Xiang-Jiao Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7467174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature, 1996, 382, 319-324.	13.7	1,442
2	Substrate and Functional Diversity of Lysine Acetylation Revealed by a Proteomics Survey. Molecular Cell, 2006, 23, 607-618.	4.5	1,372
3	The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nature Reviews Molecular Cell Biology, 2008, 9, 206-218.	16.1	1,092
4	Lysine Acetylation: Codified Crosstalk with Other Posttranslational Modifications. Molecular Cell, 2008, 31, 449-461.	4.5	877
5	HDAC6 Modulates Cell Motility by Altering the Acetylation Level of Cortactin. Molecular Cell, 2007, 27, 197-213.	4.5	626
6	ING Tumor Suppressor Proteins Are Critical Regulators of Chromatin Acetylation Required for Genome Expression and Perpetuation. Molecular Cell, 2006, 21, 51-64.	4.5	589
7	Acetylation of general transcription factors by histone acetyltransferases. Current Biology, 1997, 7, 689-692.	1.8	578
8	The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Research, 2004, 32, 959-976.	6.5	442
9	Class II Histone Deacetylases: from Sequence to Function, Regulation, and Clinical Implication. Molecular and Cellular Biology, 2005, 25, 2873-2884.	1.1	380
10	Lysine acetylation and the bromodomain: a new partnership for signaling. BioEssays, 2004, 26, 1076-1087.	1.2	349
11	HDAC4, a Human Histone Deacetylase Related to Yeast HDA1, Is a Transcriptional Corepressor. Molecular and Cellular Biology, 1999, 19, 7816-7827.	1.1	281
12	Regulation of Histone Deacetylase 4 by Binding of 14-3-3 Proteins. Molecular and Cellular Biology, 2000, 20, 6904-6912.	1.1	254
13	Ligand-Dependent Nuclear Receptor Corepressor LCoR Functions by Histone Deacetylase-Dependent and -Independent Mechanisms. Molecular Cell, 2003, 11, 139-150.	4.5	246
14	Multisite protein modification and intramolecular signaling. Oncogene, 2005, 24, 1653-1662.	2.6	245
15	Class II histone deacetylases: Structure, function, and regulation. Biochemistry and Cell Biology, 2001, 79, 243-252.	0.9	241
16	Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression. Current Opinion in Genetics and Development, 2003, 13, 143-153.	1.5	209
17	Tubulin acetylation: responsible enzymes, biological functions and human diseases. Cellular and Molecular Life Sciences, 2015, 72, 4237-4255.	2.4	196
18	Association with Class IIa Histone Deacetylases Upregulates the Sumoylation of MEF2 Transcription Factors. Molecular and Cellular Biology, 2005, 25, 2273-2287.	1.1	194

#	Article	IF	CITATIONS
19	Molecular Architecture of Quartet MOZ/MORF Histone Acetyltransferase Complexes. Molecular and Cellular Biology, 2008, 28, 6828-6843.	1.1	188
20	Histone Deacetylase 3 Interacts with and Deacetylates Myocyte Enhancer Factor 2. Molecular and Cellular Biology, 2007, 27, 1280-1295.	1.1	185
21	YAP, TAZ, and Yorkie: a conserved family of signal-responsive transcriptional coregulators in animal development and human diseaseThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB's 51st Annual Meeting – Epigenetics and Chromatin Dynamics, and has undergone the lournal's usual peer review process Biochemistry and Cell Biology. 2009. 87, 77-91.	0.9	166
22	HBO1 HAT Complexes Target Chromatin throughout Gene Coding Regions via Multiple PHD Finger Interactions with Histone H3 Tail. Molecular Cell, 2009, 33, 257-265.	4.5	163
23	Histone Deacetylase 4 Possesses Intrinsic Nuclear Import and Export Signals. Molecular and Cellular Biology, 2001, 21, 5992-6005.	1.1	158
24	Comprehensive lysine acetylomes emerging from bacteria to humans. Trends in Biochemical Sciences, 2011, 36, 211-220.	3.7	153
