	Microbial production of fatty acids and derivative chemicals. Current Opinion in Biotechnology, 2020, 65, 129-141.	3.3	34
420	Construction ofEscherichia coli-Clostridium acetobutylicum shuttle vectors and transformation ofClostridium acetobutylicum strains. Biotechnology Letters, 1992, 14, 427-432.	1.1	33
421	Systems-level analysis of genome-scalein silico metabolic models using MetaFluxNet. Biotechnology and Bioprocess Engineering, 2005, 10, 425-431.	1.4	33
422	Genome-wide analysis of redox reactions reveals metabolic engineering targets for d-lactate overproduction in Escherichia coli. Metabolic Engineering, 2013, 18, 44-52.	3.6	33
423	Engineering tunable biosensors for monitoring putrescine in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2018, 115, 1014-1027.	1.7	33
424	Synthesis, Characterization, and Application of Fully Biobased and Biodegradable Nylon-4,4 and -5,4. ACS Sustainable Chemistry and Engineering, 2020, 8, 5604-5614.	3.2	33
425	Continuous Production of Succinic Acid Using an External Membrane Cell Recycle System. Journal of Microbiology and Biotechnology, 2009, 19, 1369-1373.	0.9	33
426	Succinic Acid Production by Anaerobiospirillum succiniciproducens ATCC 29305 Growing on Galactose, Galactose/Glucose, and Galactose/Lactose. Journal of Microbiology and Biotechnology, 2008, 18, 1792-1796.	0.9	33
427	Vector Construction, Transformation, and Gene Amplification in Clostridium acetobutylicum ATCC 824. Annals of the New York Academy of Sciences, 1992, 665, 39-51.	1.8	32
428	Secretory Production of Recombinant Protein by a High Cell Density Culture of a Protease Negative Mutant Escherichia coli Strain. Biotechnology Progress, 1999, 15, 164-167.	1.3	32
429	Construction of Copper Removing Bacteria Through the Integration of Two-Component System and Cell Surface Display. Applied Biochemistry and Biotechnology, 2011, 165, 1674-1681.	1.4	32
430	Metabolic Profiling of Klebsiella oxytoca: Evaluation of Methods for Extraction of Intracellular Metabolites Using UPLC/Q-TOF-MS. Applied Biochemistry and Biotechnology, 2012, 167, 425-438.	1.4	32
431	Toward Systems Metabolic Engineering of Streptomycetes for Secondary Metabolites Production. Biotechnology Journal, 2018, 13, 1700465.	1.8	32
432	Systems Metabolic Engineering of <i>Escherichia coli</i> . EcoSal Plus, 2016, 7, .	2.1	31

#	Article	IF	CITATIONS
433	Systems approach to characterize the metabolism of liver cancer stem cells expressing CD133. Scientific Reports, 2017, 7, 45557.	1.6	31
434	Metabolic engineering of Clostridium acetobutylicum for the production of butyl butyrate. Applied Microbiology and Biotechnology, 2018, 102, 8319-8327.	1.7	31
435	Metabolic Engineering of <i>Escherichia coli</i> for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose. ACS Synthetic Biology, 2018, 7, 2296-2307.	1.9	31
436	Elucidation of Multifaceted Evolutionary Processes of Microorganisms by Comparative Genome-Based Analysis. Journal of Microbiology and Biotechnology, 2009, 19, 1301-5.	0.9	31
437	Determination of plasmid copy number and stability inClostridium acetobutylicumATCC 824. FEMS Microbiology Letters, 1993, 108, 319-323.	0.7	30
438	Constitutive production of human leptin by fed-batch culture of recombinant rpoSâ^' Escherichia coli. Protein Expression and Purification, 2004, 36, 150-156.	0.6	30
439	Deciphering bioplastic production. Nature Biotechnology, 2006, 24, 1227-1229.	9.4	30
440	WebCell: a web-based environment for kinetic modeling and dynamic simulation of cellular networks. Bioinformatics, 2006, 22, 1150-1151.	1.8	30
441	Multiobjective flux balancing using the NISE method for metabolic network analysis. Biotechnology Progress, 2009, 25, 999-1008.	1.3	30
442	A biomolecular detection method based on charge pumping in a nanogap embedded field-effect-transistor biosensor. Applied Physics Letters, 2009, 94, .	1.5	30
443	The effects of the physical properties of culture substrates on the growth and differentiation of human embryonic stem cells. Biomaterials, 2011, 32, 8816-8829.	5.7	30
444	Genome-scale metabolic model of the fission yeast Schizosaccharomyces pombe and the reconciliation of in silico/in vivo mutant growth. BMC Systems Biology, 2012, 6, 49.	3.0	30
445	Central metabolic nodes for diverse biochemical production. Current Opinion in Chemical Biology, 2016, 35, 37-42.	2.8	30
446	Metabolic engineering for the microbial production of marine bioactive compounds. Biotechnology Advances, 2017, 35, 1004-1021.	6.0	30
447	Harnessing the respiration machinery for high-yield production of chemicals in metabolically engineered Lactococcus lactis. Metabolic Engineering, 2017, 44, 22-29.	3.6	30
448	Formic acid as a secondary substrate for succinic acid production by metabolically engineered <i>Mannheimia succiniciproducens</i> . Biotechnology and Bioengineering, 2017, 114, 2837-2847.	1.7	30
449	Valorizing a hydrothermal liquefaction aqueous phase through co-production of chemicals and lipids using the oleaginous yeast Yarrowia lipolytica. Bioresource Technology, 2020, 313, 123639.	4.8	30
450	Extracellular proteome of Aspergillus terreus grown on different carbon sources. Current Genetics, 2010, 56, 369-382.	0.8	29

#	Article	IF	CITATIONS
451	Detection of the Most Common Corneal Dystrophies Caused by BIGH3 Gene Point Mutations Using a Multispot Gold-Capped Nanoparticle Array Chip. Analytical Chemistry, 2010, 82, 1349-1357.	3.2	29
452	Innovation at the intersection of synthetic and systems biology. Current Opinion in Biotechnology, 2012, 23, 712-717.	3.3	29
453	Microbial production of lactateâ€containing polyesters. Microbial Biotechnology, 2013, 6, 621-636.	2.0	29
454	Quantified High-Throughput Screening of Escherichia coli Producing Poly(3-hydroxybutyrate) Based on FACS. Applied Biochemistry and Biotechnology, 2013, 170, 1767-1779.	1.4	29
455	Proteomic analyses of the phase transition from acidogenesis to solventogenesis using solventogenic and non-solventogenic Clostridium acetobutylicum strains. Applied Microbiology and Biotechnology, 2014, 98, 5105-5115.	1.7	29
456	Combining rational metabolic engineering and flux optimization strategies for efficient production of fumaric acid. Applied Microbiology and Biotechnology, 2015, 99, 8455-8464.	1.7	29
457	In vivo synthesis of europium selenide nanoparticles and related cytotoxicity evaluation of human cells. Enzyme and Microbial Technology, 2016, 95, 201-208.	1.6	29
458	Framework and resource for more than 11,000 gene-transcript-protein-reaction associations in human metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9740-E9749.	3.3	29
459	High-Level Production of the Natural Blue Pigment Indigoidine from Metabolically Engineered <i>Corynebacterium glutamicum</i> for Sustainable Fabric Dyes. ACS Sustainable Chemistry and Engineering, 2021, 9, 6613-6622.	3.2	29
460	An operator-based expression toolkit for <i>Bacillus subtilis</i> enables fine-tuning of gene expression and biosynthetic pathway regulation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119980119.	3.3	29
461	High-level secretory production of human granulocyte-colony stimulating factor by fed-batch culture of recombinant Escherichia coli. Bioprocess and Biosystems Engineering, 2001, 24, 249-254.	1.7	28
462	BioSilico: an integrated metabolic database system. Bioinformatics, 2004, 20, 3270-3272.	1.8	28
463	Development of DNA microarray for pathogen detection. Biotechnology and Bioprocess Engineering, 2004, 9, 93-99.	1.4	28
464	Producing Biochemicals in <i>Yarrowia lipolytica</i> from Xylose through a Strain Mating Approach. Biotechnology Journal, 2020, 15, e1900304.	1.8	28
465	Production of Rainbow Colorants by Metabolically Engineered <i>Escherichia coli</i> . Advanced Science, 2021, 8, e2100743.	5.6	28
466	Optimization and Scale-Up of Succinic Acid Production by Mannheimia succiniciproducens LPK7. Journal of Microbiology and Biotechnology, 2009, 19, 167-171.	0.9	28
467	Pilot scale production of poly(3-hydroxybutyrate-co-3-hydroxy-valerate) by fed-batch culture of recombinantEscherichia coli. Biotechnology and Bioprocess Engineering, 2002, 7, 371-374.	1.4	27
468	Biosynthesis of Poly(3-hydroxybutyrate- <1>co 1 -3-hydroxyalkanoates) by Metabolically Engineered <1>Escherichia coli 1 Strains. Applied Biochemistry and Biotechnology, 2004, 114, 335-346.	1.4	27

