Marzena Pazgier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7465455/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human α-Defensin 6 Promotes Mucosal Innate Immunity Through Self-Assembled Peptide Nanonets. Science, 2012, 337, 477-481.	6.0	337
2	Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4665-4670.	3.3	334
3	Live imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacy. Immunity, 2021, 54, 2143-2158.e15.	6.6	155
4	Diverse specificity and effector function among human antibodies to HIV-1 envelope glycoprotein epitopes exposed by CD4 binding. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E69-78.	3.3	138
5	Toward Understanding the Cationicity of Defensins. Journal of Biological Chemistry, 2007, 282, 19653-19665.	1.6	127
6	CD4 mimetics sensitize HIV-1-infected cells to ADCC. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2687-94.	3.3	118
7	Structural Definition of an Antibody-Dependent Cellular Cytotoxicity Response Implicated in Reduced Risk for HIV-1 Infection. Journal of Virology, 2014, 88, 12895-12906.	1.5	108
8	Through the Looking Glass, Mechanistic Insights from Enantiomeric Human Defensins. Journal of Biological Chemistry, 2009, 284, 29180-29192.	1.6	103
9	Structural basis and mode of action for two broadly neutralizing antibodies against SARS-CoV-2 emerging variants of concern. Cell Reports, 2022, 38, 110210.	2.9	96
10	An Asymmetric Opening of HIV-1 Envelope Mediates Antibody-Dependent Cellular Cytotoxicity. Cell Host and Microbe, 2019, 25, 578-587.e5.	5.1	93
11	Epitope Specificity of Human Immunodeficiency Virus-1 Antibody Dependent Cellular Cytotoxicity [ADCC] Responses. Current HIV Research, 2013, 11, 378-387.	0.2	82
12	A Fc-enhanced NTD-binding non-neutralizing antibody delays virus spread and synergizes with a nAb to protect mice from lethal SARS-CoV-2 infection. Cell Reports, 2022, 38, 110368.	2.9	82
13	Identification of Near-Pan-neutralizing Antibodies against HIV-1 by Deconvolution of Plasma Humoral Responses. Cell, 2018, 173, 1783-1795.e14.	13.5	80
14	A Highly Conserved Residue of the HIV-1 gp120 Inner Domain Is Important for Antibody-Dependent Cellular Cytotoxicity Responses Mediated by Anti-cluster A Antibodies. Journal of Virology, 2016, 90, 2127-2134.	1.5	69
15	Functional Determinants of Human Enteric α-Defensin HD5. Journal of Biological Chemistry, 2012, 287, 21615-21627.	1.6	68
16	Co-receptor Binding Site Antibodies Enable CD4-Mimetics to Expose Conserved Anti-cluster A ADCC Epitopes on HIV-1 Envelope Glycoproteins. EBioMedicine, 2016, 12, 208-218.	2.7	65
17	Trp-26 Imparts Functional Versatility to Human α-Defensin HNP1. Journal of Biological Chemistry, 2010, 285, 16275-16285.	1.6	54
18	The Conserved Salt Bridge in Human α-Defensin 5 Is Required for Its Precursor Processing and Proteolytic Stability. Journal of Biological Chemistry, 2008, 283, 21509-21518.	1.6	52