25	Control of MEF2 Transcriptional Activity by Coordinated Phosphorylation and Sumoylation. Journal of Biological Chemistry, 2006, 281, 4423-4433.	1.6	150
26	MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2. Oncogene, 2002, 21, 2729-2740.	2.6	148
27	Exchange of associated factors directs a switch in HBO1 acetyltransferase histone tail specificity. Genes and Development, 2013, 27, 2009-2024.	2.7	148
28	Identification of a Human Histone Acetyltransferase Related to Monocytic Leukemia Zinc Finger Protein. Journal of Biological Chemistry, 1999, 274, 28528-28536.	1.6	140
29	Identification of HDAC10, a novel class II human histone deacetylase containing a leucine-rich domain. Nucleic Acids Research, 2002, 30, 1114-1123.	6.5	139
30	Role of the Tetradecapeptide Repeat Domain of Human Histone Deacetylase 6 in Cytoplasmic Retention. Journal of Biological Chemistry, 2004, 279, 48246-48254.	1.6	127
31	The monocytic leukemia zinc finger protein MOZ is a histone acetyltransferase. Oncogene, 2001, 20, 404-409.	2.6	123
32	A Histone Deacetylase 4/Myogenin Positive Feedback Loop Coordinates Denervation-dependent Gene Induction and Suppression. Molecular Biology of the Cell, 2009, 20, 1120-1131.	0.9	114
33	Mice Lacking α-Tubulin Acetyltransferase 1 Are Viable but Display α-Tubulin Acetylation Deficiency and Dentate Gyrus Distortion. Journal of Biological Chemistry, 2013, 288, 20334-20350.	1.6	114
34	Mutations in KAT6B, Encoding a Histone Acetyltransferase, Cause Genitopatellar Syndrome. American Journal of Human Genetics, 2012, 90, 282-289.	2.6	112
35	De Novo Mutations in CHD4 , an ATP-Dependent Chromatin Remodeler Gene, Cause an Intellectual Disability Syndrome with Distinctive Dysmorphisms. American Journal of Human Genetics, 2016, 99, 934-941.	2.6	111
36	A Recurrent Phospho-Sumoyl Switch in Transcriptional Repression and Beyond. Molecular Cell, 2006, 23, 779-786.	4.5	105

#	Article	IF	CITATIONS
37	Akt binds prohibitin 2 and relieves its repression of MyoD and muscle differentiation. Journal of Cell Science, 2004, 117, 3021-3029.	1.2	100
38	<scp>BRPF</scp> 3― <scp>HBO</scp> 1 regulates replication origin activation and histone H3K14 acetylation. EMBO Journal, 2016, 35, 176-192.	3.5	97
39	MOZ and MORF acetyltransferases: Molecular interaction, animal development and human disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1818-1826.	1.9	96
40	Phosphorylation-Dependent Sumoylation Regulates Estrogen-Related Receptor-α and -γ Transcriptional Activity through a Synergy Control Motif. Molecular Endocrinology, 2008, 22, 570-584.	3.7	92
41	The Tumor Suppressor Kinase LKB1 Activates the Downstream Kinases SIK2 and SIK3 to Stimulate Nuclear Export of Class IIa Histone Deacetylases. Journal of Biological Chemistry, 2013, 288, 9345-9362.	1.6	83
42	Conserved Molecular Interactions within the HBO1 Acetyltransferase Complexes Regulate Cell Proliferation. Molecular and Cellular Biology, 2012, 32, 689-703.	1.1	82
43	Tandem PHD Fingers of MORF/MOZ Acetyltransferases Display Selectivity for Acetylated Histone H3 and Are Required for the Association with Chromatin. Journal of Molecular Biology, 2012, 424, 328-338.	2.0	75
44	Mutations in the Chromatin Regulator Gene BRPF1 Cause Syndromic Intellectual Disability and Deficient Histone Acetylation. American Journal of Human Genetics, 2017, 100, 91-104.	2.6	72
45	Caspase-mediated Specific Cleavage of Human Histone Deacetylase 4. Journal of Biological Chemistry, 2004, 279, 34537-34546.	1.6	71