#	Article	IF	CITATIONS
469	Enhanced Proteome Profiling by Inhibiting Proteolysis with Small Heat Shock Proteins. Journal of Proteome Research, 2005, 4, 2429-2434.	1.8	27
470	A Physiology Study ofEscherichia coliOverexpressing Phosphoenolpyruvate Carboxykinase. Bioscience, Biotechnology and Biochemistry, 2008, 72, 1138-1141.	0.6	27
471	Machine learning applications in genome-scale metabolic modeling. Current Opinion in Systems Biology, 2021, 25, 42-49.	1.3	27
472	Production ofBacillus thuringiensis spores in total cell retention culture and two-stage continuous culture using an internal ceramic filter system. Biotechnology and Bioengineering, 1993, 42, 1107-1112.	1.7	26
473	Synthesis of poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) by recombinant Escherichia coli. , 2000, 49, 495-503.		26
474	Construction and Characterization of Shuttle Vectors for Succinic Acid-Producing Rumen Bacteria. Applied and Environmental Microbiology, 2007, 73, 5411-5420.	1.4	26
475	Microfluidic cell disruption system employing a magnetically actuated diaphragm. Electrophoresis, 2007, 28, 4748-4757.	1.3	26
476	Secretory production of spider silk proteins in metabolically engineered Corynebacterium glutamicum for spinning into tough fibers. Metabolic Engineering, 2022, 70, 102-114.	3.6	26
477	Biosynthesis of (<1>R)-3-Hydroxyalkanoic Acids by Metabolically Engineered <1>Escherichia coli. Applied Biochemistry and Biotechnology, 2004, 114, 373-380.	1.4	25
478	Enantioselective resolution of racemic compounds by cell surface displayed lipase. Enzyme and Microbial Technology, 2004, 35, 429-436.	1.6	25
479	Immobilization of genetically engineered fusion proteins on gold-decorated carbon nanotube hybrid films for the fabrication of biosensor platforms. Journal of Colloid and Interface Science, 2010, 350, 453-458.	5.0	25
480	Detection of Single Nucleotide Polymorphisms by a Gold Nanowireâ€onâ€Film SERS Sensor Coupled with S1 Nuclease Treatment. Chemistry - A European Journal, 2011, 17, 8657-8662.	1.7	25
481	A nanoforest structure for practical surface-enhanced Raman scattering substrates. Nanotechnology, 2012, 23, 095301.	1.3	25
482	Using Flux Balance Analysis to Guide Microbial Metabolic Engineering. Methods in Molecular Biology, 2012, 834, 197-216.	0.4	25
483	Design of homo-organic acid producing strains using multi-objective optimization. Metabolic Engineering, 2015, 28, 63-73.	3.6	25
484	Biosynthesis of poly(2â€hydroxyisovalerateâ€coâ€lactate) by metabolically engineered <i>Escherichia coli</i> . Biotechnology Journal, 2016, 11, 1572-1585.	1.8	25
485	Systematic engineering of TCA cycle for optimal production of a four-carbon platform chemical 4-hydroxybutyric acid in Escherichia coli. Metabolic Engineering, 2016, 38, 264-273.	3.6	25
486	Biosynthesis of poly(2-hydroxybutyrate-co-lactate) in metabolically engineered Escherichia coli. Biotechnology and Bioprocess Engineering, 2016, 21, 169-174.	1.4	25

#	Article	IF	CITATIONS
487	Membrane engineering via <i>trans</i> -unsaturated fatty acids production improves succinic acid production in <i>Mannheimia succiniciproducens</i> . Journal of Industrial Microbiology and Biotechnology, 2018, 45, 555-566.	1.4	25
488	Systems Metabolic Engineering Strategies for Nonâ€Natural Microbial Polyester Production. Biotechnology Journal, 2019, 14, 1800426.	1.8	25
489	Simple micropatterning of biomolecules on a diazoketo-functionalized photoresist. Journal of Materials Chemistry, 2008, 18, 703.	6.7	24
490	Programmable peptide-directed two dimensional arrays of various nanoparticles on graphene sheets. Nanoscale, 2011, 3, 3208.	2.8	24
491	Investigation of Size Dependence on Sensitivity for Nanowire FET Biosensors. IEEE Nanotechnology Magazine, 2011, 10, 1405-1411.	1.1	24
492	Development of Reflective Biosensor Using Fabrication of Functionalized Photonic Nanocrystals. Journal of Nanoscience and Nanotechnology, 2011, 11, 632-637.	0.9	24
493	Synthetic Biology for Specialty Chemicals. Annual Review of Chemical and Biomolecular Engineering, 2015, 6, 35-52.	3.3	24
494	CRISPR-Cas9 Toolkit for Actinomycete Genome Editing. Methods in Molecular Biology, 2018, 1671, 163-184.	0.4	24
495	Protocols for Rec <scp>ET</scp> â€based markerless gene knockout and integration to express heterologous biosynthetic gene clusters in <i>Pseudomonas putida</i> . Microbial Biotechnology, 2020, 13, 199-209.	2.0	24
496	Proteome profiling and its use in metabolic and cellular engineering. Proteomics, 2003, 3, 2317-2324.	1.3	23
497	DNA microarray-based detection of nosocomial pathogenic Pseudomonas aeruginosa and Acinetobacter baumannii. Molecular and Cellular Probes, 2006, 20, 42-50.	0.9	23
498	Transcript and protein level analyses of the interactions among PhoB, PhoR, PhoU and CreC in response to phosphate starvation in <i>Escherichia coli</i> . FEMS Microbiology Letters, 2007, 277, 254-259.	0.7	23
499	Production of 4-hydroxybutyric acid by metabolically engineered Mannheimia succiniciproducens and its conversion to ^{[3} -butyrolactone by acid treatment. Metabolic Engineering, 2013, 20, 73-83.	3.6	23
500	How to set up collaborations between academia and industrial biotech companies. Nature Biotechnology, 2015, 33, 237-240.	9.4	23
501	Systems metabolic engineering as an enabling technology in accomplishing sustainable development goals. Microbial Biotechnology, 2017, 10, 1254-1258.	2.0	23
502	Development of Metabolically Engineered <i>Corynebacterium glutamicum</i> for Enhanced Production of Cadaverine and Its Use for the Synthesis of Bio-Polyamide 510. ACS Sustainable Chemistry and Engineering, 2020, 8, 129-138.	3.2	23
503	A Novel Biosynthetic Pathway for the Production of Acrylic Acid through β-Alanine Route in <i>Escherichia coli</i> . ACS Synthetic Biology, 2020, 9, 1150-1159.	1.9	23
504	Fed-batch culture ofEscherichia coli W by exponential feeding of sucrose as a carbon source. Biotechnology Letters, 1997, 11, 59-62.	0.5	22

