## Giovanni Finazzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7466981/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Dynamics of Photosynthesis. Annual Review of Genetics, 2008, 42, 463-515.                                                                                                                                                                                    | 3.2  | 585       |
| 2  | A Complex Containing PGRL1 and PGR5 Is Involved in the Switch between Linear andÂCyclic Electron<br>Flow in Arabidopsis. Cell, 2008, 132, 273-285.                                                                                                               | 13.5 | 496       |
| 3  | Whole-cell response of the pennate diatom <i>Phaeodactylum tricornutum</i> to iron starvation.<br>Proceedings of the National Academy of Sciences of the United States of America, 2008, 105,<br>10438-10443.                                                    | 3.3  | 414       |
| 4  | Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature, 2015, 524, 366-369.                                                                                                                                             | 13.7 | 311       |
| 5  | The Response of Nannochloropsis gaditana to Nitrogen Starvation Includes <i>De Novo</i><br>Biosynthesis of Triacylglycerols, a Decrease of Chloroplast Galactolipids, and Reorganization of the<br>Photosynthetic Apparatus. Eukaryotic Cell, 2013, 12, 665-676. | 3.4  | 301       |
| 6  | Glycerolipids in photosynthesis: Composition, synthesis and trafficking. Biochimica Et Biophysica Acta<br>- Bioenergetics, 2014, 1837, 470-480.                                                                                                                  | 0.5  | 296       |
| 7  | Membrane Glycerolipid Remodeling Triggered by Nitrogen and Phosphorus Starvation in <i>Phaeodactylum tricornutum</i> . Plant Physiology, 2015, 167, 118-136.                                                                                                     | 2.3  | 286       |
| 8  | An atypical member of the light-harvesting complex stress-related protein family modulates diatom<br>responses to light. Proceedings of the National Academy of Sciences of the United States of America,<br>2010, 107, 18214-18219.                             | 3.3  | 258       |
| 9  | Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. EMBO Reports, 2002, 3, 280-285.                                                                                                             | 2.0  | 235       |
| 10 | A Dual Strategy to Cope with High Light in <i>Chlamydomonas reinhardtii</i> Â. Plant Cell, 2013, 25, 545-557.                                                                                                                                                    | 3.1  | 193       |
| 11 | HMA1, a New Cu-ATPase of the Chloro plast Envelope, Is Essential for Growth under Adverse Light<br>Conditions. Journal of Biological Chemistry, 2006, 281, 2882-2892.                                                                                            | 1.6  | 191       |
| 12 | Electrochromism: a useful probe to study algal photosynthesis. Photosynthesis Research, 2010, 106,<br>179-189.                                                                                                                                                   | 1.6  | 184       |
| 13 | Diatom PtCPF1 is a new cryptochrome/photolyase family member with DNA repair and transcription regulation activity. EMBO Reports, 2009, 10, 655-661.                                                                                                             | 2.0  | 168       |
| 14 | State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1413, 117-129.                                                                               | 0.5  | 158       |
| 15 | Alternative photosynthetic electron flow to oxygen in marine Synechococcus. Biochimica Et<br>Biophysica Acta - Bioenergetics, 2008, 1777, 269-276.                                                                                                               | 0.5  | 155       |
| 16 | An original adaptation of photosynthesis in the marine green alga <i>Ostreococcus</i> . Proceedings of the United States of America, 2008, 105, 7881-7886.                                                                                                       | 3.3  | 154       |
| 17 | Calcium-dependent regulation of cyclic photosynthetic electron transfer by a CAS, ANR1, and PGRL1 complex. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17717-17722.                                              | 3.3  | 151       |
| 18 | Comparative phosphoproteome profiling reveals a function of the STN8 kinase in fine-tuning of cyclic<br>electron flow (CEF). Proceedings of the National Academy of Sciences of the United States of America,<br>2011, 108, 12955-12960.                         | 3.3  | 148       |

