Alejandro Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/746595/publications.pdf

Version: 2024-02-01

24 papers

178 citations

1478458 6 h-index 1199563 12 g-index

27 all docs

27 docs citations

times ranked

27

175 citing authors

#	Article	IF	CITATIONS
1	Study of Thermostable Polyurethane Material Produced by Robotic Milling Machining. Lecture Notes in Mechanical Engineering, 2022, , 68-81.	0.4	O
2	Effect of Surface Texture on the Structural Adhesive Joining Properties of Aluminum 7075 and TEPEX®. Materials, 2022, 15, 887.	2.9	3
3	A Decision-Making Methodology Based on Expert Systems Applied to Machining Tools Condition Monitoring. Mathematics, 2022, 10, 520.	2.2	11
4	Comparison of Measurements Realized on Computed Tomograph and Optical Scanners for Elements Manufactured by Wire Arc Additive Manufacturing. Lecture Notes in Mechanical Engineering, 2022, , 127-141.	0.4	2
5	Experimental Study on the Manufacturing of Steel Inclined Walls by Directed Energy Deposition Based on Dimensional and 3D Surface Roughness Measurements. Materials, 2022, 15, 4994.	2.9	4
6	Processing and Testing of Reinforced PA66 Based Composites. Materials, 2021, 14, 7299.	2.9	3
7	Simple Discriminatory Methodology for Wear Analysis of Cutting Tools: Impact on Work Piece Surface Morphology in Case of Differently Milled Kinetics Steel H13. Materials, 2020, 13, 215.	2.9	2
8	Influence of Cutting Conditions in the Topography of Texturized Surfaces on Aluminium 7075 Plates Produced by Robot Machining. Lecture Notes in Mechanical Engineering, 2019, , 107-121.	0.4	O
9	The assessment of accuracy of inner shapes manufactured by FDM. AIP Conference Proceedings, 2018, , .	0.4	7
10	Measurement of Surface Topography Using Computed Tomography. Lecture Notes in Mechanical Engineering, 2018, , 815-824.	0.4	3
11	Tribological Behaviour of PA6,6+15%GF and ABS Made by Injection. Applied Mechanics and Materials, 2017, 863, 117-122.	0.2	0
12	Methodology for tool wear analysis by electrical measuring during milling of AISI H13 and its impact on surface morphology. Procedia Manufacturing, 2017, 13, 356-363.	1.9	2
13	Methodology for tool wear analysis by a simple procedure during milling of AISI H13 and its impact on surface morphology. Procedia Manufacturing, 2017, 13, 348-355.	1.9	5
14	Additive manufacturing with GMAW welding and CMT technology. Procedia Manufacturing, 2017, 13, 840-847.	1.9	40
15	Tribological Testing of Polymeric Material. Annals of DAAAM & Proceedings, 2016, , 0428-0434.	0.1	1
16	A Concept of in-Process Measurement System for Spline Forming. Management and Production Engineering Review, 2015, 6, 73-81.	1.4	1
17	Surface topographic characterization for polyamide composite injection molds made of aluminum and copper alloys. Scanning, 2014, 36, 39-52.	1.5	11
18	Comparative between FEM Models for FDM Parts and their Approach to a Real Mechanical Behaviour. Procedia Engineering, 2013, 63, 878-884.	1.2	56

Alejandro Pereira

#	Article	IF	CITATION
19	Modelization and structural analysis of FDM parts. AIP Conference Proceedings, 2012, , .	0.4	8
20	Modelization of surface roughness in FDM parts. , 2012, , .		6
21	Good Practices in Teaching of Advanced Processes in Mechanical Engineering Projects Learning Groups. Materials Science Forum, 2009, 625, 43-49.	0.3	O
22	Computer Aided Practical Teaching of the Electro Discharge Machining Process. Materials Science Forum, 2009, 625, 29-34.	0.3	0
23	Study of Morphology Wear Model of Moulds from Alloys of Aluminium EN AW-6082 in Injection Process. Key Engineering Materials, 0, 554-557, 844-849.	0.4	7
24	Topographic Wear Monitoring of the Interface Tool/Workpiece in Milling AISI H13 Steel. Advanced Materials Research, 0, 966-967, 152-167.	0.3	6