#	Article	IF	CITATIONS
505	Enrichment of specific monomer in medium-chain-length poly(3-hydroxyalkanoates) by amplification of fadD and fadE genes in recombinant Escherichia coli. Enzyme and Microbial Technology, 2003, 33, 62-70.	1.6	22
506	Kinetic model-based feed-forward controlled fed-batch fermentation of Lactobacillus rhamnosus for the production of lactic acid from Arabic date juice. Bioprocess and Biosystems Engineering, 2014, 37, 1007-1015.	1.7	22
507	In Vivo Synthesis of Nanocomposites Using the Recombinant <i>Escherichia coli</i> . Small, 2018, 14, e1803133.	5.2	22
508	Genome cale Metabolic Reconstruction of Actinomycetes for Antibiotics Production. Biotechnology Journal, 2019, 14, e1800377.	1.8	22
509	Heat-responsive and time-resolved transcriptome and metabolome analyses of Escherichia coli uncover thermo-tolerant mechanisms. Scientific Reports, 2020, 10, 17715.	1.6	22
510	Enhanced production of cellulose in Komagataeibacter xylinus by preventing insertion of IS element into cellulose synthesis gene. Biochemical Engineering Journal, 2020, 156, 107527.	1.8	22
511	Non-conventional hosts for the production of fuels and chemicals. Current Opinion in Chemical Biology, 2020, 59, 15-22.	2.8	22
512	<i>Escherichia coli</i> as a platform microbial host for systems metabolic engineering. Essays in Biochemistry, 2021, 65, 225-246.	2.1	22
513	Microbial food: microorganisms repurposed for our food. Microbial Biotechnology, 2022, 15, 18-25.	2.0	22
514	Functional Expression of SAV3818, a Putative TetR-Family Transcriptional Regulatory Gene from Streptomyces avermitilis, Stimulates Antibiotic Production in Streptomyces Species. Journal of Microbiology and Biotechnology, 2009, 19, 136-139.	0.9	22
515	In silico metabolic pathway analysis and design: succinic acid production by metabolically engineered Escherichia coli as an example. Genome Informatics, 2002, 13, 214-23.	0.4	22
516	Microcontact printing of biotin for selective immobilization of streptavidin-fused proteins and SPR analysis. Biotechnology and Bioprocess Engineering, 2004, 9, 137-142.	1.4	21
517	New fadB homologous enzymes and their use in enhanced biosynthesis of medium-chain-length polyhydroxyalkanoates infadB mutantEscherichia coli. Biotechnology and Bioengineering, 2004, 86, 681-686.	1.7	21
518	Microarrays of peptides elevated on the protein layer for efficient protein kinase assay. Analytical Biochemistry, 2004, 330, 311-316.	1.1	21
519	Carbon sources-dependent carotenoid production in metabolically engineered Escherichia coli. World Journal of Microbiology and Biotechnology, 2010, 26, 2231-2239.	1.7	21
520	Development of a gene knockout system for Ralstonia eutropha H16 based on the broad-host-range vector expressing a mobile group II intron. FEMS Microbiology Letters, 2010, 309, no-no.	0.7	21
521	A metabolomics approach shows that catechin-enriched green tea attenuates ultraviolet B-induced skin metabolite alterations in mice. Metabolomics, 2015, 11, 861-871.	1.4	21
522	Identification of gene knockdown targets conferring enhanced isobutanol and 1-butanol tolerance to Saccharomyces cerevisiae using a tunable RNAi screening approach. Applied Microbiology and Biotechnology, 2016, 100, 10005-10018.	1.7	21

#	Article	IF	CITATIONS
523	Protective Effects of Protocatechuic Acid on Seizure-Induced Neuronal Death. International Journal of Molecular Sciences, 2018, 19, 187.	1.8	21
524	Metabolic engineering of Escherichia coli for the production of benzoic acid from glucose. Metabolic Engineering, 2020, 62, 298-311.	3.6	21
525	Synthesis of polyâ€(3â€hydroxybutyrateâ€coâ€3â€hydroxyvalerate) by recombinant Escherichia coli. Biotechnology and Bioengineering, 1996, 49, 495-503.	1.7	21
526	Succinic acid production from continuous fermentation process using Mannheimia succiniciproducens LPK7. Journal of Microbiology and Biotechnology, 2008, 18, 908-12.	0.9	21
527	Bacteriorhodopsin production by cell recycle culture of Halobacterium halobium. Biotechnology Letters, 1998, 20, 763-765.	1.1	20
528	High-throughput identification of clinically important bacterial pathogens using DNA microarray. Molecular and Cellular Probes, 2009, 23, 171-177.	0.9	20
529	Label-Free Electrochemical Diagnosis of Viral Antigens with Genetically Engineered Fusion Protein. Sensors, 2012, 12, 10097-10108.	2.1	20
530	Surface display of recombinant proteins on Escherichia coli by BclA exosporium of Bacillus anthracis. Microbial Cell Factories, 2013, 12, 81.	1.9	20
531	Permeation characteristics of volatile fatty acids solution by forward osmosis. Process Biochemistry, 2015, 50, 669-677.	1.8	20
532	Broad-Spectrum Gene Repression Using Scaffold Engineering of Synthetic sRNAs. ACS Synthetic Biology, 2019, 8, 1452-1461.	1.9	20
533	Shape-controlled assemblies of graphitic carbon nitride polymer for efficient sterilization therapies of water microbial contamination via 2D g-C3N4 under visible light illumination. Materials Science and Engineering C, 2019, 104, 109846.	3.8	20
534	CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs. Genome Research, 2020, 30, 768-775.	2.4	20
535	Comparative Analysis of Envelope Proteomes in Escherichia coli B and K-12 Strains. Journal of Microbiology and Biotechnology, 2012, 22, 470-478.	0.9	20
536	Production of Rhamnolipid Biosurfactant by Fed-batch Culture ofPseudomonas aeruginosaUsing Glucose as a Sole Carbon Source. Bioscience, Biotechnology and Biochemistry, 1999, 63, 946-947.	0.6	19
537	Development of a whole-cell biosensor by cell surface display of a gold-binding polypeptide on the gold surface. FEMS Microbiology Letters, 2009, 293, 141-147.	0.7	19
538	Enhanced Display of Lipase on the Escherichia coli Cell Surface, Based on Transcriptome Analysis. Applied and Environmental Microbiology, 2010, 76, 971-973.	1.4	19
539	Nanowire FET Biosensors on a Bulk Silicon Substrate. IEEE Transactions on Electron Devices, 2012, 59, 2243-2249.	1.6	19
540	Facile Fabrication of Multiâ€ŧargeted and Stable Biochemical SERS Sensors. Chemistry - an Asian Journal, 2013, 8, 3010-3014.	1.7	19

#	Article	IF	CITATIONS
541	Charge and dielectric effects of biomolecules on electrical characteristics of nanowire FET biosensors. Applied Physics Letters, 2017, 111, .	1.5	19
542	Engineering <i>Yarrowia lipolytica</i> for the production of cyclopropanated fatty acids. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 881-888.	1.4	19
543	Physiological effects, biosynthesis, and derivatization of key human milk tetrasaccharides, lacto- <i>N</i> -tetraose, and lacto- <i>N</i> -neotetraose. Critical Reviews in Biotechnology, 2021, , 1-19.	5.1	19
544	Novel Cysteine-Centered Sulfur Metabolic Pathway in the Thermotolerant Methylotrophic Yeast Hansenula polymorpha. PLoS ONE, 2014, 9, e100725.	1.1	19
545	Enhanced production of succinic acid by metabolically engineeredEscherichia coli with amplified activities of malic enzyme and fumarase. Biotechnology and Bioprocess Engineering, 2004, 9, 252-255.	1.4	18
546	Development of a fully integrated microfluidic system for sensing infectious viral disease. Electrophoresis, 2008, 29, 2960-2969.	1.3	18
547	Characterization of the Arc two-component signal transduction system of the capnophilic rumen bacteriumMannheimia succiniciproducens. FEMS Microbiology Letters, 2008, 284, 109-119.	0.7	18
548	Model-based design of synthetic, biological systems. Chemical Engineering Science, 2013, 103, 2-11.	1.9	18
549	Biosynthesis of 2â€Hydroxyacidâ€Containing Polyhydroxyalkanoates by Employing butyrylâ€CoA Transferases in Metabolically Engineered <i>Escherichia coli</i> . Biotechnology Journal, 2017, 12, 1700116.	1.8	18
550	Strategies for directed and adapted evolution as part of microbial strain engineering. Journal of Chemical Technology and Biotechnology, 2019, 94, 366-376.	1.6	18
551	Engineering Clostridial Aldehyde/Alcohol Dehydrogenase for Selective Butanol Production. MBio, 2019, 10, .	1.8	18
552	Modeling regulatory networks using machine learning for systems metabolic engineering. Current Opinion in Biotechnology, 2020, 65, 163-170.	3.3	18
553	Dynamic Modeling of Lactic Acid Fermentation Metabolism with Lactococcus lactis. Journal of Microbiology and Biotechnology, 2011, 21, 162-169.	0.9	18
554	Separation of intracellular proteins from Candida utilis using reverse micelles in a spray column. Biotechnology Letters, 1994, 8, 105-110.	0.5	17
555	Micropatterning proteins on polyhydroxyalkanoate substrates by using the substrate binding domain as a fusion partner. Biotechnology and Bioengineering, 2005, 92, 160-165.	1.7	17
556	Incorporating metabolic flux ratios into constraint-based flux analysis by using artificial metabolites and converging ratio determinants. Journal of Biotechnology, 2007, 129, 696-705.	1.9	17
557	Diagnosis of Pathogens Using DNA Microarray. Recent Patents on Biotechnology, 2008, 2, 124-129.	0.4	17
558	Biotechnological applications of microbial proteomes. Journal of Biotechnology, 2010, 145, 341-349.	1.9	17

