Giuseppina Monti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7465809/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wearable, Energy-Autonomous RF Microwave Systems: Chipless and Energy-Harvesting-Based Wireless Systems for Low-Power, Low-Cost Localization and Sensing. IEEE Microwave Magazine, 2022, 23, 24-38.	0.7	7
2	Portable Microwave Reflectometry System for Skin Sensing. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-8.	2.4	13
3	Wireless Resonant Energy Link for Joint Flexion Monitoring: Experimental Investigation by Using a NanoVNA. , 2022, , .		4
4	Bracelet Textile Electrodes for Bioimpedance Measurements. , 2022, , .		1
5	Gain Expressions for Capacitive Wireless Power Transfer with One Electric Field Repeater. Electronics (Switzerland), 2021, 10, 723.	1.8	3
6	Multiple Input Multiple Output Resonant Inductive WPT Link: Optimal Terminations for Efficiency Maximization. Energies, 2021, 14, 2194.	1.6	5
7	Microwave Wearable System for Sensing Skin Hydration. , 2021, , .		9
8	Textile Chipless Tag for Gesture Recognition. IEEE Sensors Journal, 2021, 21, 18279-18286.	2.4	9
9	Wireless Power Transfer Strategies for Medical Implants: Focus on Robustness and EM Compatibility. IEEE Microwave Magazine, 2021, 22, 28-41.	0.7	9
10	Low-cost System for Skin Sensing. , 2021, , .		1
11	General Procedure to Optimize a MIMO Capacitive Wireless Power Transfer System. , 2021, , .		1
12	Multiple Inputs Inductive WPT: Efficiency Analysis by Using a Generalized Eigenvalue Approach. , 2021, , .		0
13	Capacitive Wireless Power Transfer with Multiple Transmitters: Efficiency Optimization. Energies, 2020, 13, 3482.	1.6	7
14	Good Teachers Do Make the Difference [Women in Microwaves]. IEEE Microwave Magazine, 2020, 21, 68-70.	0.7	0
15	Optimal Terminations for a Single-Input Multiple-Output Resonant Inductive WPT Link. Energies, 2020, 13, 5157.	1.6	9
16	Feasibility of a Wearable Reflectometric System for Sensing Skin Hydration. Sensors, 2020, 20, 2833.	2.1	28
17	Dry Textile Electrodes for Wearable Bio-Impedance Analyzers. IEEE Sensors Journal, 2020, 20, 6139-6147.	2.4	14
18	Wireless Power Transfer System With High Misalignment Tolerance for Bio-Medical Implants. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 3023-3027.	2.2	46
16 17	Feasibility of a Wearable Reflectometric System for Sensing Skin Hydration. Sensors, 2020, 20, 2833. Dry Textile Electrodes for Wearable Bio-Impedance Analyzers. IEEE Sensors Journal, 2020, 20, 6139-6147	7.	2.1 7. 2.4

#	Article	IF	CITATIONS
19	Load-Independent Operative Regime for an Inductive Resonant WPT Link in Parallel Configuration. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 1809-1818.	2.9	7
20	Fully-Textile, Wearable Chipless Tags for Identification and Tracking Applications. Sensors, 2020, 20, 429.	2.1	38
21	Power maximization for a multiple–input and multiple-output wireless power transfer system described by the admittance matrix. , 2020, , .		2
22	Textile Wearable Antenna for Firefighters Positioning. , 2019, , .		10
23	Low-Cost Chipless Sensor Tags for Wearable User Interfaces. IEEE Sensors Journal, 2019, 19, 10046-10053.	2.4	13
24	Maxwell's Equations and Potentials in Dirac form using Geometric Algebra. , 2019, , .		1
25	Radio-frequency Identification Based on Textile, Wearable, Chipless Tags for IoT Applications. , 2019, , .		13
26	A Frequency Signature RFID Chipless Tag for Wearable Applications. Sensors, 2019, 19, 494.	2.1	30
27	GAINS MAXIMIZATION VIA IMPEDANCE MATCHING NETWORKS FOR WIRELESS POWER TRANSFER. Progress in Electromagnetics Research, 2019, 164, 135-153.	1.6	12
28	Wearable Antennas: Nontextile Versus Fully Textile Solutions. IEEE Antennas and Propagation Magazine, 2019, 61, 71-83.	1.2	68
29	On the Use of Matching Networks and Relays for Maximizing the Gains of IR WPT Links. , 2019, , .		1
30	Efficiency optimization of a three-coil resonant energy link. Wireless Power Transfer, 2019, 6, 126-137.	0.9	0
31	Gains Maximization for Two-port WPT Links with Three Coils. , 2019, , .		Ο
32	Load-Independent Inductive Resonant WPT Links. , 2019, , .		1
33	A Chipless Humidity Sensor for Wearable Applications. , 2019, , .		15
34	EMC and EMI issues of WPT systems for wearable and implantable devices. IEEE Electromagnetic Compatibility Magazine, 2018, 7, 67-77.	0.1	22
35	Gain expressions for resonant inductive wireless power transfer links with one relay element. Wireless Power Transfer, 2018, 5, 27-41.	0.9	20
36	Durability of Wearable Antennas Based on Nonwoven Conductive Fabrics: Experimental Study on Resistance to Washing and Ironing. International Journal of Antennas and Propagation, 2018, 2018, 1-8.	0.7	25