46	Functional Characterization of an Amino-terminal Region of HDAC4 That Possesses MEF2 Binding and Transcriptional Repressive Activity. Journal of Biological Chemistry, 2003, 278, 23515-23521.	1.6	65
47	Crosstalk between epigenetic readers regulates the MOZ/MORF HAT complexes. Epigenetics, 2014, 9, 186-193.	1.3	64
48	Deficient histone H3 propionylation by BRPF1-KAT6 complexes in neurodevelopmental disorders and cancer. Science Advances, 2020, 6, eaax0021.	4.7	56
49	Control of embryonic stem cell self-renewal and differentiation via coordinated alternative splicing and translation of YY2. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12360-12367.	3.3	54
50	Deficiency of the Chromatin Regulator Brpf1 Causes Abnormal Brain Development. Journal of Biological Chemistry, 2015, 290, 7114-7129.	1.6	52
51	Revealing the protein propionylation activity of the histone acetyltransferase MOF (males absent on) Tj ETQq1 1	0.784314 1.6	rgBT /Overlo
52	Sumoylation in gene regulation, human disease, and therapeutic action. F1000prime Reports, 2013, 5, 45.	5.9	46
53	Metabolism, cytoskeleton and cellular signalling in the grip of protein N ϵ ―and Oâ€acetylation. EMBO Reports, 2007, 8, 556-562.	2.0	44
54	The Lysine Acetyltransferase Activator Brpf1 Governs Dentate Gyrus Development through Neural Stem Cells and Progenitors. PLoS Genetics, 2015, 11, e1005034.	1.5	43

#	Article	IF	CITATIONS
55	Histone deacetylases as transducers and targets of nuclear signaling. Journal of Cellular Biochemistry, 2008, 104, 1541-1552.	1.2	42
56	Sequence-Specific Recognition of a PxLPxI/L Motif by an Ankyrin Repeat Tumbler Lock. Science Signaling, 2012, 5, ra39.	1.6	42
57	The Chromatin Regulator Brpf1 Regulates Embryo Development and Cell Proliferation. Journal of Biological Chemistry, 2015, 290, 11349-11364.	1.6	40
58	Lysine acetyltransferase 8 is involved in cerebral development and syndromic intellectual disability. Journal of Clinical Investigation, 2020, 130, 1431-1445.	3.9	40
59	Sumoylation of Krüppel-like Factor 4 Inhibits Pluripotency Induction but Promotes Adipocyte Differentiation. Journal of Biological Chemistry, 2013, 288, 12791-12804.	1.6	39
60	Multifaceted Regulation of Somatic Cell Reprogramming by mRNA Translational Control. Cell Stem Cell, 2014, 14, 606-616.	5.2	39
61	Dephosphorylation and Caspase Processing Generate Distinct Nuclear Pools of Histone Deacetylase 4. Molecular and Cellular Biology, 2007, 27, 6718-6732.	1.1	35
62	Lysine acetylation: enzymes, bromodomains and links to different diseases. Essays in Biochemistry, 2012, 52, 1-12.	2.1	34
63	Identification of the Ankyrin Repeat Proteins ANKRA and RFXANK as Novel Partners of Class IIa Histone Deacetylases. Journal of Biological Chemistry, 2005, 280, 29117-29127.	1.6	33
64	BRPF1 is essential for development of fetal hematopoietic stem cells. Journal of Clinical Investigation, 2016, 126, 3247-3262.	3.9	32
65	Missense Variants in the Histone Acetyltransferase Complex Component Gene TRRAP Cause Autism and Syndromic Intellectual Disability. American Journal of Human Genetics, 2019, 104, 530-541.	2.6	30
66	Dephosphorylation at a Conserved SP Motif Governs cAMP Sensitivity and Nuclear Localization of Class IIa Histone Deacetylases*. Journal of Biological Chemistry, 2013, 288, 5591-5605.	1.6	28
67	The SUMO Conjugating Enzyme Ubc9 Is Required for Inducing and Maintaining Stem Cell Pluripotency. Stem Cells, 2014, 32, 1012-1020.	1.4	28
68	Histone acetyltransferases and deacetylases: molecular and clinical implications to gastrointestinal carcinogenesis. Acta Biochimica Et Biophysica Sinica, 2012, 44, 80-91.	0.9	27
