
Weston B Struwe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7465328/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Custom Design of Protein Particles as Multifunctional Biomaterials. Advanced Functional Materials, 2022, 32, 2108039.	7.8	6
2	Stateâ€ofâ€ŧheâ€art glycosaminoglycan characterization. Mass Spectrometry Reviews, 2022, 41, 1040-1071.	2.8	16
3	Mass Photometry of Membrane Proteins. CheM, 2021, 7, 224-236.	5.8	39
4	Hyper-truncated Asn355- and Asn391-glycans modulate the activity of neutrophil granule myeloperoxidase. Journal of Biological Chemistry, 2021, 296, 100144.	1.6	31
5	Assessing Antigen Structural Integrity through Glycosylation Analysis of the SARS-CoV-2 Viral Spike. ACS Central Science, 2021, 7, 586-593.	5.3	68
6	Native Mass Spectrometry Meets Glycomics: Resolving Structural Detail and Occupancy of Glycans on Intact Glycoproteins. Analytical Chemistry, 2021, 93, 10435-10443.	3.2	12
7	Identification of N-glycans with GalNAc-containing antennae from recombinant HIV trimers by ion mobility and negative ion fragmentation. Analytical and Bioanalytical Chemistry, 2021, 413, 7229-7240.	1.9	1
8	Formation and fragmentation of doubly and triply charged ions in the negative ion spectra of neutral N-glycans from viral and other glycoproteins. Analytical and Bioanalytical Chemistry, 2021, 413, 7277-7294.	1.9	0
9	Label-free methods for optical <i>in vitro</i> characterization of protein–protein interactions. Physical Chemistry Chemical Physics, 2021, 23, 16488-16500.	1.3	18
10	A bipartite structural organization defines the SERINC family of HIV-1 restriction factors. Nature Structural and Molecular Biology, 2020, 27, 78-83.	3.6	50
11	Single molecule mass photometry of nucleic acids. Nucleic Acids Research, 2020, 48, e97-e97.	6.5	42
12	Correlating Glycoforms of DCâ€SIGN with Stability Using a Combination of Enzymatic Digestion and Ion Mobility Mass Spectrometry. Angewandte Chemie, 2020, 132, 15690-15694.	1.6	3
13	Frontispiz: Quantifying Protein–Protein Interactions by Molecular Counting with Mass Photometry. Angewandte Chemie, 2020, 132, .	1.6	0
14	Quantifying Protein–Protein Interactions by Molecular Counting with Mass Photometry. Angewandte Chemie, 2020, 132, 10866-10871.	1.6	11
15	The COVID-19 MS Coalition—accelerating diagnostics, prognostics, and treatment. Lancet, The, 2020, 395, 1761-1762.	6.3	51
16	Quantifying Protein–Protein Interactions by Molecular Counting with Mass Photometry. Angewandte Chemie - International Edition, 2020, 59, 10774-10779.	7.2	72
17	Shotgun ion mobility mass spectrometry sequencing of heparan sulfate saccharides. Nature Communications, 2020, 11, 1481.	5.8	39
18	Frontispiece: Quantifying Protein–Protein Interactions by Molecular Counting with Mass Photometry. Angewandte Chemie - International Edition, 2020, 59, .	7.2	0

#	Article	IF	CITATIONS
19	Correlating Glycoforms of DCâ€SIGN with Stability Using a Combination of Enzymatic Digestion and Ion Mobility Mass Spectrometry. Angewandte Chemie - International Edition, 2020, 59, 15560-15564.	7.2	12
20	Quantifying the heterogeneity of macromolecular machines by mass photometry. Nature Communications, 2020, 11, 1772.	5.8	146
21	Ion Mobility-Mass Spectrometry of Glycoconjugates. Methods in Molecular Biology, 2020, 2084, 203-219.	0.4	4
22	Separation of Isomeric <i>O-</i> Glycans by Ion Mobility and Liquid Chromatography–Mass Spectrometry. Analytical Chemistry, 2019, 91, 10604-10613.	3.2	40
23	Relating glycoprotein structural heterogeneity to function – insights from native mass spectrometry. Current Opinion in Structural Biology, 2019, 58, 241-248.	2.6	48
24	Towards a standardized bioinformatics infrastructure for N- and O-glycomics. Nature Communications, 2019, 10, 3275.	5.8	70