#	Article	IF	CITATIONS
37	WPT Link with Relay Elements for Recharging a Pacemaker. , 2018, , .		1
38	A Fully-Textile Chipless Tag. , 2018, , .		9
39	Optimal Couplings for a Four-coils WPT Link. , 2018, , .		5
40	Misalignments Issues in WPT Links for Medical Implants. , 2018, , .		2
41	Optimal Terminating Impadances for Maximizing the Gains of a Four-Coil WPT Link. , 2018, , .		1
42	Conjugate image impedance matching for maximizing the gains of a WPT link. , 2018, , .		4
43	Transducer gain maximization for a resonant inductive WPT link using relay resonators. , 2018, , .		4
44	Conditions for a Load-Independent Operating Regime in Resonant Inductive WPT. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 1066-1076.	2.9	44
45	Modelling of wireless power transfer links based on capacitive coupling. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2017, 30, e2187.	1.2	12
46	Twoâ€port network approach for a wireless power transfer link using a cascade of inductively coupled resonators. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2017, 30, e2234.	1.2	1
47	Inductive link for power and data transfer to a medical implant. Wireless Power Transfer, 2017, 4, 98-112.	0.9	12
48	Wearable antennas for applications in remote assistance to elderly people. , 2017, , .		13
49	TDR-based monitoring of rising damp through the embedding of wire-like sensing elements in building structures. Measurement: Journal of the International Measurement Confederation, 2017, 98, 355-360.	2.5	22
50	Wireless Power Transfer With Three-Ports Networks: Optimal Analytical Solutions. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 494-503.	3.5	17
51	Optimal Design of Wireless Energy Transfer to Multiple Receivers: Power Maximization. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 260-269.	2.9	20
52	Wireless power link for rechargeable pacemakers. , 2017, , .		4
53	Characterization of wireless power transfer links by network invariants. , 2017, , .		2
54	Matched resonant inductive WPT using the coupling-independent regime: Theory and experiments. , 2017, , .		3

#	Article	IF	CITATIONS
55	Wearable Antennas for Remote Health Care Monitoring Systems. International Journal of Antennas and Propagation, 2017, 2017, 1-11.	0.7	58
56	Wireless resonant energy link for pulse generators implanted in the chest. IET Microwaves, Antennas and Propagation, 2017, 11, 2201-2210.	0.7	19
57	Electromagnetic Compatibility Analysis of a WPT Link for Rechargeable Pacemakers. , 2017, , .		О
58	A Wearable Wireless Energy Link for Thin-Film Batteries Charging. International Journal of Antennas and Propagation, 2016, 2016, 1-9.	0.7	15
59	Compact resonator on leather for nonradiative inductive power transfer and farâ€field data links. Radio Science, 2016, 51, 629-637.	0.8	10
60	Power maximization in a WPT link using three transmitters and a single receiver. , 2016, , .		1
61	Wireless power transfer between one transmitter and two receivers: optimal analytical solution. Wireless Power Transfer, 2016, 3, 63-73.	0.9	11
62	Optimal design of a wireless power transfer link using parallel and series resonators. Wireless Power Transfer, 2016, 3, 105-116.	0.9	18
63	Rigorous design of matched wireless power transfer links based on inductive coupling. Radio Science, 2016, 51, 858-867.	0.8	21
64	A Network Approach for Wireless Resonant Energy Links Using Relay Resonators. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 3271-3279.	2.9	18
65	Accuracy improvement in the TDR-based localization of water leaks. Results in Physics, 2016, 6, 594-598.	2.0	10
66	Wireless power transmission from two transmitters to one receiver: Optimal design for power maximization. , 2016, , .		3
67	Non-radiative Wireless Power Transmission: Theory and Applications. , 2016, , 3-30.		2
68	Wearable logoâ€antenna for GPS–GSMâ€based tracking systems. IET Microwaves, Antennas and Propagation, 2016, 10, 1332-1338.	0.7	38
69	Wireless power transfer between one transmitter and two receivers: Optimal analytical solution. , 2015, , .		6
70	Wireless energy link for deep brain stimulation. , 2015, , .		9
71	A wearable wireless energy link. , 2015, , .		9
72	Wireless power transfer link for rechargeable deep brain stimulators. , 2015, , .		5