#	Article	IF	CITATIONS
559	Fabrication of single-walled carbon nanotubes dotted with Au nanocrystals: Potential DNA delivery nanocarriers. Carbon, 2010, 48, 1070-1078.	5.4	17
560	Effects of nutritional enrichment on the production of acetone-butanol-ethanol (ABE) by Clostridium acetobutylicum. Journal of Microbiology, 2012, 50, 1063-1066.	1.3	17
561	Metabolic Engineering and Synthetic Biology in Strain Development. ACS Synthetic Biology, 2012, 1, 491-492.	1.9	17
562	Metabolic engineering of Escherichia coli for enhanced biosynthesis of poly(3-hydroxybutyrate) based on proteome analysis. Biotechnology Letters, 2013, 35, 1631-1637.	1.1	17
563	Filling the Gaps in the Kirromycin Biosynthesis: Deciphering the Role of Genes Involved in EthyImalonyI-CoA Supply and Tailoring Reactions. Scientific Reports, 2018, 8, 3230.	1.6	17
564	Synthetic Biology for Natural Compounds. Biochemistry, 2019, 58, 1454-1456.	1.2	17
565	Progress in the metabolic engineering of bio-based lactams and their ï‰-amino acids precursors. Biotechnology Advances, 2020, 43, 107587.	6.0	17
566	Microbial production of multiple short-chain primary amines via retrobiosynthesis. Nature Communications, 2021, 12, 173.	5.8	17
567	Synthetic Formatotrophs for One arbon Biorefinery. Advanced Science, 2021, 8, 2100199.	5.6	17
568	Enhanced Production of Bacterial Cellulose in <i>Komagataeibacter xylinus</i> Via Tuning of Biosynthesis Genes with Synthetic RBS. Journal of Microbiology and Biotechnology, 2020, 30, 1430-1435.	0.9	17
569	Title is missing!. , 1998, 12, 815-818.		16
570	EcoProDB: the Escherichia coli protein database. Bioinformatics, 2007, 23, 2501-2503.	1.8	16
571	Removal of bovine serum albumin using solid-phase extraction with in-situ polymerized stationary phase in a microfluidic device. Journal of Chromatography A, 2008, 1187, 11-17.	1.8	16
572	Proteome-based physiological analysis of the metabolically engineered succinic acid producer Mannheimia succiniciproducens LPK7. Bioprocess and Biosystems Engineering, 2010, 33, 97-107.	1.7	16
573	Metabolic engineering of <i>Mannheimia succiniciproducens</i> for succinic acid production based on elementary mode analysis with clustering. Biotechnology Journal, 2017, 12, 1600701.	1.8	16
574	Microbial production of butyl butyrate, a flavor and fragrance compound. Applied Microbiology and Biotechnology, 2019, 103, 2079-2086.	1.7	16
575	A deep learning approach to evaluate the feasibility of enzymatic reactions generated by retrobiosynthesis. Biotechnology Journal, 2021, 16, e2000605.	1.8	16
576	Three-dimensional label-free visualization and quantification of polyhydroxyalkanoates in individual bacterial cell in its native state. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16

#	Article	IF	CITATIONS
577	Improved Production of a Bioadhesive Precursor Protein by Fed-Batch Cultivation of a Recombinant Escherichia coli with a pLysS Vector. Biotechnology Letters, 1998, 20, 799-803.	1.1	15
578	Production of Microbial Polyester by Fermentation of Recombinant Microorganisms. Advances in Biochemical Engineering/Biotechnology, 2001, 71, 183-207.	0.6	15
579	<i>Mannheimia succiniciproducens</i> Phosphotransferase System for Sucrose Utilization. Applied and Environmental Microbiology, 2010, 76, 1699-1703.	1.4	15
580	Application of Metabolic Flux Analysis in Metabolic Engineering. Methods in Enzymology, 2011, 498, 67-93.	0.4	15
581	A study on the dynamics of the zraP gene expression profile and its application to the construction of zinc adsorption bacteria. Bioprocess and Biosystems Engineering, 2011, 34, 1119-1126.	1.7	15
582	Flux-sum analysis identifies metabolite targets for strain improvement. BMC Systems Biology, 2015, 9, 73.	3.0	15
583	Recent Advances in Biobutanol Production. Industrial Biotechnology, 2015, 11, 316-321.	0.5	15
584	Sorting for secreted molecule production using a biosensor-in-microdroplet approach. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
585	Determination of the Intracellular Concentrations of Metabolites in Escherichia coli Collected during the Exponential and Stationary Growth Phases using Liquid Chromatography-Mass Spectrometry. Bulletin of the Korean Chemical Society, 2011, 32, 524-530.	1.0	15
586	Bacterial conversion of CO2 to organic compounds. Journal of CO2 Utilization, 2022, 58, 101929.	3.3	15
587	Light-Driven Ammonia Production by <i>Azotobacter vinelandii</i> Cultured in Medium Containing Colloidal Quantum Dots. Journal of the American Chemical Society, 2022, 144, 10798-10808.	6.6	15
588	Size analysis of poly(3-hydroxybutyric acid) granules produced in recombinant Escherichia coli. Biotechnology Letters, 1995, 17, 205-210.	1.1	14
589	Polyhydroxyalkanoate chip for the specific immobilization of recombinant proteins and its applications in immunodiagnostics. Biotechnology and Bioprocess Engineering, 2006, 11, 173.	1.4	14
590	Label-Free Detection of DNA Hybridization Using Pyrene-Functionalized Single-Walled Carbon Nanotubes: Effect of Chemical Structures of Pyrene Molecules on DNA Sensing Performance. Journal of Nanoscience and Nanotechnology, 2011, 11, 4210-4216.	0.9	14
591	Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network. BMC Systems Biology, 2011, 5, S14.	3.0	14
592	Understanding and engineering of microbial cells based on proteomics and its conjunction with other omics studies. Proteomics, 2011, 11, 721-743.	1.3	14
593	Flux oupled genes and their use in metabolic flux analysis. Biotechnology Journal, 2013, 8, 1035-1042.	1.8	14
594	Separation and purification of three, four, and five carbon diamines from fermentation broth. Chemical Engineering Science, 2019, 196, 324-332.	1.9	14

#	Article	IF	CITATIONS
595	<i>In Situ</i> Biosynthesis of a Metal Nanoparticle Encapsulated in Alginate Gel for Imageable Drug-Delivery System. ACS Applied Materials & Interfaces, 2021, 13, 36697-36708.	4.0	14
596	Spore Display Using Bacillus thuringiensis Exosporium Protein InhA. Journal of Microbiology and Biotechnology, 2009, 19, 495-501.	0.9	14
597	Production of polyhydroxyalkanoates by fermentation of bacteria. Macromolecular Symposia, 2000, 159, 259-266.	0.4	13
598	Preparation of Optically Active β-Amino Acids from Microbial Polyester Polyhydroxyalkanoates. Journal of Chemical Research, 2001, 2001, 498-499.	0.6	13
599	Systems Biological Approach for the Production of Various Polyhydroxyalkanoates by Metabolically EngineeredEscherichia coli. Macromolecular Symposia, 2005, 224, 1-10.	0.4	13
600	Effects of ceria in CO2 reforming of methane over Ni/calcium hydroxyapatite. Korean Journal of Chemical Engineering, 2006, 23, 356-361.	1.2	13
601	New time-scale criteria for model simplification of bio-reaction systems. BMC Bioinformatics, 2008, 9, 338.	1.2	13
602	Microarray of DNA–protein complexes on poly-3-hydroxybutyrate surface for pathogen detection. Analytical and Bioanalytical Chemistry, 2009, 393, 1639-1647.	1.9	13
603	Characterization of a Bacterial Self-Assembly Surface Layer Protein and Its Application as an Electrical Nanobiosensor. Journal of Nanoscience and Nanotechnology, 2011, 11, 402-407.	0.9	13
604	Cell-Based Method Utilizing Fluorescent <i>Escherichia coli</i> Auxotrophs for Quantification of Multiple Amino Acids. Analytical Chemistry, 2014, 86, 2489-2496.	3.2	13
605	Transcriptomic analysis of Corynebacterium glutamicum in the response to the toxicity of furfural present in lignocellulosic hydrolysates. Process Biochemistry, 2015, 50, 347-356.	1.8	13
606	Stable and enhanced gene expression in Clostridium acetobutylicum using synthetic untranslated regions with a stem-loop. Journal of Biotechnology, 2016, 230, 40-43.	1.9	13
607	Electro-triggering and electrochemical monitoring of dopamine exocytosis from a single cell by using ultrathin electrodes based on Au nanowires. Nanoscale, 2016, 8, 214-218.	2.8	13
608	Biocatalytic synthesis of polylactate and its copolymers by engineered microorganisms. Methods in Enzymology, 2019, 627, 125-162.	0.4	13
609	Programmable polyketide biosynthesis platform for production of aromatic compounds in yeast. Synthetic and Systems Biotechnology, 2020, 5, 11-18.	1.8	13
610	Single-Base Genome Editing in Corynebacterium glutamicum with the Help of Negative Selection by Target-Mismatched CRISPR/Cpf1. Journal of Microbiology and Biotechnology, 2020, 30, 1583-1591.	0.9	13
611	MetaFluxNet, a program package for metabolic pathway construction and analysis, and its use in large-scale metabolic flux analysis of Escherichia coli. Genome Informatics, 2003, 14, 23-33.	0.4	13
612	MFAML: a standard data structure for representing and exchanging metabolic flux models. Bioinformatics, 2005, 21, 3329-3330.	1.8	12

