
Zhongshan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7466897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Construction of hierarchically porous monoliths from covalent organic frameworks (COFs) and their application for bisphenol A removal. Journal of Hazardous Materials, 2018, 355, 145-153.	12.4	91
2	Recent development of hybrid organicâ€silica monolithic columns in CEC and capillary LC. Electrophoresis, 2015, 36, 62-75.	2.4	90
3	Tailor-Made Stable Zr(IV)-Based Metal–Organic Frameworks for Laser Desorption/Ionization Mass Spectrometry Analysis of Small Molecules and Simultaneous Enrichment of Phosphopeptides. ACS Applied Materials & Interfaces, 2016, 8, 20292-20300.	8.0	84
4	Preparation of Hybrid Monolithic Columns via "One-Pot―Photoinitiated Thiol–Acrylate Polymerization for Retention-Independent Performance in Capillary Liquid Chromatography. Analytical Chemistry, 2015, 87, 8789-8797.	6.5	72
5	Preparation of Monolithic Polymer Columns with Homogeneous Structure via Photoinitiated Thiol-yne Click Polymerization and Their Application in Separation of Small Molecules. Analytical Chemistry, 2014, 86, 12334-12340.	6.5	69
6	Facile construction of macroporous hybrid monoliths via thiol-methacrylate Michael addition click reaction for capillary liquid chromatography. Journal of Chromatography A, 2015, 1379, 34-42.	3.7	65
7	Facile preparation of a stable and functionalizable hybrid monolith via ring-opening polymerization for capillary liquid chromatography. Journal of Chromatography A, 2013, 1301, 131-138.	3.7	63
8	Photoinduced thiol–ene polymerization reaction for fast preparation of macroporous hybrid monoliths and their application in capillary liquid chromatography. Chemical Communications, 2014, 50, 9288-9290.	4.1	49
9	Click polymerization for preparation of monolithic columns for liquid chromatography. TrAC - Trends in Analytical Chemistry, 2016, 82, 89-99.	11.4	49
10	Thiol-Epoxy Click Polymerization for Preparation of Polymeric Monoliths with Well-Defined 3D Framework for Capillary Liquid Chromatography. Analytical Chemistry, 2015, 87, 3476-3483.	6.5	48
11	Fast preparation of a highly efficient organic monolith via photo-initiated thiol-ene click polymerization for capillary liquid chromatography. Journal of Chromatography A, 2015, 1394, 103-110.	3.7	47
12	Preparation of polyhedral oligomeric silsesquioxane-based hybrid monolith by ring-opening polymerization and post-functionalization via thiol-ene click reaction. Journal of Chromatography A, 2014, 1342, 70-77.	3.7	46
13	Facile Preparation of Titanium(IV)-Immobilized Hierarchically Porous Hybrid Monoliths. Analytical Chemistry, 2017, 89, 4655-4662.	6.5	39
14	Separation of intact proteins by using polyhedral oligomeric silsesquioxane based hybrid monolithic capillary columns. Journal of Chromatography A, 2013, 1317, 138-147.	3.7	38
15	Preparation of Polypropylene Spin Tips Filled with Immobilized Titanium(IV) Ion Monolithic Adsorbent for Robust Phosphoproteome Analysis. Analytical Chemistry, 2016, 88, 5058-5064.	6.5	36
16	Synthesis and Characterization of Hydrazide-Linked and Amide-Linked Organic Polymers. ACS Applied Materials & Interfaces, 2016, 8, 32060-32067.	8.0	36
17	Pesticides and trace elements in cannabis: Analytical and environmental challenges and opportunities. Journal of Environmental Sciences, 2019, 85, 82-93.	6.1	31
18	Preparation of well-controlled three-dimensional skeletal hybrid monoliths via thiol–epoxy click polymerization for highly efficient separation of small molecules in capillary liquid chromatography. Journal of Chromatography A, 2015, 1416, 74-82.	3.7	29

ZHONGSHAN LIU

