Josep Sulé-Suso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7467500/publications.pdf

Version: 2024-02-01

28 papers 2,549 citations

430874 18 h-index 27 g-index

28 all docs 28 docs citations

times ranked

28

3311 citing authors

#	Article	IF	CITATIONS
1	Using Fourier transform IR spectroscopy to analyze biological materials. Nature Protocols, 2014, 9, 1771-1791.	12.0	1,385
2	Clinical applications of infrared and Raman spectroscopy: state of play and future challenges. Analyst, The, 2018, 143, 1735-1757.	3.5	163
3	Estimating and Correcting Mie Scattering in Synchrotron-Based Microscopic Fourier Transform Infrared Spectra by Extended Multiplicative Signal Correction. Applied Spectroscopy, 2008, 62, 259-266.	2.2	158
4	Adding synchrotron radiation to infrared microspectroscopy: what's new in biomedical applications?. Trends in Biotechnology, 2007, 25, 40-44.	9.3	140
5	Spectropathology for the next generation: Quo vadis?. Analyst, The, 2015, 140, 2066-2073.	3 . 5	106
6	Study of tumor cell invasion by Fourier transform infrared microspectroscopy. Biopolymers, 2005, 78, 311-317.	2.4	74
7	IR spectroscopy reveals effect of non-cytotoxic doses of anti-tumour drug on cancer cells. Analytical and Bioanalytical Chemistry, 2009, 395, 2293-2301.	3.7	62
8	Quantification of acetaldehyde and carbon dioxide in the headspace of malignant and non-malignant lung cells in vitro by SIFT-MS. Analyst, The, 2009, 134, 2419.	3. 5	60
9	Spectroscopic signatures of single, isolated cancer cell nuclei using synchrotron infrared microscopy. Analyst, The, 2009, 134, 1176.	3. 5	48
10	Synchrotron-based FTIR spectra of stained single cells. Towards a clinical application in pathology. Laboratory Investigation, 2010, 90, 797-807.	3.7	46
11	FT-IR microspectroscopy as a tool to assess lung cancer cells response to chemotherapy. Vibrational Spectroscopy, 2005, 38, 179-184.	2.2	45
12	Quantification by SIFT-MS of acetaldehyde released by lung cells in a 3D model. Analyst, The, 2013, 138, 91-95.	3.5	37
13	Raman imaging of single living cells: probing effects of non-cytotoxic doses of an anti-cancer drug. Analyst, The, 2011, 136, 2718.	3.5	35
14	Identification of different subsets of lung cells using Raman microspectroscopy and whole cell nucleus isolation. Analyst, The, 2013, 138, 5052.	3.5	25
15	Study of gemcitabineâ€sensitive/resistant cancer cells by cell cloning and synchrotron FTIR microspectroscopy. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 688-697.	1.5	24
16	Vibrational spectroscopy in stem cell characterisation: is there a niche?. Trends in Biotechnology, 2014, 32, 254-262.	9.3	22
17	Advantages of breath testing for the early diagnosis of lung cancer. Expert Review of Molecular Diagnostics, 2010, 10, 255-257.	3.1	21
18	Striking lung cancer response to self-administration of cannabidiol: A case report and literature review. SAGE Open Medical Case Reports, 2019, 7, 2050313X1983216.	0.3	20

#	Article	IF	CITATIONS
19	Identification of a Glass Substrate to Study Cells Using Fourier Transform Infrared Spectroscopy: Are We Closer to Spectral Pathology?. Applied Spectroscopy, 2020, 74, 178-186.	2.2	17
20	Optical Photothermal Infrared Microspectroscopy Discriminates for the First Time Different Types of Lung Cells on Histopathology Glass Slides. Analytical Chemistry, 2021, 93, 11081-11088.	6.5	16
21	Effects of nilotinib on leukaemia cells using vibrational microspectroscopy and cell cloning. Analyst, The, 2017, 142, 1299-1307.	3.5	13
22	Fourier transform infrared spectra of cells on glass coverslips. A further step in spectral pathology. Analyst, The, 2018, 143, 5711-5717.	3.5	9
23	Evaluation of peroxidative stress of cancer cells <i>in vitro</i> by realâ€time quantification of volatile aldehydes in culture headspace. Rapid Communications in Mass Spectrometry, 2017, 31, 1344-1352.	1.5	7
24	Optimization of Sample Preparation Using Glass Slides for Spectral Pathology. Applied Spectroscopy, 2021, 75, 343-350.	2.2	5
25	Probing single-tumor cell interactions with different-age type I collagen networks by synchrotron-based Fourier transform infrared microspectroscopy. Journal of Biomedical Optics, 2014, 19, 111612.	2.6	4
26	Vibrational spectroscopic monitoring and biochemical analysis of pericellular matrix formation and maturation in a 3-dimensional chondrocyte culture model. Analyst, The, 2018, 143, 5979-5986.	3.5	4
27	Artificial Neural Network Analysis of Volatile Organic Compounds for the Detection of Lung Cancer. Advances in Intelligent Systems and Computing, 2018, , 183-190.	0.6	3
28	On evaluation of a multiscale-based CT image analysis and visualisation algorithm. , 2013, , .		0