Giovanni Finazzi

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Thylakoid-Located Two-Pore K <sup>+</sup> Channel Controls Photosynthetic Light Utilization in<br>Plants. Science, 2013, 342, 114-118.                                                                                                                        | 6.0 | 146       |
| 20 | A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II<br>core complex. Proceedings of the National Academy of Sciences of the United States of America, 2004,<br>101, 12375-12380.                                      | 3.3 | 132       |
| 21 | Regulation of electron transport in microalgae. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 912-918.                                                                                                                                             | 0.5 | 129       |
| 22 | The role of PGR5 in the redox poising of photosynthetic electron transport. Biochimica Et Biophysica<br>Acta - Bioenergetics, 2007, 1767, 1252-1259.                                                                                                            | 0.5 | 124       |
| 23 | Redox Modulation of Cyclic Electron Flow around Photosystem I in C3 Plants. Biochemistry, 2006, 45, 13465-13475.                                                                                                                                                | 1.2 | 120       |
| 24 | PGR5-PGRL1-Dependent Cyclic Electron Transport Modulates Linear Electron Transport Rate in Arabidopsis thaliana. Molecular Plant, 2016, 9, 271-288.                                                                                                             | 3.9 | 119       |
| 25 | Impaired respiration discloses the physiological significance of state transitions in<br><i>Chlamydomonas</i> . Proceedings of the National Academy of Sciences of the United States of<br>America, 2009, 106, 15979-15984.                                     | 3.3 | 115       |
| 26 | The Biosynthetic Capacities of the Plastids and Integration Between Cytoplasmic and Chloroplast Processes. Annual Review of Genetics, 2012, 46, 233-264.                                                                                                        | 3.2 | 115       |
| 27 | Ions channels/transporters and chloroplast regulation. Cell Calcium, 2015, 58, 86-97.                                                                                                                                                                           | 1.1 | 111       |
| 28 | Deciphering Thylakoid Sub-compartments using a Mass Spectrometry-based Approach. Molecular and Cellular Proteomics, 2014, 13, 2147-2167.                                                                                                                        | 2.5 | 96        |
| 29 | Multisignal control of expression of the LHCX protein family in the marine diatom <i>Phaeodactylum tricornutum</i> . Journal of Experimental Botany, 2016, 67, 3939-3951.                                                                                       | 2.4 | 93        |
| 30 | Plastid thylakoid architecture optimizes photosynthesis in diatoms. Nature Communications, 2017, 8,<br>15885.                                                                                                                                                   | 5.8 | 93        |
| 31 | Plastid terminal oxidase ( <scp>PTOX</scp> ) has the potential to act as a safety valve for excess<br>excitation energy in the alpine plant species <i><scp>R</scp>anunculus glacialis</i> â€ <scp>L</scp><br>Plant, Cell and Environment, 2013, 36, 1296-1310. | 2.8 | 88        |
| 32 | Investigating mixotrophic metabolism in the model diatom <i>Phaeodactylum tricornutum</i> .<br>Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160404.                                                                     | 1.8 | 85        |
| 33 | PGRL1 Participates in Iron-induced Remodeling of the Photosynthetic Apparatus and in Energy<br>Metabolism in Chlamydomonas reinhardtii. Journal of Biological Chemistry, 2009, 284, 32770-32781.                                                                | 1.6 | 81        |
| 34 | Kinetic properties and physiological role of the plastoquinone terminal oxidase (PTOX) in a vascular plant. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 2140-2148.                                                                               | 0.5 | 76        |
| 35 | Fineâ€ŧuned regulation of the K <sup>+</sup> /H <sup>+</sup> antiporter <scp>KEA</scp> 3 is required to optimize photosynthesis during induction. Plant Journal, 2017, 89, 540-553.                                                                             | 2.8 | 74        |
| 36 | Adjustments of embryonic photosynthetic activity modulate seed fitness in <i><scp>A</scp>rabidopsis<br/>thaliana</i> . New Phytologist, 2015, 205, 707-719.                                                                                                     | 3.5 | 65        |

**GIOVANNI FINAZZI** 

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Thylakoid potassium channel is required for efficient photosynthesis in cyanobacteria. Proceedings of the United States of America, 2012, 109, 11043-11048.                                                                                    | 3.3  | 64        |
| 38 | Catalytic Reactions and Energy Conservation in the Cytochrome <i>bc</i> <sub>1</sub> and<br><i>b</i> <sub>6</sub> <i>f</i> Complexes of Energy-Transducing Membranes. Chemical Reviews, 2021,<br>121, 2020-2108.                               | 23.0 | 63        |
| 39 | In Vivo Characterization of the Electrochemical Proton Gradient Generated in Darkness in Green<br>Algae and Its Kinetic Effects on Cytochrome b6f Turnover. Biochemistry, 1998, 37, 9999-10005.                                                | 1.2  | 61        |
| 40 | HMA1 and PAA1, two chloroplast-envelope PIB-ATPases, play distinct roles in chloroplast copper homeostasis. Journal of Experimental Botany, 2014, 65, 1529-1540.                                                                               | 2.4  | 60        |
| 41 | The Water to Water Cycles in Microalgae. Plant and Cell Physiology, 2016, 57, pcw048.                                                                                                                                                          | 1.5  | 58        |
| 42 | Ion Channels in Plant Bioenergetic Organelles, Chloroplasts and Mitochondria: From Molecular<br>Identification to Function. Molecular Plant, 2016, 9, 371-395.                                                                                 | 3.9  | 57        |
| 43 | In Vivo Changes of the Oxidation-Reduction State of NADP and of the ATP/ADP Cellular Ratio Linked to the Photosynthetic Activity in Chlamydomonas reinhardtii Â. Plant Physiology, 2003, 132, 1464-1474.                                       | 2.3  | 55        |
| 44 | Ultrastructure of the Periplastidial Compartment of the Diatom Phaeodactylum tricornutum. Protist, 2016, 167, 254-267.                                                                                                                         | 0.6  | 54        |
| 45 | Morphological bases of phytoplankton energy management and physiological responses unveiled by 3D subcellular imaging. Nature Communications, 2021, 12, 1049.                                                                                  | 5.8  | 51        |
| 46 | Function-Directed Mutagenesis of the Cytochrome b6f Complex in Chlamydomonas reinhardtii:<br>Involvement of the cd Loop of Cytochrome b6 in Quinol Binding to the Qo Site. Biochemistry, 1997, 36,<br>2867-2874.                               | 1.2  | 46        |
| 47 | Dynamic Changes between Two LHCX-Related Energy Quenching Sites Control Diatom<br>Photoacclimation. Plant Physiology, 2018, 177, 953-965.                                                                                                      | 2.3  | 46        |
| 48 | Algal Remodeling in a Ubiquitous Planktonic Photosymbiosis. Current Biology, 2019, 29, 968-978.e4.                                                                                                                                             | 1.8  | 45        |
| 49 | Proton equilibration in the chloroplast modulates multiphasic kinetics of nonphotochemical<br>quenching of fluorescence in plants. Proceedings of the National Academy of Sciences of the United<br>States of America, 2010, 107, 12728-12733. | 3.3  | 39        |
| 50 | The onset of NPQ and ΔμH+ upon illumination of tobacco plants studied through the influence of<br>mitochondrial electron transport. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 177-188.                                        | 0.5  | 34        |
| 51 | Photoacclimation of photosynthesis in the Eustigmatophycean Nannochloropsis gaditana.<br>Photosynthesis Research, 2016, 129, 291-305.                                                                                                          | 1.6  | 34        |
| 52 | An update on the regulation of photosynthesis by thylakoid ion channels and transporters in<br><i>Arabidopsis</i> . Physiologia Plantarum, 2017, 161, 16-27.                                                                                   | 2.6  | 33        |
| 53 | Embryonic Photosynthesis Affects Post-Germination Plant Growth. Plant Physiology, 2020, 182, 2166-2181.                                                                                                                                        | 2.3  | 33        |
| 54 | Cytoklepty in the plankton: A host strategy to optimize the bioenergetic machinery of endosymbiotic<br>algae. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                                    | 3.3  | 27        |