25	Separation of isomeric glycans by ion mobility spectrometry – the impact of fluorescent labelling. Analyst, The, 2019, 144, 5292-5298.	1.7	21
26	In-depth structural analysis of glycans in the gas phase. Chemical Science, 2019, 10, 1272-1284.	3.7	52
27	Probing <i>N</i> -glycoprotein microheterogeneity by lectin affinity purification-mass spectrometry analysis. Chemical Science, 2019, 10, 5146-5155.	3.7	49
28	The minimum information required for a glycomics experiment (MIRAGE) project: LC guidelines. Glycobiology, 2019, 29, 349-354.	1.3	30
29	Structural principles that enable oligomeric small heat-shock protein paralogs to evolve distinct functions. Science, 2018, 359, 930-935.	6.0	51
30	lsomer Information from Ion Mobility Separation of High-Mannose Glycan Fragments. Journal of the American Society for Mass Spectrometry, 2018, 29, 972-988.	1.2	21
31	Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans. Journal of the American Society for Mass Spectrometry, 2018, 29, 1250-1261.	1.2	26
32	Fucose Migration in Intact Protonated Glycan Ions: A Universal Phenomenon in Mass Spectrometry. Angewandte Chemie - International Edition, 2018, 57, 7440-7443.	7.2	51
33	Expression, Purification, and Biochemical Characterization of Human Afamin. Journal of Proteome Research, 2018, 17, 1269-1277.	1.8	8
34	Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages. Journal of Proteome Research, 2018, 17, 987-999.	1.8	23
35	Quantitative mass imaging of single biological macromolecules. Science, 2018, 360, 423-427.	6.0	453
36	A Massâ€Spectrometryâ€Based Modelling Workflow for Accurate Prediction of IgG Antibody Conformations in the Gas Phase. Angewandte Chemie, 2018, 130, 17440-17445.	1.6	5

#	Article	IF	CITATIONS
37	A Massâ€5pectrometryâ€Based Modelling Workflow for Accurate Prediction of IgG Antibody Conformations in the Gas Phase. Angewandte Chemie - International Edition, 2018, 57, 17194-17199.	7.2	39
38	Structural Studies of Fucosylated <i>N</i> -Glycans by Ion Mobility Mass Spectrometry and Collision-Induced Fragmentation of Negative Ions. Journal of the American Society for Mass Spectrometry, 2018, 29, 1179-1193.	1.2	22
39	Structural Insights into the Broad-Spectrum Antiviral Target Endoplasmic Reticulum Alpha-Glucosidase II. Advances in Experimental Medicine and Biology, 2018, 1062, 265-276.	0.8	8
40	Signature of Antibody Domain Exchange by Native Mass Spectrometry and Collision-Induced Unfolding. Analytical Chemistry, 2018, 90, 7325-7331.	3.2	31
41	N-glycan microheterogeneity regulates interactions of plasma proteins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8763-8768.	3.3	94
42	Site-Specific Glycosylation of Virion-Derived HIV-1 Env Is Mimicked by a Soluble Trimeric Immunogen. Cell Reports, 2018, 24, 1958-1966.e5.	2.9	120
43	Fucoseâ€Migration in intakten protonierten Glykanâ€ŀonen – ein universelles Phäomen in der Massenspektrometrie. Angewandte Chemie, 2018, 130, 7562-7565.	1.6	7
44	The Jumonji-C oxygenase JMJD7 catalyzes (3S)-lysyl hydroxylation of TRAFAC GTPases. Nature Chemical Biology, 2018, 14, 688-695.	3.9	31
45	The minimum information required for a glycomics experiment (MIRACE) project: improving the standards for reporting glycan microarray-based data. Glycobiology, 2017, 27, 280-284.	1.3	69
46	Identification of Lewis and Blood Group Carbohydrate Epitopes by Ion Mobility-Tandem-Mass Spectrometry Fingerprinting. Analytical Chemistry, 2017, 89, 2318-2325.	3.2	57
47	The role of interfacial lipids in stabilizing membrane protein oligomers. Nature, 2017, 541, 421-424.	13.7	344
48	The Tetrameric Plant Lectin BanLec Neutralizes HIV through Bidentate Binding to Specific Viral Glycans. Structure, 2017, 25, 773-782.e5.	1.6	39
