
Xinchen Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7464791/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nature Communications, 2019, 10, 3851.	5.8	288
2	Molybdenum–Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol. Angewandte Chemie - International Edition, 2016, 55, 6771-6775.	7.2	225
3	Highly efficient electrochemical reduction of CO ₂ to CH ₄ in an ionic liquid using a metal–organic framework cathode. Chemical Science, 2016, 7, 266-273.	3.7	225
4	Efficient Reduction of CO ₂ into Formic Acid on a Lead or Tin Electrode using an Ionic Liquid Catholyte Mixture. Angewandte Chemie - International Edition, 2016, 55, 9012-9016.	7.2	202
5	Very highly efficient reduction of CO ₂ to CH ₄ using metal-free N-doped carbon electrodes. Chemical Science, 2016, 7, 2883-2887.	3.7	183
6	Reversible Capture of SO ₂ through Functionalized Ionic Liquids. ChemSusChem, 2013, 6, 1191-1195.	3.6	131
7	Synthesis of Functional Nanomaterials in Ionic Liquids. Advanced Materials, 2016, 28, 1011-1030.	11.1	129
8	One-Step Synthesis of Highly Efficient Nanocatalysts on the Supports with Hierarchical Pores Using Porous Ionic Liquid-Water Gel. Journal of the American Chemical Society, 2014, 136, 3768-3771.	6.6	95
9	Design of a Cu(<scp>i</scp>)/C-doped boron nitride electrocatalyst for efficient conversion of CO ₂ into acetic acid. Green Chemistry, 2017, 19, 2086-2091.	4.6	91
10	Integration of mesopores and crystal defects in metal-organic frameworks via templated electrosynthesis. Nature Communications, 2019, 10, 4466.	5.8	90
11	Shape and Size Controlled Synthesis of MOF Nanocrystals with the Assistance of Ionic Liquid Mircoemulsions. Langmuir, 2013, 29, 13168-13174.	1.6	82
12	Quantitative Electro-Reduction of CO ₂ to Liquid Fuel over Electro-Synthesized Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 17384-17392.	6.6	73
13	Synthesis of Supported Ultrafine Nonâ€noble Subnanometer‣cale Metal Particles Derived from Metal–Organic Frameworks as Highly Efficient Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2016, 55, 1080-1084.	7.2	69
14	Synthesizing Ag Nanoparticles of Small Size on a Hierarchical Porosity Support for the Carboxylative Cyclization of Propargyl Alcohols with CO ₂ under Ambient Conditions. Chemistry - A European Journal, 2015, 21, 15924-15928.	1.7	66
15	Electro-reduction of carbon dioxide at low over-potential at a metal–organic framework decorated cathode. Nature Communications, 2020, 11, 5464.	5.8	62
16	Efficient Reduction of CO ₂ into Formic Acid on a Lead or Tin Electrode using an Ionic Liquid Catholyte Mixture. Angewandte Chemie, 2016, 128, 9158-9162.	1.6	56
17	Molybdenum–Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol. Angewandte Chemie, 2016, 128, 6883-6887.	1.6	55
18	Purification of Propylene and Ethylene by a Robust Metal–Organic Framework Mediated by Host–Guest Interactions. Angewandte Chemie - International Edition. 2021. 60. 15541-15547.	7.2	51