Giovanni Finazzi

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Plastoquinone homoeostasis by Arabidopsis proton gradient regulation 6 is essential for photosynthetic efficiency. Communications Biology, 2019, 2, 220.                                       | 2.0 | 24        |
| 56 | Mixotrophic growth of the extremophile <i>Galdieria sulphuraria</i> reveals the flexibility of its carbon assimilation metabolism. New Phytologist, 2021, 231, 326-338.                        | 3.5 | 24        |
| 57 | Mutation of the Atypical Kinase ABC1K3 Partially Rescues the PROTON GRADIENT REGULATION 6<br>Phenotype in Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11, 337.                     | 1.7 | 23        |
| 58 | Identification of the Arabidopsis Calmodulin-Dependent NAD <sup>+</sup> Kinase That Sustains the Elicitor-Induced Oxidative Burst. Plant Physiology, 2019, 181, 1449-1458.                     | 2.3 | 19        |
| 59 | Regulation of photosynthetic electron flow on dark to light transition by ferredoxin:NADP(H)<br>oxidoreductase interactions. ELife, 2021, 10, .                                                | 2.8 | 18        |
| 60 | Cyclic electron flow: facts and hypotheses. Photosynthesis Research, 2016, 129, 227-230.                                                                                                       | 1.6 | 17        |
| 61 | Subcellular architecture and metabolic connection in the planktonic photosymbiosis between<br>Collodaria (radiolarians) and their microalgae. Environmental Microbiology, 2021, 23, 6569-6586. | 1.8 | 14        |
| 62 | Boosting Biomass Quantity and Quality by Improved Mixotrophic Culture of the Diatom Phaeodactylum tricornutum. Frontiers in Plant Science, 2021, 12, 642199.                                   | 1.7 | 12        |
| 63 | Protection of photosystem I during sudden light stress depends on ferredoxin:NADP(H) reductase<br>abundance and interactions. Plant Physiology, 2022, 188, 1028-1042.                          | 2.3 | 10        |
| 64 | Trade-off between sex and growth in diatoms: Molecular mechanisms and demographic implications.<br>Science Advances, 2022, 8, eabj9466.                                                        | 4.7 | 10        |
| 65 | Characterization of the Bubblegum acyl-CoA synthetase of Microchloropsis gaditana. Plant<br>Physiology, 2021, 185, 815-835.                                                                    | 2.3 | 9         |
| 66 | Consequences of Mixotrophy on Cell Energetic Metabolism in Microchloropsis gaditana Revealed by<br>Genetic Engineering and Metabolic Approaches. Frontiers in Plant Science, 2021, 12, 628684. | 1.7 | 8         |
| 67 | Impaired photoprotection in <i>Phaeodactylum tricornutum</i> KEA3 mutants reveals the proton regulatory circuit of diatoms light acclimation. New Phytologist, 2022, 234, 578-591.             | 3.5 | 8         |
| 68 | Regulation of Electron Transport in Photosynthesis. , 2014, , 437-464.                                                                                                                         |     | 7         |
| 69 | Global spectroscopic analysis to study the regulation of the photosynthetic proton motive force: A critical reappraisal. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 676-683.   | 0.5 | 6         |