Wireless power transfer link for rechargeable deep brain stimulators. , 2015, , . 72

5

#	Article	IF	CITATIONS
73	A wireless power link on leather for applications in the clothing industry. , 2015, , .		2
74	Resonant Inductive Link for Remote Powering of Pacemakers. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 3814-3822.	2.9	70
75	Logo antenna on textile materials. , 2014, , .		21
76	Power generation by spurious emissions from compact fluorescent lamps. , 2014, , .		3
77	Textile logo antennas. , 2014, , .		14
78	Energy harvesting of spurious emissions of compact fluorescent lamps for home monitoring applications. , 2014, , .		2
79	Resonant Energy Scavenger for Sensor Powering by Spurious Emissions From Compact Fluorescent Lamps. IEEE Sensors Journal, 2014, 14, 2347-2354.	2.4	7
80	Electromagnetic Energy Harvesting and Wireless Power Transmission: A Unified Approach. Proceedings of the IEEE, 2014, 102, 1692-1711.	16.4	177
81	GPUâ€based acceleration of computational electromagnetics codes. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2013, 26, 309-323.	1.2	2
82	Radiofrequency characterization of polydimethylsiloxane – iron oxide based nanocomposites. Microelectronic Engineering, 2013, 111, 46-51.	1.1	10
83	GHz Properties of Magnetophoretically Aligned Iron-Oxide Nanoparticle Doped Polymers. ACS Applied Materials & Interfaces, 2013, 5, 2908-2914.	4.0	4
84	A 2.45-GHz Vivaldi Rectenna for the Remote Activation of an End Device Radio Node. IEEE Sensors Journal, 2013, 13, 3454-3461.	2.4	29
85	Wireless system for biological signal recording with Gallium Arsenide high electron mobility transistors as sensing elements. Microelectronic Engineering, 2013, 111, 354-359.	1.1	3
86	UHF Wearable Rectenna on Textile Materials. IEEE Transactions on Antennas and Propagation, 2013, 61, 3869-3873.	3.1	111
87	A novel circuit model of nanotechnology-enabled inkjet-printed gas sensors using multi-wall carbon nanotubes. , 2013, , .		2
88	A THREE-BAND T-JUNCTION POWER DIVIDER BASED ON ARTIFICIAL TRANSMISSION LINES. Progress in Electromagnetics Research C, 2013, 34, 41-52.	0.6	1
89	NOVEL PLANAR ANTENNA WITH A BROADSIDE RADIATION. Progress in Electromagnetics Research Letters, 2013, 38, 45-53.	0.4	1
90	Thickness dependence of the amplified spontaneous emission threshold and operational stability in poly(9,9-dioctylfluorene) active waveguides. Journal of Applied Physics, 2012, 111, .	1.1	37

#	Article	IF	CITATIONS
91	Magnetically coupled resonant wireless power transmission: An artificial transmission line approach. , 2012, , .		17
92	A MICROSTRIP ANTENNA WITH A RECONFIGURABLE PATTERN FOR RFID APPLICATIONS. Progress in Electromagnetics Research B, 2012, 45, 101-116.	0.7	14
93	A novel biotelemetry system to monitor human vital signs. , 2012, , .		0
94	MPIE/MoM Acceleration With a General-Purpose Graphics Processing Unit. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 2693-2701.	2.9	14
95	3D patch antenna using a cardbord substrate for RFID reader applications. , 2012, , .		0
96	METAL FOAMS FOR ELECTROMAGNETICS: EXPERIMENTAL, NUMERICAL AND ANALYTICAL CHARACTERIZATION. Progress in Electromagnetics Research B, 2012, 45, 1-18.	0.7	11
97	EXPERIMENTAL CHARACTERIZATION OF A 434 MHZ WIRELESS ENERGY LINK FOR MEDICAL APPLICATIONS. Progress in Electromagnetics Research C, 2012, 30, 53-64.	0.6	27
98	MONOPOLE-BASED RECTENNA FOR MICROWAVE ENERGY HARVESTING OF UHF RFID SYSTEMS. Progress in Electromagnetics Research C, 2012, 31, 109-121.	0.6	37
99	ISM BAND RECTENNA USING A RING LOADED MONOPOLE. Progress in Electromagnetics Research C, 2012, 33, 1-15.	0.6	16
100	UHF RECTENNA USING A BOWTIE ANTENNA. Progress in Electromagnetics Research C, 2012, 26, 181-192.	0.6	29
101	PLANAR BOWTIE ANTENNA WITH A RECONFIGURABLE RADIATION PATTERN. Progress in Electromagnetics Research C, 2012, 28, 61-70.	0.6	12
102	Iterative Solution of Linear Systems in Electromagnetics (And Not Only): Experiences with CUDA. Lecture Notes in Computer Science, 2011, , 329-337.	1.0	4
103	Broadband compact planar monopole. Microwave and Optical Technology Letters, 2011, 53, 2838-2842.	0.9	9
104	X-Band Planar Rectenna. IEEE Antennas and Wireless Propagation Letters, 2011, 10, 1116-1119.	2.4	43
105	Circuit model of carbon-nanotube inks for microelectronic and microwave tunable devices. , 2011, , .		7
106	Circuit model of carbon-nanotube inks for microelectronic and microwave tunable devices. , 2011, , .		8
107	New materials for electromagnetic shielding: Metal foams with plasma properties. Microwave and Optical Technology Letters, 2010, 52, 1700-1705.	0.9	10
108	Parallel efficient method of moments exploiting graphics processing units. Microwave and Optical Technology Letters, 2010, 52, 2568-2572.	0.9	20