49	Glycan Fingerprinting via Coldâ€lon Infrared Spectroscopy. Angewandte Chemie - International Edition, 2017, 56, 11248-11251.	7.2	116
50	Reducing V3 Antigenicity and Immunogenicity on Soluble, Native-Like HIV-1 Env SOSIP Trimers. Journal of Virology, 2017, 91, .	1.5	57
51	Global N-Glycan Site Occupancy of HIV-1 gp120 by Metabolic Engineering and High-Resolution Intact Mass Spectrometry. ACS Chemical Biology, 2017, 12, 357-361.	1.6	34
52	Glycosylation profiling to evaluate glycoprotein immunogens against HIV-1. Expert Review of Proteomics, 2017, 14, 881-890.	1.3	24
53	Fingerabdrücke für Glykane durch Spektroskopie kalter Ionen. Angewandte Chemie, 2017, 129, 11400-11404.	1.6	16
54	Convergent immunological solutions to Argentine hemorrhagic fever virus neutralization. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7031-7036.	3.3	31

#	Article	IF	CITATIONS
55	Molecular Architecture of the Cleavage-Dependent Mannose Patch on a Soluble HIV-1 Envelope Glycoprotein Trimer. Journal of Virology, 2017, 91, .	1.5	77
56	Travellingâ€wave ion mobility and negative ion fragmentation of highâ€mannose <i>N</i> â€glycans. Journal of Mass Spectrometry, 2016, 51, 219-235.	0.7	34
57	Optimal Synthetic Glycosylation of a Therapeutic Antibody. Angewandte Chemie - International Edition, 2016, 55, 2361-2367.	7.2	122
58	Probing the Effect of Lipid Binding on the Monomer-Dimer Equilibrium of a Prokaryotic Sugar Transporter by Native Mass Spectrometry. Biophysical Journal, 2016, 110, 423a.	0.2	0
59	Immune recruitment or suppression by glycan engineering of endogenous and therapeutic antibodies. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1655-1668.	1.1	47
60	Antibody production using a ciliate generates unusual antibody glycoforms displaying enhanced cell-killing activity. MAbs, 2016, 8, 1498-1511.	2.6	14
61	The minimum information required for a glycomics experiment (MIRAGE) project: sample preparation guidelines for reliable reporting of glycomics datasets. Glycobiology, 2016, 26, 907-910.	1.3	62
62	Structures of mammalian ER α-glucosidase II capture the binding modes of broad-spectrum iminosugar antivirals. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4630-8.	3.3	65
63	Mass Spectrometric Quantification of N-Linked Glycans by Reference to Exogenous Standards. Journal of Proteome Research, 2016, 15, 2969-2980.	1.8	36
64	Travellingâ€wave ion mobility mass spectrometry and negative ion fragmentation of hybrid and complex <i>N</i> â€glycans. Journal of Mass Spectrometry, 2016, 51, 1064-1079.	0.7	28
65	High-resolution mass spectrometry of small molecules bound to membrane proteins. Nature Methods, 2016, 13, 333-336.	9.0	205
66	Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein. Cell Reports, 2016, 14, 2695-2706.	2.9	250
67	GlycoMob: an ion mobility-mass spectrometry collision cross section database for glycomics. Glycoconjugate Journal, 2016, 33, 399-404.	1.4	73
68	Structural characterization and biological implications of sulfatedN-glycans in a serine protease from the neotropical mothHylesia metabus(Cramer [1775]) (Lepidoptera: Saturniidae). Glycobiology, 2015, 26, cwv096.	1.3	18
69	Identification of O-glycan Structures from Chicken Intestinal Mucins Provides Insight into Campylobactor jejuni Pathogenicity*. Molecular and Cellular Proteomics, 2015, 14, 1464-1477.	2.5	32
70	Studying the active-site loop movement of the São Paolo metallo-β-lactamase-1. Chemical Science, 2015, 6, 956-963.	3.7	36
71	Native Mass Spectrometry: Towards High-Throughput Structural Proteomics. Methods in Molecular Biology, 2015, 1261, 349-371.	0.4	31
72	MIRAGE: The minimum information required for a glycomics experiment. Glycobiology, 2014, 24, 402-406.	1.3	116