#	Article	IF	CITATIONS
19	Cocrystal Structures of Antibody N60-i3 and Antibody JR4 in Complex with gp120 Define More Cluster A Epitopes Involved in Effective Antibody-Dependent Effector Function against HIV-1. Journal of Virology, 2015, 89, 8840-8854.	1.5	51
20	Turning Defense into Offense: Defensin Mimetics as Novel Antibiotics Targeting Lipid II. PLoS Pathogens, 2013, 9, e1003732.	2.1	50
21	Human Enteric α-Defensin 5 Promotes Shigella Infection by Enhancing Bacterial Adhesion and Invasion. Immunity, 2018, 48, 1233-1244.e6.	6.6	47
22	Paring Down HIV Env: Design and Crystal Structure of a Stabilized Inner Domain of HIV-1 gp120 Displaying a Major ADCC Target of the A32 Region. Structure, 2016, 24, 697-709.	1.6	46
23	Sometimes It Takes Two to Tango. Journal of Biological Chemistry, 2012, 287, 8944-8953.	1.6	45
24	Two Families of Env Antibodies Efficiently Engage Fc-Gamma Receptors and Eliminate HIV-1-Infected Cells. Journal of Virology, 2019, 93, .	1.5	44
25	Structural and Functional Analysis of the Pro-Domain of Human Cathelicidin, LL-37. Biochemistry, 2013, 52, 1547-1558.	1.2	42
26	Conformational Masking and Receptor-Dependent Unmasking of Highly Conserved Env Epitopes Recognized by Non-Neutralizing Antibodies That Mediate Potent ADCC against HIV-1. Viruses, 2015, 7, 5115-5132.	1.5	42
27	Impact of temperature on the affinity of SARS-CoV-2 Spike glycoprotein for host ACE2. Journal of Biological Chemistry, 2021, 297, 101151.	1.6	42
28	Role of HIV-1 Envelope Glycoproteins Conformation and Accessory Proteins on ADCC Responses. Current HIV Research, 2015, 14, 9-23.	0.2	42
29	Design of a Potent Antibiotic Peptide Based on the Active Region of Human Defensin 5. Journal of Medicinal Chemistry, 2015, 58, 3083-3093.	2.9	41
30	The HIV-1 Env gp120 Inner Domain Shapes the Phe43 Cavity and the CD4 Binding Site. MBio, 2020, 11, .	1.8	37
31	Beyond Viral Neutralization. AIDS Research and Human Retroviruses, 2017, 33, 760-764.	0.5	36
32	Antibody-Induced Internalization of HIV-1 Env Proteins Limits Surface Expression of the Closed Conformation of Env. Journal of Virology, 2019, 93, .	1.5	32
33	Molecular basis for epitope recognition by non-neutralizing anti-gp41 antibody F240. Scientific Reports, 2016, 6, 36685.	1.6	31
34	Targeting the Late Stage of HIV-1 Entry for Antibody-Dependent Cellular Cytotoxicity: Structural Basis for Env Epitopes in the C11 Region. Structure, 2017, 25, 1719-1731.e4.	1.6	31
35	Invariant Gly Residue Is Important for α-Defensin Folding, Dimerization, and Function. Journal of Biological Chemistry, 2012, 287, 18900-18912.	1.6	30
36	Epitope target structures of Fc-mediated effector function during HIV-1 acquisition. Current Opinion in HIV and AIDS, 2014, 9, 263-270.	1.5	30

MARZENA PAZGIER

#	Article	IF	CITATIONS
37	CD4 Incorporation into HIV-1 Viral Particles Exposes Envelope Epitopes Recognized by CD4-Induced Antibodies. Journal of Virology, 2019, 93, .	1.5	29
38	Interaction of Human ACE2 to Membrane-Bound SARS-CoV-1 and SARS-CoV-2 S Glycoproteins. Viruses, 2020, 12, 1104.	1.5	29
39	Modulating HIV-1 envelope glycoprotein conformation to decrease the HIV-1 reservoir. Cell Host and Microbe, 2021, 29, 904-916.e6.	5.1	29
40	The HIV-1 Antisense Protein ASP Is a Transmembrane Protein of the Cell Surface and an Integral Protein of the Viral Envelope. Journal of Virology, 2019, 93, .	1.5	27
41	Engineered ACE2-Fc counters murine lethal SARS-CoV-2 infection through direct neutralization and Fc-effector activities. Science Advances, 2022, 8, .	4.7	27
42	A New Family of Small-Molecule CD4-Mimetic Compounds Contacts Highly Conserved Aspartic Acid 368 of HIV-1 gp120 and Mediates Antibody-Dependent Cellular Cytotoxicity. Journal of Virology, 2019, 93, .	1.5	26
43	Survivors Remorse: antibodyâ€mediated protection against <scp>HIV</scp> â€1. Immunological Reviews, 2017, 275, 271-284.	2.8	25
44	Antigen-Induced Allosteric Changes in a Human IgG1 Fc Increase Low-Affinity FcÎ ³ Receptor Binding. Structure, 2020, 28, 516-527.e5.	1.6	23
45	Structural Basis for Epitopes in the gp120 Cluster A Region that Invokes Potent Effector Cell Activity. Viruses, 2019, 11, 69.	1.5	20
46	Defining rules governing recognition and Fc-mediated effector functions to the HIV-1 co-receptor binding site. BMC Biology, 2020, 18, 91.	1.7	20
47	Boosting with AIDSVAX B/E Enhances Env Constant Region 1 and 2 Antibody-Dependent Cellular Cytotoxicity Breadth and Potency. Journal of Virology, 2020, 94, .	1.5	19
48	λ Light Chain Bias Associated With Enhanced Binding and Function of Anti-HIV Env Glycoprotein Antibodies. Journal of Infectious Diseases, 2016, 213, 156-164.	1.9	18
49	Antibody-Dependent Cellular Cytotoxicity-Competent Antibodies against HIV-1-Infected Cells in Plasma from HIV-Infected Subjects. MBio, 2019, 10, .	1.8	17
50	Design of ultrahigh-affinity and dual-specificity peptide antagonists of MDM2 and MDMX for P53 activation and tumor suppression. Acta Pharmaceutica Sinica B, 2021, 11, 2655-2669.	5.7	15
51	From Rhesus macaque to human: structural evolutionary pathways for immunoglobulin G subclasses. MAbs, 2019, 11, 709-724.	2.6	14
52	Stoichiometric Analyses of Soluble CD4 to Native-like HIV-1 Envelope by Single-Molecule Fluorescence Spectroscopy. Cell Reports, 2019, 29, 176-186.e4.	2.9	11
53	Systematic mutational analysis of human neutrophil α-defensin HNP4. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 835-844.	1.4	11
54	CD4- and Time-Dependent Susceptibility of HIV-1-Infected Cells to Antibody-Dependent Cellular Cytotoxicity. Journal of Virology, 2019, 93, .	1.5	11