#	Article	IF	CITATIONS
109	BROAD-BAND DIPOLE FOR RFID APPLICATIONS. Progress in Electromagnetics Research C, 2010, 12, 163-172.	0.6	17
110	Energy detection and radiation by metallic rings embedded into a self-rolled InxGa1-xAs/GaAs micro-tube. , 2010, , .		0
111	Energy detection and radiation by metallic rings embedded into a self-rolled In <inf>x</inf> Ga <inf>1-x</inf> As/GaAs micro-tube. , 2010, , .		Ο
112	Modified bowtie antenna for GPR applications. , 2010, , .		10
113	DESIGN OF A 3-STATE RECONFIGURABLE CRLH TRANSMISSION LINE BASED ON MEMS SWITCHES. Progress in Electromagnetics Research, 2009, 95, 283-297.	1.6	40
114	COMPACT MICROSTRIP ANTENNA FOR RFID APPLICATIONS. Progress in Electromagnetics Research Letters, 2009, 8, 191-199.	0.4	39
115	PATCH ANTENNA WITH RECONFIGURABLE POLARIZATION. Progress in Electromagnetics Research C, 2009, 9, 13-23.	0.6	30
116	NEGATIVE GROUP VELOCITY IN A SPLIT RING RESONATOR-COUPLED MICROSTRIP LINE. Progress in Electromagnetics Research, 2009, 94, 33-47.	1.6	32
117	On the use of a Rat-Race Coupler in the Design of a 180° Phase Shifter. Journal of Electromagnetic Waves and Applications, 2009, 23, 1201-1210.	1.0	7
118	Assessment of a TD-Based Method for Characterization of Antennas. IEEE Transactions on Instrumentation and Measurement, 2009, 58, 1412-1419.	2.4	31
119	A Noninvasive Resonance-Based Method for Moisture Content Evaluation Through Microstrip Antennas. IEEE Transactions on Instrumentation and Measurement, 2009, 58, 1420-1426.	2.4	48
120	Signal reshaping in a transmission line with negative group velocity behavior. Microwave and Optical Technology Letters, 2009, 51, 2627-2633.	0.9	9
121	Experimental validation of a plasma model for electromagnetic metal foam shields. , 2009, , .		4
122	Dual-band artificial transmission lines branch-line coupler. International Journal of RF and Microwave Computer-Aided Engineering, 2008, 18, 53-62.	0.8	12
123	MEMSâ€reconfigurable bandpass filter. Microwave and Optical Technology Letters, 2008, 50, 2096-2099.	0.9	4
124	Compact broadband monolithic 3â€dB coupler by using artificial transmission lines. Microwave and Optical Technology Letters, 2008, 50, 2662-2667.	0.9	10
125	A Comparative Analysis of Reflectometry Methods for Characterization of Antennas. , 2008, , .		7
126	A Non-Invasive Approach for Moisture Measurements through Patch Antennas. , 2008, , .		7

A Non-Invasive Approach for Moisture Measurements through Patch Antennas. , 2008, , . 126

#	Article	IF	CITATIONS
127	Dispersion analysis of a planar negative group velocity-transmission line. , 2007, , .		1
128	Dispersion analysis of a planar negative group velocity-transmission line. , 2007, , .		0
129	Reduced-size broadband CRLH-ATL Rat-Race coupler. , 2006, , .		8
130	Gaussian pulse expansion of modulated signals in a double-negative slab. IEEE Transactions on Microwave Theory and Techniques, 2006, 54, 2755-2761.	2.9	4
131	A novel theoretical formulation for the analysis of the propagation of finite-bandwidth signals in a double-negative slab. Microwave and Optical Technology Letters, 2005, 47, 434-439.	0.9	2
132	On the propagation of a Gaussian pulse in a double-negative slab. , 2005, , .		2
133	A Parallel-Grid-Enabled Variable-Mesh FDTD Approach for the Analysis of Slabs of Double-Negative Metamaterials. , 0, , .		3