69	The Chromatin Regulator BRPF3 Preferentially Activates the HBO1 Acetyltransferase but Is Dispensable for Mouse Development and Survival. Journal of Biological Chemistry, 2016, 291, 2647-2663.	1.6	27
70	K-Acetylation and Its Enzymes: Overview and New Developments. Handbook of Experimental Pharmacology, 2011, 206, 1-12.	0.9	26
71	Expression atlas of the multivalent epigenetic regulator Brpf1 and its requirement for survival of mouse embryos. Epigenetics, 2014, 9, 860-872.	1.3	26
72	Further delineation of the clinical spectrum of KAT6B disorders and allelic series of pathogenic variants. Genetics in Medicine, 2020, 22, 1338-1347.	1.1	25

#	Article	IF	CITATIONS
73	Dietary, Metabolic, and Potentially Environmental Modulation of the Lysine Acetylation Machinery. International Journal of Cell Biology, 2010, 2010, 1-14.	1.0	24
74	ATAT1 regulates forebrain development and stress-induced tubulin hyperacetylation. Cellular and Molecular Life Sciences, 2019, 76, 3621-3640.	2.4	20
75	Expression, purification, and analysis of MOZ and MORF histone acetyltransferases. Methods, 2003, 31, 24-32.	1.9	18
76	Ankyrin Repeats of ANKRA2 Recognize a PxLPxL Motif on the 3M Syndrome Protein CCDC8. Structure, 2015, 23, 700-712.	1.6	17
77	Histone Deacetylase 3 Governs Perinatal Cerebral Development via Neural Stem and Progenitor Cells. IScience, 2019, 20, 148-167.	1.9	17
78	Haploinsufficiency of the Sin3/HDAC corepressor complex member SIN3B causes a syndromic intellectual disability/autism spectrum disorder. American Journal of Human Genetics, 2021, 108, 929-941.	2.6	15
79	Parathyroid Hormone Administration Improves Bone Marrow Microenvironment and Partially Rescues Haematopoietic Defects in Bmi1-Null Mice. PLoS ONE, 2014, 9, e93864.	1.1	15
80	De Novo KAT5 Variants Cause a Syndrome with Recognizable Facial Dysmorphisms, Cerebellar Atrophy, Sleep Disturbance, and Epilepsy. American Journal of Human Genetics, 2020, 107, 564-574.	2.6	14
81	Pharmacological inhibition of histone deacetylases for the treatment of cancer, neurodegenerative disorders and inflammatory diseases. Expert Opinion on Drug Discovery, 2008, 3, 1041-1065.	2.5	10
82	Molecular and Functional Characterization of Histone Deacetylase 4 (HDAC4). Methods in Molecular Biology, 2016, 1436, 31-45.	0.4	10
83	Missense substitutions at a conserved 14-3-3 binding site in HDAC4 cause a novel intellectual disability syndrome. Human Genetics and Genomics Advances, 2021, 2, 100015.	1.0	6
84	Competitive Inhibition of Lysine Acetyltransferase 2B by a Small Motif of the Adenoviral Oncoprotein E1A. Journal of Biological Chemistry, 2016, 291, 14363-14372.	1.6	5
85	Assays for Acetylation and Other Acylations of Lysine Residues. Current Protocols in Protein Science, 2017, 87, 14.11.1-14.11.18.	2.8	5
86	TIE: A Method to Electroporate Long DNA Templates into Preimplantation Embryos for CRISPR-Cas9 Gene Editing. CRISPR Journal, 2018, 1, 223-229.	1.4	5
87	Regulation of Histone Deacetylase Activities and Functions by Phosphorylation and Dephosphorylation. , 2010, , 2379-2388.		4
88	Reconstitution of Active and Stoichiometric Multisubunit Lysine Acetyltransferase Complexes in Insect Cells. Methods in Molecular Biology, 2012, 809, 445-464.	0.4	3
89	Analysis of Protein Lysine Acetylation In Vitro and In Vivo. Current Protocols in Protein Science, 2008, 54, Unit 14.11.	2.8	2
90	PCAF lysine acetyltransferase. The AFCS-nature Molecule Pages, 0, , .	0.2	0

#	Article	IF	CITATIONS
91	Covalent Protein Modification as a Mechanism for Dynamic Recruitment of Specific Interactors. , 2011, , 259-279.		0