
Emanuele Giurisato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7467448/publications.pdf Version: 2024-02-01

EMANUELE CIUDISATO

#	Article	IF	CITATIONS
1	Clinical Significance and Regulation of ERK5 Expression and Function in Cancer. Cancers, 2022, 14, 348.	3.7	14
2	Inhibiting ERK5 Overcomes Breast Cancer Resistance to Anti-HER2 Therapy By Targeting the G1–S Cell-Cycle Transition. Cancer Research Communications, 2022, 2, 131-145.	1.7	3
3	The extracellular-regulated protein kinase 5 (ERK5) enhances metastatic burden in triple-negative breast cancer through focal adhesion protein kinase (FAK)-mediated regulation of cell adhesion. Oncogene, 2021, 40, 3929-3941.	5.9	12
4	Mesothelioma Malignancy and the Microenvironment: Molecular Mechanisms. Cancers, 2021, 13, 5664.	3.7	16
5	Tumor-Associated Macrophages in Osteosarcoma: From Mechanisms to Therapy. International Journal of Molecular Sciences, 2020, 21, 5207.	4.1	119
6	MEK5/ERK5 signaling mediates ILâ€4â€induced M2 macrophage differentiation through regulation of câ€Myc expression. Journal of Leukocyte Biology, 2020, 108, 1215-1223.	3.3	23
7	Extracellular-Regulated Protein Kinase 5-Mediated Control of p21 Expression Promotes Macrophage Proliferation Associated with Tumor Growth and Metastasis. Cancer Research, 2020, 80, 3319-3330.	0.9	23
8	A Rare Complex BRAF Mutation Involving Codon V600 and K601 in Primary Cutaneous Melanoma: Case Report. Frontiers in Oncology, 2020, 10, 1056.	2.8	5
9	Discovery of a Gatekeeper Residue in the C-Terminal Tail of the Extracellular Signal-Regulated Protein Kinase 5 (ERK5). International Journal of Molecular Sciences, 2020, 21, 929.	4.1	9
10	Defective spermatogenesis and testosterone levels in kinase suppressor of Ras1 (KSR1)-deficient mice. Reproduction, Fertility and Development, 2019, 31, 1369.	0.4	0
11	Hyper-Activation of STAT3 Sustains Progression of Non-Papillary Basal-Type Bladder Cancer via FOSL1 Regulome. Cancers, 2019, 11, 1219.	3.7	32
12	Myeloid ERK5 deficiency suppresses tumor growth by blocking protumor macrophage polarization via STAT3 inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2801-E2810.	7.1	67
13	An adaptive signaling network in melanoma inflammatory niches confers tolerance to MAPK signaling inhibition. Journal of Experimental Medicine, 2017, 214, 1691-1710.	8.5	71
14	Vomocytosis of live pathogens from macrophages is regulated by the atypical MAP kinase ERK5. Science Advances, 2017, 3, e1700898.	10.3	45
15	ERK5 is required for pro-tumour macrophage activation. European Journal of Cancer, 2016, 61, S105-S106.	2.8	0
16	Can tumor cells proliferate without ERK5?. Cell Cycle, 2016, 15, 619-620.	2.6	5
17	Ultrastructural study of spermatogenesis in KSR2 deficient mice. Transgenic Research, 2015, 24, 741-751.	2.4	7
18	Picomolar Inhibition of Plasmepsin V, an Essential Malaria Protease, Achieved Exploiting the Prime Region. PLoS ONE, 2015, 10, e0142509.	2.5	27

Emanuele Giurisato

#	Article	IF	CITATIONS
19	The KSR2-calcineurin complex regulates STIM1-ORAI1 dynamics and store-operated calcium entry (SOCE). Molecular Biology of the Cell, 2014, 25, 1769-1781.	2.1	14
20	Ligand-Dependent Activation of EGFR in Follicular Dendritic Cells Sarcoma is Sustained by Local Production of Cognate Ligands. Clinical Cancer Research, 2013, 19, 5027-5038.	7.0	28
21	Signaling and the Immunological Synapse. , 2010, , 1283-1291.		0
22	The Mitogen-Activated Protein Kinase Scaffold KSR1 Is Required for Recruitment of Extracellular Signal-Regulated Kinase to the Immunological Synapse. Molecular and Cellular Biology, 2009, 29, 1554-1564.	2.3	23
23	KSR1 Modulates the Sensitivity of Mitogen-Activated Protein Kinase Pathway Activation in T Cells without Altering Fundamental System Outputs. Molecular and Cellular Biology, 2009, 29, 2082-2091.	2.3	37
24	The Balance between T Cell Receptor Signaling and Degradation at the Center of the Immunological Synapse Is Determined by Antigen Quality. Immunity, 2008, 29, 414-422.	14.3	126
25	Phosphatidylinositol 3-Kinase Activation Is Required To Form the NKG2D Immunological Synapse. Molecular and Cellular Biology, 2007, 27, 8583-8599.	2.3	42
26	The Stimulatory Potency of T Cell Antigens Is Influenced by the Formation of the Immunological Synapse. Immunity, 2007, 26, 345-355.	14.3	83
27	Vav1 Controls DAP10-Mediated Natural Cytotoxicity by Regulating Actin and Microtubule Dynamics. Journal of Immunology, 2006, 177, 2349-2355.	0.8	83
28	Bone Marrow Stromal Cell Antigen 2 Is a Specific Marker of Type I IFN-Producing Cells in the Naive Mouse, but a Promiscuous Cell Surface Antigen following IFN Stimulation. Journal of Immunology, 2006, 177, 3260-3265.	0.8	390
29	Cutting Edge: CD96 (Tactile) Promotes NK Cell-Target Cell Adhesion by Interacting with the Poliovirus Receptor (CD155). Journal of Immunology, 2004, 172, 3994-3998.	0.8	307
30	Physiological T cell activation starts and propagates in lipid rafts. Immunology Letters, 2004, 91, 3-9.	2.5	40
31	T Cell Receptor Can Be Recruited to a Subset of Plasma Membrane Rafts, Independently of Cell Signaling and Attendantly to Raft Clustering. Journal of Biological Chemistry, 2003, 278, 6771-6778.	3.4	64
32	Diacylglycerol activates the influx of extracellular cations in T-lymphocytes independently of intracellular calcium-store depletion and possibly involving endogenous TRP6 gene products. Biochemical Journal, 2002, 364, 245-254.	3.7	79
33	Lipid rafts and T cell receptor signaling: a critical re-evaluation. European Journal of Immunology, 2002, 32, 3082-3091.	2.9	109
34	Macrophage-secreted myogenic factors: a promising tool for greatly enhancing the proliferative capacity of myoblasts in vitro and in vivo. Neurological Sciences, 2002, 23, 189-194.	1.9	111
35	Dystrophin deficient myotubes undergo apoptosis in mouse primary muscle cell culture after DNA damage. Neuroscience Letters, 1998, 252, 123-126.	2.1	19