MARZENA PAZGIER

#	Article	IF	CITATIONS
55	Nebulized delivery of a broadly neutralizing SARS-CoV-2 RBD-specific nanobody prevents clinical, virological, and pathological disease in a Syrian hamster model of COVID-19. MAbs, 2022, 14, 2047144.	2.6	10
56	Stabilizing the HIV-1 Envelope Glycoprotein State 2A Conformation. Journal of Virology, 2021, 95, .	1.5	9
57	Human β-defensin 4 - defensin without the "twist". Postepy Biochemii, 2016, 62, 349-361.	0.5	9
58	Optimization of Small Molecules That Sensitize HIV-1 Infected Cells to Antibody-Dependent Cellular Cytotoxicity. ACS Medicinal Chemistry Letters, 2020, 11, 371-378.	1.3	8
59	VE607 stabilizes SARS-CoV-2 Spike in the "RBD-up―conformation and inhibits viral entry. IScience, 2022, 25, 104528.	1.9	8
60	Induction of Fc-Mediated Effector Functions Against a Stabilized Inner Domain of HIV-1 gp120 Designed to Selectively Harbor the A32 Epitope Region. Frontiers in Immunology, 2019, 10, 677.	2.2	7
61	Elicitation of Cluster A and Co-Receptor Binding Site Antibodies Are Required to Eliminate HIV-1 Infected Cells. Microorganisms, 2020, 8, 710.	1.6	7
62	Concurrent Exposure of Neutralizing and Non-neutralizing Epitopes on a Single HIV-1 Envelope Structure. Frontiers in Immunology, 2019, 10, 1512.	2.2	6
63	Recognition Patterns of the C1/C2 Epitopes Involved in Fc-Mediated Response in HIV-1 Natural Infection and the RV114 Vaccine Trial. MBio, 2020, 11, .	1.8	6
64	Enhanced Ability of Plant-Derived PGT121 Glycovariants To Eliminate HIV-1-Infected Cells. Journal of Virology, 2021, 95, e0079621.	1.5	6
65	Full Length Single Chain Fc Protein (FLSC IgG1) as a Potent Antiviral Therapy Candidate: Implications forIn VivoStudies. AIDS Research and Human Retroviruses, 2016, 32, 178-186.	0.5	5
66	Incorporating the Cluster A and V1V2 Targets into a Minimal Structural Unit of the HIV-1 Envelope to Elicit a Cross-Clade Response with Potent Fc-Effector Functions. Vaccines, 2021, 9, 975.	2.1	5
67	Near-Pan-neutralizing, Plasma Deconvoluted Antibody N49P6 Mimics Host Receptor CD4 in Its Quaternary Interactions with the HIV-1 Envelope Trimer. MBio, 2021, 12, e0127421.	1.8	4
68	Across Functional Boundaries: Making Nonneutralizing Antibodies To Neutralize HIV-1 and Mediate Fc-Mediated Effector Killing of Infected Cells. MBio, 2021, 12, e0140521.	1.8	3
69	HIV-1 Envelope Glycoprotein Cell Surface Localization Is Associated with Antibody-Induced Internalization. Viruses, 2021, 13, 1953.	1.5	2
70	Impact of HIVâ€1 viremia or sexually transmitted infection on semenâ€derived antiâ€HIVâ€1 antibodies and the immunosuppressive capacity of seminal plasma. European Journal of Immunology, 2019, 49, 2255-2258.	1.6	1
71	Effects of gp120 Inner Domain (ID2) Immunogen Doses on Elicitation of Anti-HIV-1 Functional Fc-Effector Response to C1/C2 (Cluster A) Epitopes in Mice. Microorganisms, 2020, 8, 1490.	1.6	1
72	Structure and Fc-Effector Function of Rhesusized Variants of Human Anti-HIV-1 lgG1s. Frontiers in Immunology, 2021, 12, 787603.	2.2	1

#	Article	IF	CITATIONS
73	Bma-LAD-2, an Intestinal Cell Adhesion Protein, as a Potential Therapeutic Target for Lymphatic Filariasis. MBio, 2022, , e0374221.	1.8	0