XINCHEN KANG

#	Article	IF	CITATIONS
19	Electrochemical reduction of CO2 to CO using graphene oxide/carbon nanotube electrode in ionic liquid/acetonitrile system. Science China Chemistry, 2016, 59, 551-556.	4.2	48
20	One-pot conversion of carbohydrates into gamma-valerolactone catalyzed by highly cross-linked ionic liquid polymer and Co/TiO ₂ . RSC Advances, 2015, 5, 15267-15273.	1.7	47
21	Metal–Organic Framework for Emulsifying Carbon Dioxide and Water. Angewandte Chemie - International Edition, 2016, 55, 11372-11376.	7.2	36
22	Mesoporous inorganic salts with crystal defects: unusual catalysts and catalyst supports. Chemical Science, 2015, 6, 1668-1675.	3.7	32
23	Synthesis of Hierarchical Porous Metals Using Ionic‣iquidâ€Based Media as Solvent and Template. Angewandte Chemie - International Edition, 2017, 56, 12683-12686.	7.2	31
24	Gas promotes the crystallization of nano-sized metal–organic frameworks in ionic liquid. Chemical Communications, 2015, 51, 11445-11448.	2.2	28
25	<i>In situ</i> synthesis of sub-nanometer metal particles on hierarchically porous metal–organic frameworks <i>via</i> interfacial control for highly efficient catalysis. Chemical Science, 2018, 9, 1339-1343.	3.7	28
26	Room-temperature synthesis of mesoporous CuO and its catalytic activity for cyclohexene oxidation. RSC Advances, 2015, 5, 67168-67174.	1.7	24
27	Synthesis of hierarchical mesoporous Prussian blue analogues in ionic liquid/water/MgCl ₂ and application in electrochemical reduction of CO ₂ . Green Chemistry, 2016, 18, 1869-1873.	4.6	22
28	N,N-Dimethylation of nitrobenzenes with CO ₂ and water by electrocatalysis. Chemical Science, 2017, 8, 5669-5674.	3.7	19
29	Synthesis of Supported Ultrafine Nonâ€noble Subnanometerâ€Scale Metal Particles Derived from Metal–Organic Frameworks as Highly Efficient Heterogeneous Catalysts. Angewandte Chemie, 2016, 128, 1092-1096.	1.6	15
30	The Impact of Structural Defects on Iodine Adsorption in UiO-66. Chemistry, 2021, 3, 525-531.	0.9	15
31	The Origin of Catalytic Benzylic Câ^H Oxidation over a Redoxâ€Active Metal–Organic Framework. Angewandte Chemie - International Edition, 2021, 60, 15243-15247.	7.2	15
32	Switching chirality in the assemblies of bio-based amphiphiles solely by varying their alkyl chain length. Chemical Communications, 2017, 53, 2162-2165.	2.2	12
33	Purification of Propylene and Ethylene by a Robust Metal–Organic Framework Mediated by Host–Guest Interactions. Angewandte Chemie, 2021, 133, 15669-15675.	1.6	11
34	Observation of oxygen evolution over a {Ni12}-cluster-based metal-organic framework. Science China Chemistry, 2022, 65, 1088-1093.	4.2	11
35	CO ₂ /Water Emulsions Stabilized by Partially Reduced Graphene Oxide. ACS Applied Materials & Interfaces, 2017, 9, 17613-17619.	4.0	10
36	Efficient Photocatalytic Reduction of CO ₂ Catalyzed by the Metal–Organic Framework MFM-300(Ga). CCS Chemistry, 2022, 4, 2560-2569.	4.6	9

XINCHEN KANG

#	Article	IF	CITATIONS
37	Metal–Organic Framework for Emulsifying Carbon Dioxide and Water. Angewandte Chemie, 2016, 128, 11544-11548.	1.6	8
38	Formation of large nanodomains in liquid solutions near the phase boundary. Chemical Communications, 2016, 52, 14286-14289.	2.2	6
39	Synthesis of hierarchical porous β-FeOOH catalysts in ionic liquid/water/CH2Cl2 ionogels. Chemical Communications, 2016, 52, 4687-4690.	2.2	6
40	Ultra-thin g-C ₃ N ₄ /MFM-300(Fe) heterojunctions for photocatalytic aerobic oxidation of benzylic carbon centers. Materials Advances, 2021, 2, 5144-5149.	2.6	6
41	Salt-mediated synthesis of bimetallic networks with structural defects and their enhanced catalytic performances. Chemical Communications, 2018, 54, 12065-12068.	2.2	5
42	CO2as a smart gelator for Pluronic aqueous solutions. Chemical Communications, 2014, 50, 14233-14236.	2.2	2
43	Hierarchical macro- and mesoporous assembly of metal oxide nanoparticles derived from metal-organic complex. Microporous and Mesoporous Materials, 2015, 217, 6-11.	2.2	2
44	Synthesis of hierarchical porous Prussian blue analogues in partially miscible ionic liquid/ethanol solution near the phase boundary. New Journal of Chemistry, 2021, 45, 1790-1794.	1.4	1
45	Synthesis of Hierarchical Porous Metals Using Ionicâ€Liquidâ€Based Media as Solvent and Template. Angewandte Chemie, 2017, 129, 12857-12860.	1.6	0
46	The Origin of Catalytic Benzylic Câ^'H Oxidation over a Redoxâ€Active Metal–Organic Framework. Angewandte Chemie, 2021, 133, 15371-15375.	1.6	0
47	CuCl2ē-±aʿ-1⁄4å'ªā"'ç¦»åæ¶²ä1⁄2"æ°´â‡èƒ¶çš"相åĩ. Scientia Sinica Chimica, 2022, , .	0.2	0