#	Article	IF	CITATIONS
613	Development of a DNA chip for the diagnosis of the most common corneal dystrophies caused by mutations in the Âigh3 gene. British Journal of Ophthalmology, 2007, 91, 722-727.	2.1	12
614	A putative secreted solute binding protein, SCO6569 is a possible AfsR2-dependent down-regulator of actinorhodin biosynthesis in Streptomyces coelicolor. Process Biochemistry, 2009, 44, 373-377.	1.8	12
615	Label-Free Detection of Leptin Antibody-Antigen Interaction by Using LSPR-Based Optical Biosensor. Journal of Nanoscience and Nanotechnology, 2011, 11, 4188-4193.	0.9	12
616	Single Walled Carbon Nanotube-Based Electrical Biosensor for the Label-Free Detection of Pathogenic Bacteria. Journal of Nanoscience and Nanotechnology, 2016, 16, 6520-6525.	0.9	12
617	Expanding beyond canonical metabolism: Interfacing alternative elements, synthetic biology, and metabolic engineering. Synthetic and Systems Biotechnology, 2018, 3, 20-33.	1.8	12
618	Efficient transformation ofKlebsiella oxytoca by electroporation. Biotechnology and Bioprocess Engineering, 1998, 3, 48-49.	1.4	11
619	Process development for production of recombinant human insulin-like growth factor-I in Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 2000, 24, 94-99.	1.4	11
620	Regulatory analysis of amino acid synthesis pathway in Escherichia coli: aspartate family. Enzyme and Microbial Technology, 2004, 35, 694-706.	1.6	11
621	Graphâ€ŧheoretic approach for identifying catalytic or metabolic pathways. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2005, 28, 1021-1037.	0.6	11
622	Proteome-Level Responses of <i>Escherichia coli</i> to Long-Chain Fatty Acids and Use of Fatty Acid Inducible Promoter in Protein Production. Journal of Biomedicine and Biotechnology, 2008, 2008, 1-12.	3.0	11
623	In silico analysis of the effects of H2 and CO2 on the metabolism of a capnophilic bacterium Mannheimia succiniciproducens. Journal of Biotechnology, 2009, 144, 184-189.	1.9	11
624	Free-flow isoelectric focusing microfluidic device with glass coating by sol–gel methods. Current Applied Physics, 2009, 9, e66-e70.	1.1	11
625	Largeâ€Scale Highly Ordered Chitosanâ€Core Auâ€Shell Nanopatterns with Plasmonic Tunability: A Topâ€Down Approach to Fabricate Core–Shell Nanostructures. Advanced Functional Materials, 2010, 20, 4273-4278.	7.8	11
626	Towards Systems Metabolic Engineering of PHA Producers. Microbiology Monographs, 2010, , 63-84.	0.3	11
627	A charge pumping technique to identify biomolecular charge polarity using a nanogap embedded biotransistor. Applied Physics Letters, 2010, 97, .	1.5	11
628	Human genes with a greater number of transcript variants tend to show biological features of housekeeping and essential genes. Molecular BioSystems, 2015, 11, 2798-2807.	2.9	11
629	Optimization of phage λ promoter strength for synthetic small regulatory RNA-based metabolic engineering. Biotechnology and Bioprocess Engineering, 2016, 21, 483-490.	1.4	11
630	An evolutionary optimization of a rhodopsin-based phototrophic metabolism in Escherichia coli. Microbial Cell Factories, 2017, 16, 111.	1.9	11

#	Article	IF	CITATIONS
631	Automating Cloning by Natural Transformation. ACS Synthetic Biology, 2020, 9, 3228-3235.	1.9	11
632	Characterization and engineering of Streptomyces griseofuscus DSM 40191 as a potential host for heterologous expression of biosynthetic gene clusters. Scientific Reports, 2021, 11, 18301.	1.6	11
633	Simple Patterning of Cells on a Biocompatible Nonchemically Amplified Resist. Macromolecular Rapid Communications, 2006, 27, 1442-1445.	2.0	10
634	Advanced cleanup process of the free-flow microfluidic device for protein analysis. Ultramicroscopy, 2008, 108, 1365-1370.	0.8	10
635	Transcriptome and proteome analyses of adaptive responses to methyl methanesulfonate in Escherichia coli K-12 and ada mutant strains. BMC Microbiology, 2009, 9, 186.	1.3	10
636	Integration of Systems Biology with Bioprocess Engineering: I-Threonine Production by Systems Metabolic Engineering of Escherichia Coli. , 2010, 120, 1-19.		10
637	Hydrogen production by decomposition of ethane-containing methane over carbon black catalysts. Korean Journal of Chemical Engineering, 2011, 28, 1833-1838.	1.2	10
638	Genomeâ€wide identification of the subcellular localization of the <i>Escherichia coli</i> B proteome using experimental and computational methods. Proteomics, 2011, 11, 1213-1227.	1.3	10
639	<i>HpYPS1</i> and <i>HpYPS7</i> encode functional aspartyl proteases localized at the cell surface in the thermotolerant methylotrophic yeast <i>Hansenula polymorpha</i> . Yeast, 2012, 29, 1-16.	0.8	10
640	A Dual-Gate Field-Effect Transistor for Label-Free Electrical Detection of Avian Influenza. BioNanoScience, 2012, 2, 35-41.	1.5	10
641	Characterization and evaluation of corn steep liquid in acetone-butanol-ethanol production by Clostridium acetobutylicum. Biotechnology and Bioprocess Engineering, 2013, 18, 266-271.	1.4	10
642	Development of a portable biosensor system for pesticide detection on a metal chip surface integrated with wireless communication. Food Science and Biotechnology, 2015, 24, 743-750.	1.2	10
643	Effects of nutritional enrichment on acid production from degenerated (non-solventogenic) Clostridium acetobutylicum strain M5. Applied Biological Chemistry, 2018, 61, 469-472.	0.7	10
644	Design, Evolution, and Characterization of a Xylose Biosensor in <i>Escherichia coli</i> Using the XylR/ <i>xylO</i> System with an Expanded Operating Range. ACS Synthetic Biology, 2020, 9, 2714-2722.	1.9	10
645	Kinetic Study of Organic Acid Formations and Growth of Anaerobiospirillum succiniciproducens During Continuous Cultures. Journal of Microbiology and Biotechnology, 2009, 19, 1379-84.	0.9	10
646	Charge pumping technique to analyze the effect of intrinsically retained charges and extrinsically trapped charges in biomolecules by use of a nanogap embedded biotransistor. Applied Physics Letters, 2010, 96, .	1.5	9
647	Comparative proteomic and genetic analyses reveal unidentified mutations in Escherichia coli XL1-Blue and DH5α. FEMS Microbiology Letters, 2011, 314, 119-124.	0.7	9
648	Parameter estimation and dynamic control analysis of central carbon metabolism in Escherichia coli. Biotechnology and Bioprocess Engineering, 2011, 16, 216-228.	1.4	9