#	Article	IF	CITATIONS
73	Fc Gamma Receptor Glycosylation Modulates the Binding of IgG Glycoforms: A Requirement for Stable Antibody Interactions. Journal of Proteome Research, 2014, 13, 5471-5485.	1.8	61
74	Estimating Collision Cross Sections of Negatively Charged <i>N-</i> Glycans using Traveling Wave Ion Mobility-Mass Spectrometry. Analytical Chemistry, 2014, 86, 10789-10795.	3.2	86
75	Ejection of structural zinc leads to inhibition of γ-butyrobetaine hydroxylase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4954-4957.	1.0	11
76	Galactosyltransferase 4 is a major control point for glycan branching in <i>N</i> -linked glycosylation. Journal of Cell Science, 2014, 127, 5014-26.	1.2	35
77	Glycosylation and Fc Receptors. Current Topics in Microbiology and Immunology, 2014, 382, 165-199.	0.7	89
78	EndoE from Enterococcus faecalis Hydrolyzes the Glycans of the Biofilm Inhibiting Protein Lactoferrin and Mediates Growth. PLoS ONE, 2014, 9, e91035.	1.1	28
79	Characterization of Fibrinogen Glycosylation and Its Importance for Serum/Plasma <i>N</i> -Glycome Analysis. Journal of Proteome Research, 2013, 12, 444-454.	1.8	48
80	<i>N</i> -Linked Glycan Structures of the Human Fcl ³ Receptors Produced in NSO Cells. Journal of Proteome Research, 2013, 12, 3721-3737.	1.8	28
81	Exploring the Glycosylation of Serum CA125. International Journal of Molecular Sciences, 2013, 14, 15636-15654.	1.8	67
82	EndoS2 is a unique and conserved enzyme of serotype M49 group A <i>Streptococcus</i> that hydrolyses N-linked glycans on IgG and α1-acid glycoprotein. Biochemical Journal, 2013, 455, 107-118.	1.7	95
83	The Minimum Information Required for a Glycomics Experiment (MIRAGE) Project: Improving the Standards for Reporting Mass-spectrometry-based Glycoanalytic Data. Molecular and Cellular Proteomics, 2013, 12, 991-995.	2.5	109
84	Increase in Sialylation and Branching in the Mouse Serum N-glycome Correlates with Inflammation and Ovarian Tumour Progression. PLoS ONE, 2013, 8, e71159.	1.1	37
85	The conserved oligomeric Golgi complex is required for fucosylation of N-glycans in Caenorhabditis elegans. Glycobiology, 2012, 22, 863-875.	1.3	26
86	Aminoquinolines as fluorescent labels for hydrophilic interaction liquid chromatography of oligosaccharides. Biological Chemistry, 2012, 393, 757-765.	1.2	6
87	Presence of terminal N-acetylgalactosaminel ² 1-4N-acetylglucosamine residues on O-linked oligosaccharides from gastric MUC5AC: Involvement in Helicobacter pylori colonization?. Glycobiology, 2012, 22, 1077-1085.	1.3	37
88	UniCarbKB: Putting the pieces together for glycomics research. Proteomics, 2011, 11, 4117-4121.	1.3	55
89	5-AZA-2'-deoxycytidine induced demethylation influences <i>N</i> -glycosylation of secreted glycoproteins in ovarian cancer. Epigenetics, 2011, 6, 1362-1372.	1.3	63
90	UniCarb-DB: a database resource for glycomic discovery. Bioinformatics, 2011, 27, 1343-1344.	1.8	128

#	Article	IF	CITATIONS
91	Method for milk oligosaccharide profiling by 2-aminobenzamide labeling and hydrophilic interaction chromatography. Glycobiology, 2011, 21, 1317-1330.	1.3	128
92	Glycosylation of liver acuteâ€phase proteins in pancreatic cancer and chronic pancreatitis. Proteomics - Clinical Applications, 2010, 4, 432-448.	0.8	115
93	High-Throughput RNAi Screening for N-Glycosylation Dependent Loci in Caenorhabditis elegans. Methods in Enzymology, 2010, 480, 477-493.	0.4	12
94	Identification of N-Glycosylation Changes in the CSF and Serum in Patients with Schizophrenia. Journal of Proteome Research, 2010, 9, 4476-4489.	1.8	87
95	Glycoproteomics in Health and Disease. , 2010, , 1-38.		1
96	Modeling a congenital disorder of glycosylation type I in C. elegans: A genome-wide RNAi screen for N-glycosylation-dependent loci. Glycobiology, 2009, 19, 1554-1562.	1.3	18