#	Article	IF	CITATIONS
19	Formation, Identification, and Occurrence of New Bromo- and Mixed Halo-Tyrosyl Dipeptides in Chloraminated Water. Environmental Science & Technology, 2019, 53, 3672-3680.	10.0	29
20	A novel polymeric monolith prepared with multi-acrylate crosslinker for retention-independent efficient separation of small molecules in capillary liquid chromatography. Analytica Chimica Acta, 2015, 883, 90-98.	5.4	27
21	Silica Monolith Nested in Sponge (SiMNS): A Composite Monolith as a New Solid Phase Extraction Material for Environmental Analysis. Analytical Chemistry, 2019, 91, 3659-3666.	6.5	27
22	Preparation and characterization of hydrophilic hybrid monoliths via thiol-ene click polymerization and their applications in chromatographic analysis and glycopeptides enrichment. Journal of Chromatography A, 2017, 1498, 37-45.	3.7	26
23	Functionalization of hybrid monolithic columns via thiol-ene click reaction for proteomics analysis. Journal of Chromatography A, 2017, 1498, 29-36.	3.7	23
24	Rapid "one-pot―preparation of polymeric monolith via photo-initiated thiol-acrylate polymerization for capillary liquid chromatography. Analytica Chimica Acta, 2016, 925, 88-96.	5.4	22
25	A hybrid fluorous monolithic capillary column with integrated nanoelectrospray ionization emitter for determination of perfluoroalkyl acids by nano-liquid chromatography–nanoelectrospray ionization-mass spectrometry/mass spectrometry. Journal of Chromatography A, 2016, 1440, 66-73.	3.7	22
26	Porous styryl-linked polyhedral oligomeric silsesquioxane (POSS) polymers used as a support for platinum catalysts. Materials Chemistry Frontiers, 2019, 3, 851-859.	5.9	22
27	Improving permeability and chromatographic performance of poly(pentaerythritol diacrylate) Tj ETQq1 1 0.7843 Chromatography A, 2016, 1436, 100-108.	14 rgBT /(3.7	Overlock 10 21
28	Chromatographic assessment of two hybrid monoliths prepared via epoxy-amine ring-opening polymerization and methacrylate-based free radical polymerization using methacrylate epoxy cyclosiloxane as functional monomer. Journal of Chromatography A, 2014, 1367, 131-140.	3.7	20
29	Stable Isotopic Labeling and Nontarget Identification of Nanogram/Liter Amino Contaminants in Water. Analytical Chemistry, 2019, 91, 13213-13221.	6.5	20
30	Preparation of polyhedral oligomeric silsesquioxane based hybrid monoliths by ringâ€opening polymerization for capillary LC and CEC. Journal of Separation Science, 2013, 36, 2819-2825.	2.5	16
31	Preparation of cyclodextrinâ€modified monolithic hybrid columns for the fast enantioseparation of hydroxy acids in capillary liquid chromatography. Journal of Separation Science, 2016, 39, 1110-1117.	2.5	16
32	Nontargeted Identification of an <i>N</i> -Heterocyclic Compound in Source Water and Wastewater as a Precursor of Multiple Nitrosamines. Environmental Science & Technology, 2021, 55, 385-392.	10.0	15
33	Chromatographic efficiency comparison of polyhedral oligomeric silsesquioxanes-containing hybrid monoliths via photo- and thermally-initiated free-radical polymerization in capillary liquid chromatography for small molecules. Journal of Chromatography A, 2015, 1410, 110-117.	3.7	13
34	One-Pot Approach to Prepare Organo-silica Hybrid Capillary Monolithic Column with Intact Mesoporous Silica Nanoparticle as Building Block. Scientific Reports, 2016, 6, 34718.	3.3	11
35	Oneâ€Pot Preparation of Macroporous Organicâ€Silica Monolith for the Organics″Oilâ€Water Separation. ChemistrySelect, 2017, 2, 4538-4544.	1.5	7
36	Facile Synthesis of Dodecamine Organic Cageâ€Based Monolithic Microreactor via Ringâ€Opening Polymerization Following Spontaneous Reduction of Gold Ions for Continuous Flow Catalysis. ChemistrySelect, 2017, 2, 10880-10884.	1.5	2