#	Article	IF	CITATIONS
649	Facile Functionalization of Colloidal Gold Nanorods by the Specific Binding of an Engineered Protein that Is Preferred over CTAB Bilayers. ChemPlusChem, 2013, 78, 48-51.	1.3	9
650	Short-term differential adaptation to anaerobic stress via genomic mutations by Escherichia coli strains K-12 and B lacking alcohol dehydrogenase. Frontiers in Microbiology, 2014, 5, 476.	1.5	9
651	Label-Free and Real-Time Detection of Avian Influenza Using Nanowire Field Effect Transistors. Journal of Biomedical Nanotechnology, 2015, 11, 1640-1643.	0.5	9
652	Genome analysis of a hyper acetoneâ€butanolâ€ethanol (ABE) producing <i>Clostridium acetobutylicum</i> BKM19. Biotechnology Journal, 2017, 12, 1600457.	1.8	9
653	Reply to "Conformational fitting of a flexible oligomeric substrate does not explain the enzymatic PET degradation― Nature Communications, 2019, 10, 5582.	5.8	9
654	Tunable Gene Expression System Independent of Downstream Coding Sequence. ACS Synthetic Biology, 2020, 9, 2998-3007.	1.9	9
655	Distribution of ε-Poly- <scp>l</scp> -Lysine Synthetases in Coryneform Bacteria Isolated from Cheese and Human Skin. Applied and Environmental Microbiology, 2021, 87, .	1.4	9
656	Organic Acids: Succinic and Malic Acids. , 2019, , 172-187.		9
657	Optogenetic tools for microbial synthetic biology. Biotechnology Advances, 2022, , 107953.	6.0	9
658	Effect of acetic acid on poly-(3-hydroxybutyrate-CO-3-hydroxyvalerate) synthesis in recombinantEscherichia coli. Korean Journal of Chemical Engineering, 1995, 12, 264-268.	1.2	8
659	Characteristics of Poly(3-Hydroxybutyric Acid) Synthesis by Recombinant Escherichia colia. Annals of the New York Academy of Sciences, 1996, 782, 133-142.	1.8	8
660	Construction of homologous and heterologous synthetic sucrose utilizing modules and their application for carotenoid production in recombinant Escherichia coli. Bioresource Technology, 2013, 130, 288-295.	4.8	8
661	Xylan catabolism is improved by blending bioprospecting and metabolic pathway engineering in <i>Saccharomyces cerevisiae</i> . Biotechnology Journal, 2015, 10, 575-575.	1.8	8
662	Dynamics of membrane fatty acid composition of succinic acid-producing Anaerobiospirillum succiniciproducens. Journal of Biotechnology, 2015, 193, 130-133.	1.9	8
663	Controllable gold-capped nanoporous anodic alumina chip for label-free, specific detection of bacterial cells. RSC Advances, 2017, 7, 18815-18820.	1.7	8
664	BMC Biomedical Engineering: a home for all biomedical engineering research. BMC Biomedical Engineering, 2019, 1, 1.	1.7	8
665	Biosynthesis and characterization of poly(<scp>d</scp> â€lactateâ€ <i>co</i> â€glycolateâ€ <i>co</i> â€4â€hydroxybutyrate). Biotechnology and Bioengineering, 2020, 117, 2187-2197.	1.7	8
666	Adapting educational experiences for the chemists of tomorrow. Nature Reviews Chemistry, 2021, 5, 141-142.	13.8	8

#	Article	IF	CITATIONS
667	Identification of Factors Regulating Escherichia coli 2,3-Butanediol Production by Continuous Culture and Metabolic Flux Analysis. Journal of Microbiology and Biotechnology, 2012, 22, 659-667.	0.9	8
668	Biosynthesis of Lactate-containing Polyhydroxyalkanoates in Recombinant Escherichia coli by Employing New CoA Transferases. KSBB Journal, 2016, 31, 27-32.	0.1	8
669	Production of natural colorants by metabolically engineered microorganisms. Trends in Chemistry, 2022, 4, 608-626.	4.4	8
670	Fed-batch culture ofAeromonas hydrophila for the production of poly(3-hydroxubutyrate-co-3-hydroxyhexanoate) using two carbon sources. Biotechnology and Bioprocess Engineering, 1999, 4, 195-198.	1.4	7
671	Bioâ€Vision 2016: The second national framework plan for biotechnology promotion in Korea. Biotechnology Journal, 2008, 3, 591-600.	1.8	7
672	The Effect of Network Density on the DNA-Sensing Performance of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 21566-21571.	1.5	7
673	Development of anaerobically inducible nar promoter expression vectors for the expression of recombinant proteins in Escherichia coli. Journal of Biotechnology, 2011, 151, 102-107.	1.9	7
674	Metabolomics for industrial fermentation. Bioprocess and Biosystems Engineering, 2018, 41, 1073-1077.	1.7	7
675	Are We There Yet? How and When Specific Biotechnologies Will Improve Human Health. Biotechnology Journal, 2019, 14, e1800195.	1.8	7
676	Bacterial polyhydroxyalkanoates. , 0, .		7
677	Microbial production of 4â€aminoâ€l â€butanol, a fourâ€carbon amino alcohol. Biotechnology and Bioengineering, 2020, 117, 2771-2780.	1.7	7
678	Production of phenylpropanoids and flavonolignans from glycerol by metabolically engineered <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2022, 119, 946-962.	1.7	7
679	Direct recovery of intracellular proteins from Candida utilis using reverse micelles in combination with a reducing agent. Biotechnology Letters, 1993, 7, 545-550.	0.5	6
680	In silico analysis of lactate producing metabolic network in Lactococcus lactis. Enzyme and Microbial Technology, 2004, 35, 654-662.	1.6	6
681	Optimal conditions for partial oxidation of propane over ceria-promoted nickel/calcium hydroxyapatite. Korean Journal of Chemical Engineering, 2007, 24, 226-232.	1.2	6
682	Comprehensive study of a detection mechanism and optimization strategies to improve sensitivity in a nanogap-embedded biotransistor. Journal of Applied Physics, 2010, 107, 114705.	1.1	6
683	Construction of Bacillus thuringiensis Simulant Strains Suitable for Environmental Release. Applied and Environmental Microbiology, 2017, 83, .	1.4	6
684	Intracellular biosensor-based dynamic regulation to manipulate gene expression at the spatiotemporal level. Critical Reviews in Biotechnology, 2023, 43, 646-663.	5.1	6

#	Article	IF	CITATIONS
685	High cell density cultivation ofPseudomonas oleovorans for the production of poly(3-hydroxyalkanoates). Biotechnology and Bioprocess Engineering, 1996, 1, 51-53.	1.4	5
686	Cloning and characterization ofMannheimia succiniciproducens MBEL55E phosphoenolpyruvate carboxykinase (pckA) gene. Biotechnology and Bioprocess Engineering, 2002, 7, 95-99.	1.4	5
687	Secretory Production of Therapeutic Proteins in <1>Escherichia coli 1 . , 2005, 308, 031-042.		5
688	Partial oxidation of n-butane over ceria-promoted nickel/calcium hydroxyapatite. Korean Journal of Chemical Engineering, 2008, 25, 1309-1315.	1.2	5
689	Editorial: <i>Biotechnology Journal</i> shines the spotlight on ACBâ€2011. Biotechnology Journal, 2011, 6, 1298-1299.	1.8	5
690	Distinct Roles of β-Galactosidase Paralogues of the Rumen Bacterium Mannheimia succiniciproducens. Journal of Bacteriology, 2012, 194, 426-436.	1.0	5
691	Probing the ArcA regulon in the rumen bacterium Mannheimia succiniciproducens by genome-wide expression profiling. Journal of Microbiology, 2012, 50, 665-672.	1.3	5
692	Editorial: How multiplexed tools and approaches speed up the progress of metabolic engineering. Biotechnology Journal, 2013, 8, 506-507.	1.8	5
693	The CpxRA Two-Component System is Involved in the Maintenance of the Integrity of the Cell Envelope in the Rumen Bacterium Mannheimia succiniciproducens. Current Microbiology, 2015, 70, 103-109.	1.0	5
694	Systematic and Comparative Evaluation of Software Programs for Templateâ€Based Modeling of Protein Structures. Biotechnology Journal, 2020, 15, e1900343.	1.8	5
695	Short-Term Adaptation Modulates Anaerobic Metabolic Flux to Succinate by Activating ExuT, a Novel D-Glucose Transporter in Escherichia coli. Frontiers in Microbiology, 2020, 11, 27.	1.5	5
696	Engineering Heterologous Hosts for the Enhanced Production of Non-ribosomal Peptides. Biotechnology and Bioprocess Engineering, 2020, 25, 795-809.	1.4	5
697	Biosynthesis of (R)-3-Hydroxyalkanoic Acids by Metabolically Engineered Escherichia coli. , 2004, , 373-379.		5
698	Biocompatible Materials Enabled by Biobased Production of Pyomelanin Isoforms Using an Engineered <i>Yarrowia lipolytica</i> . Advanced Functional Materials, 2022, 32, 2109366.	7.8	5
699	Biosynthesis and applications of iron oxide nanocomposites synthesized by recombinant Escherichia coli. Applied Microbiology and Biotechnology, 2022, 106, 1127-1137.	1.7	5
700	Commentaries & Analyses — WHITE BIOTECHNOLOGY. Asia Pacific Biotech News, 2006, 10, 559-563.	0.5	4
701	Systems Metabolic Engineering of Escherichia coli for Chemicals, Materials, Biofuels, and Pharmaceuticals. , 2012, , 117-149.		4
702	Effects of introducing heterologous pathways on microbial metabolism with respect to metabolic optimality. Biotechnology and Bioprocess Engineering, 2014, 19, 660-667.	1.4	4

#	Article	IF	CITATIONS
703	Unveiling the Hybrid Genome Structure of Escherichia coli RR1 (HB101 RecA+). Frontiers in Microbiology, 2017, 08, 585.	1.5	4
704	Revisiting Statistical Design and Analysis in Scientific Research. Small, 2018, 14, e1802604.	5.2	4
705	Improving Spinach2-and Broccoli-based biosensors for single and double analytes. Biotechnology Notes, 2020, 1, 2-8.	0.7	4
706	Data-Driven Approach to Decipher the Role of Triglyceride Composition on the Thermomechanical Properties of Thermosetting Polymers Using Vegetable and Microbial Oils. ACS Applied Polymer Materials, 2021, 3, 4485-4494.	2.0	4
707	Succinic acid production with reduced byâ€product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnology and Bioengineering, 2001, 72, 41-48.	1.7	4
708	Potential Application of the Recombinant Escherichia coli-Synthesized Heme as a Bioavailable Iron Source. Journal of Microbiology and Biotechnology, 2009, , .	0.9	4
709	Biosynthesis of poly(3-hydroxybutyrate- co-3-hydroxyalkanoates) by metabolically engineered Escherichia coli strains. Applied Biochemistry and Biotechnology, 2004, 113-116, 335-46.	1.4	4
710	The effect of protectants and pH changes on the cellular growth and succinic acid yield of Mannheimia succiniciproducens LPK7. Journal of Microbiology and Biotechnology, 2010, 20, 1677-80.	0.9	4
711	Physiological characteristics of recombinant Escherichia coli cells displaying poly-His peptides. Biotechnology Letters, 1999, 21, 1091-1094.	1.1	3
712	DNA microarray for the identification of pathogens causing bloodstream infections. Expert Review of Molecular Diagnostics, 2010, 10, 263-268.	1.5	3
713	Quantitative studies of carbohydrate-protein interaction using functionalized bacterial spores in solution and on chips. Biotechnology and Bioprocess Engineering, 2011, 16, 190-195.	1.4	3
714	Editorial: Flavors of international biotechnology. Biotechnology Journal, 2013, 8, 754-755.	1.8	3
715	Establishment of a biosynthesis pathway for (R)-3-hydroxyalkanoates in recombinant Escherichia coli. Korean Journal of Chemical Engineering, 2015, 32, 702-706.	1.2	3
716	Current Status of Biodegradable Plastics in Korea : Research, Commercial Production and Government Policy. Studies in Polymer Science, 1994, 12, 286-297.	0.2	3
717	Biosynthesis of Lactate-containing Polyhydroxyalkanoates in Recombinant Escherichia coli from Sucrose. KSBB Journal, 2014, 29, 443-447.	0.1	3
718	Biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by Metabolically Engineered Escherichia coli Strains. , 2004, , 335-346.		3
719	Efficient anaerobic consumption of D-xylose by E. coli BL21(DE3) via xylR adaptive mutation. BMC Microbiology, 2021, 21, 332.	1.3	3
720	Development of Recombinant Bacteria for the Degradation of Dibenzothiopheneaa. Annals of the New York Academy of Sciences, 1998, 864, 375-378.	1.8	2

#	Article	IF	CITATIONS
721	Multi-product trade-off analysis of E. coli by multiobjective flux balance analysis. Computer Aided Chemical Engineering, 2004, 18, 1099-1104.	0.3	2
722	Dopingâ€Free Nanoscale Complementary Carbonâ€Nanotube Fieldâ€Effect Transistors with DNAâ€Templated Molecular Lithography. Small, 2008, 4, 1959-1963.	5.2	2
723	Systems Metabolic Engineering of E. coli. , 2009, , 441-453.		2
724	Editorial: A call for ethical regulation of Genetically Created Organisms (GCOs) beyond GMOs. Biotechnology Journal, 2010, 5, 791-791.	1.8	2
725	Alignment of SWNTs by Protein-Ligand Interaction of Functionalized Magnetic Particles Under Low Magnetic Fields. Journal of Nanoscience and Nanotechnology, 2011, 11, 4540-4545.	0.9	2
726	Systems biology: the â€~new biotechnology'. Current Opinion in Biotechnology, 2012, 23, 583-584.	3.3	2
727	Genome-Scale Network Modeling. , 2012, , 1-23.		2
728	Editorial: Breaking down the walls to achieve interdisciplinary science and engineering. Biotechnology Journal, 2012, 7, 4-5.	1.8	2
729	Applications of genome-scale metabolic network models in the biopharmaceutical industry. Pharmaceutical Bioprocessing, 2013, 1, 337-339.	0.8	2
730	Editorial: Latest methods and advances in biotechnology. Biotechnology Journal, 2014, 9, 2-4.	1.8	2
731	Electro-triggered, spatioselective, quantitative gene delivery into a single cell nucleus by Au nanowire nanoinjector. New Biotechnology, 2014, 31, S173-S174.	2.4	2
732	Multispot array combined with S1 nuclease-mediated elimination of unpaired nucleotides. Biochip Journal, 2015, 9, 156-163.	2.5	2
733	In Memoriam of Prof. Bernard Witholt. Biotechnology Journal, 2016, 11, 195-196.	1.8	2
734	Genome Variations of Evolved <i>Escherichia coli</i> ET8 With a Rhodopsinâ€Based Phototrophic Metabolism. Biotechnology Journal, 2018, 13, e1700497.	1.8	2
735	Evolution of the Metabolic Engineering Community. Metabolic Engineering, 2018, 48, A1-A2.	3.6	2
736	Bacterial Polyesters: Microbial Polyhydroxyalkanoates and Nonnatural Polyesters (Adv. Mater.) Tj ETQq0 0 0 rgB1	- /Qyerloc	k 19 Tf 50 14
737	Production of Diversified Polyketides by Metabolic Engineering. Biochemistry, 2021, 60, 3424-3426.	1.2	2

738Genome Engineering of Yarrowia lipolytica with the PiggyBac Transposon System. Methods in
Molecular Biology, 2021, 2307, 1-24.0.42

#	Article	IF	CITATIONS
739	Secretory production of human leptin in Escherichia coli. Biotechnology and Bioengineering, 2000, 67, 398.	1.7	2
740	Clostridium acetobutylicum atpG-Knockdown Mutants Increase Extracellular pH in Batch Cultures. Frontiers in Bioengineering and Biotechnology, 2021, 9, 754250.	2.0	2
741	Production of Poly(3-Hydroxybutyrate) by Recombinant Bacteria. , 1998, , 463-475.		2
742	Metabolic engineering of the genus Clostridium for butanol production. Korean Journal of Microbiology, 2016, 52, 391-397.	0.2	2
743	Metabolic Engineering of Escherichia Coli for the Production of Polyhydroxyalkanoates. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1998, 31, 337-341.	0.4	1
744	Systems Biotechnology: a New Paradigm in Biotechnology Development. , 2005, , 155-177.		1
745	A Simple DNA Chip for Diagnosis of Most Common Corneal Dystrophies Caused by ßigh3 Gene Mutations. , 2007, , .		1
746	Label-free optical biosensors for the detection of food toxin and pathogen using multi-spot nanoparticle array chip and fusion proteins. Journal of Bioscience and Bioengineering, 2009, 108, S159.	1.1	1
747	Metabolic engineering of Escherichia coli for the production of l-isoleucine. Journal of Bioscience and Bioengineering, 2009, 108, S173-S174.	1.1	1
748	SYSTEMS BIOTECHNOLOGY., 2009, , .		1
749	Editorial: Exploring microbes in biotech. Biotechnology Journal, 2010, 5, 247-247.	1.8	1
750	Editorial: A big "thank you―to Barbara. Biotechnology Journal, 2010, 5, 1247-1247.	1.8	1
751	Editorial: Systems biology for biotech applications. Biotechnology Journal, 2010, 5, 636-637.	1.8	1
752	Label-free Electrochemical Biosensor Based on Graphene/Ionic Liquid Nanocomposite for the Detection of Organophosphate Pesticides. Materials Research Society Symposia Proceedings, 2011, 1283, 1.	0.1	1
753	DNA Sensors: Combining a Nanowire SERRS Sensor and a Target Recycling Reaction for Ultrasensitive and Multiplex Identification of Pathogenic Fungi (Small 23/2011). Small, 2011, 7, 3254-3254.	5.2	1
754	Editorial: Biotechnology's impact on sustainable development. Biotechnology Journal, 2012, 7, 1317-1317.	1.8	1
755	Editorial: NextGen SynBio has arrived Biotechnology Journal, 2012, 7, 827-827.	1.8	1
756	Editorial: Michael Shuler's legacy in biochemical engineering. Biotechnology Journal, 2012, 7, 314-316.	1.8	1

#	Article	IF	CITATIONS
757	Synthetic Biology of Hydrophobic Polymer Production. Springer Protocols, 2015, , 53-63.	0.1	1
758	Editorial: Methods and Advances – Biotech progress for science and our daily lives. Biotechnology Journal, 2015, 10, 3-4.	1.8	1
759	Surrogate strains of human pathogens for field release. Bioengineered, 2018, 9, 17-24.	1.4	1
760	Modular biocatalysis for polyamines. Nature Catalysis, 2021, 4, 449-450.	16.1	1
761	High cell density culture of metabolically engineered Escherichia coli for the production of poly(3-hydroxybutyrate) in a defined medium. , 1998, 58, 325.		1
762	Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation of Pseudomonas putida under phosphorus limitation. , 2000, 68, 466.		1
763	Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. , 2001, 72, 41.		1
764	Microbial Platform Cells for Synthetic Biology. , 2016, , 229-254.		1
765	C1 Gas Refinery. , 2018, , 1-16.		1
766	CRISPR/Cas-based genome engineering in natural product discovery. , 0, .		1
767	Systems Metabolic Engineering of Escherichia coli. EcoSal Plus, 2017, 7, .	2.1	1
768	Development of Metabolic Engineering Strategies for Microbial Platform to Produce Bioplastics. Applied Chemistry for Engineering, 2014, 25, 134-141.	0.2	1
769	MaoC Mediated Biosynthesis of Medium-chain-length Polyhydroxyalkanoates in Recombinant Escherichia coli from Fatty Acid. KSBB Journal, 2014, 29, 244-249.	0.1	1
770	Systems biotechnology. Genome Informatics, 2009, 23, 214-6.	0.4	1
771	Systems Metabolic Engineering. , 2008, , 196-196.		1
772	Polyhydroxyalkanoate Production by Recombinant Escherichia coli: New Genes and New Strains. ACS Symposium Series, 2001, , 77-88.	0.5	0
773	Combined Deterministicâ^'Stochastic Approach for Pharmacokinetic Modeling. Industrial & Engineering Chemistry Research, 2004, 43, 1133-1143	1.8	0
774	High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips. , 2006, , .		0

#	Article	IF	CITATIONS
775	Korean Systems Biology and Biotechnology Research. Asia Pacific Biotech News, 2006, 10, 967-977.	0.5	Ο
776	WebCell: An Integrated Environment For Modeling and Simulation of Cellular Networks Online. , 2006, , .		0
777	Determination of the Metabolic Networks Fluxes Using Carbon Isotopomer Labeling and Metabolic Flux Analysis. , 2006, , .		Ο
778	Proteomic Analysis of a Response to Long-Chain Fatty Acid in Escherichia coli and Its Application. , 2007, , .		0
779	Patterning of biomolecules on a biocompatible nonchemically amplified resist. , 2007, , .		Ο
780	Editorial: Biotechnology in Korea – the next generation growth engine. Biotechnology Journal, 2008, 3, 562-563.	1.8	0
781	Hand in hand for a global outreach. Biotechnology Journal, 2008, 3, 565-565.	1.8	Ο
782	Comparative proteomic analysis of four biotechnologically important Escherichia coli strains for rational host strain selection. Journal of Biotechnology, 2008, 136, S48.	1.9	0
783	Adaptive response to methylation damage in Escherichia coli studied by transcriptome and proteome analyses. Journal of Biotechnology, 2008, 136, S59.	1.9	Ο
784	Metabolic Control Analysis of Complex Biological Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41, 9823-9827.	0.4	0
785	Evaluation of Sensitivity and Specificity of DNA Chip for Diagnosis of Granular Corneal Dystrophy II. Journal of Korean Ophthalmological Society, 2008, 49, 1220.	0.0	0
786	High energy-charged cell factory for heterologous protein synthesis. Nature Precedings, 2009, , .	0.1	0
787	Bio-based production of chemicals and materials. Journal of Bioscience and Bioengineering, 2009, 108, S2.	1.1	Ο
788	Label-free electrochemical biosensor in highly conductive carbon nanotube and gold nanocomplexes. Journal of Bioscience and Bioengineering, 2009, 108, S158-S159.	1.1	0
789	Metabolic engineering of Escherichia coli for the production of large spider dragline silk proteins. Journal of Bioscience and Bioengineering, 2009, 108, S166-S167.	1.1	Ο
790	Improved prediction of metabolic fluxes through genomic context analysis across organisms and stoichiometric analysis of carbon fluxes. Journal of Bioscience and Bioengineering, 2009, 108, S173.	1.1	0
791	Construction and Applications of Genome-Scalein silico Metabolic Models for Strain Improvement. , 0, , 355-385.		0
792	Editorial: Cell and protein manipulation. Biotechnology Journal, 2009, 4, 151-151.	1.8	0

#	Article	IF	CITATIONS
793	Editorial: A Korean vision on Green Growth. Biotechnology Journal, 2009, 4, 1094-1094.	1.8	Ο
794	Editorial: Methods and Advances in Biotech. Biotechnology Journal, 2009, 4, 1230-1231.	1.8	0
795	Editorial: Biochips and nanobiotechnology. Biotechnology Journal, 2009, 4, 1502-1503.	1.8	Ο
796	Ho Nam Chang Special Issue: Life of a great biochemical engineer and his life-time contribution to high cell density culture. Bioprocess and Biosystems Engineering, 2010, 33, 1-4.	1.7	0
797	DNA capturing machinery through spore-displayed proteins. Letters in Applied Microbiology, 2011, 53, 445-451.	1.0	Ο
798	Determination of the Thermodynamically Dominant Metabolic Pathways. Industrial & Engineering Chemistry Research, 0, , 120726092100004.	1.8	0
799	Rücktitelbild: Homogeneous Biogenic Paramagnetic Nanoparticle Synthesis Based on a Microfluidic Droplet Generator (Angew. Chem. 23/2012). Angewandte Chemie, 2012, 124, 5864-5864.	1.6	Ο
800	Back Cover: Homogeneous Biogenic Paramagnetic Nanoparticle Synthesis Based on a Microfluidic Droplet Generator (Angew. Chem. Int. Ed. 23/2012). Angewandte Chemie - International Edition, 2012, 51, 5764-5764.	7.2	0
801	Editorial: Stateâ€ofâ€ŧheâ€art reviews in industrial biotechnology. Biotechnology Journal, 2012, 7, 166-167.	1.8	Ο
802	Computational Methods for Strain Design. , 2013, , 141-156.		0
803	Book review – <i>Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology. Second Edition</i> . Biotechnology Journal, 2013, 8, 13-14.	1.8	Ο
804	Editorial: Biotechnology as an enabling technology and much more. Biotechnology Journal, 2014, 9, 991-992.	1.8	0
805	Editorial: <i>Biotechnology Journal</i> brings more than biotechnology. Biotechnology Journal, 2015, 10, 1663-1665.	1.8	Ο
806	Enzymatic formation of carbohydrate rings catalyzed by single-walled carbon nanotubes. Bioprocess and Biosystems Engineering, 2016, 39, 725-733.	1.7	0
807	Bioplastics Biotechnology. , 2017, , 551-567.		Ο
808	C1 Gas Refinery. , 2017, , 501-516.		0
809	Bioproduction of Chemicals: An Introduction. , 2017, , 207-222.		0
810	Navigating genetic diversity by painting the bacteria red. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10824-10826.	3.3	0

#	Article	IF	CITATIONS
811	Editorial overview: Chemical biotechnology. Current Opinion in Biotechnology, 2020, 65, vi-vii.	3.3	0
812	Chang approximation for the osmotic pressure of dilute to concentrated solutions. Korean Journal of Chemical Engineering, 2020, 37, 583-587.	1.2	0
813	WebCell. , 2013, , 2351-2353.		0
814	Bioproduction of Chemicals: An Introduction. , 2018, , 1-16.		0
815	Bioplastics Biotechnology. , 2018, , 1-17.		0
816	Cell Surface Display of Poly(3-hydroxybutyrate) Depolymerase and its Application. Journal of Microbiology and Biotechnology, 2020, 30, 244-247.	0.9	0