Michel C Nussenzweig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7464682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science, 2020, 370, .	12.6	1,983
2	Predominant Autoantibody Production by Early Human B Cell Precursors. Science, 2003, 301, 1374-1377.	12.6	1,806
3	Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science, 2020, 370, .	12.6	1,749
4	Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature, 2020, 584, 437-442.	27.8	1,742
5	Germinal Centers. Annual Review of Immunology, 2012, 30, 429-457.	21.8	1,740
6	Dendritic Cells Induce Peripheral T Cell Unresponsiveness under Steady State Conditions in Vivo. Journal of Experimental Medicine, 2001, 194, 769-780.	8.5	1,665
7	Evolution of antibody immunity to SARS-CoV-2. Nature, 2021, 591, 639-644.	27.8	1,355
8	SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature, 2020, 588, 682-687.	27.8	1,346
9	Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. ELife, 2020, 9, .	6.0	1,239
10	mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature, 2021, 592, 616-622.	27.8	1,232
11	Structural Basis for Broad and Potent Neutralization of HIV-1 by Antibody VRC01. Science, 2010, 329, 811-817.	12.6	1,050
12	Sequence and Structural Convergence of Broad and Potent HIV Antibodies That Mimic CD4 Binding. Science, 2011, 333, 1633-1637.	12.6	1,046
13	Germinal Center Dynamics Revealed by Multiphoton Microscopy withÂa Photoactivatable Fluorescent Reporter. Cell, 2010, 143, 592-605.	28.9	1,026
14	Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. Journal of Immunological Methods, 2008, 329, 112-124.	1.4	953
15	The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature, 1995, 375, 151-155.	27.8	867
16	Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature, 2009, 458, 636-640.	27.8	806
17	Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies. Cell, 2020, 182, 828-842.e16.	28.9	724
18	Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature, 2015, 522, 487-491.	27.8	665

#	Article	IF	CITATIONS
19	Vaccine Breakthrough Infections with SARS-CoV-2 Variants. New England Journal of Medicine, 2021, 384, 2212-2218.	27.0	647
20	Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature, 1996, 382, 551-555.	27.8	619
21	Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature, 2021, 595, 426-431.	27.8	610
22	Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature, 2013, 503, 224-228.	27.8	593
23	DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature, 2000, 404, 510-514.	27.8	514
24	The Dendritic Cell Receptor for Endocytosis, Dec-205, Can Recycle and Enhance Antigen Presentation via Major Histocompatibility Complex Class II–Positive Lysosomal Compartments. Journal of Cell Biology, 2000, 151, 673-684.	5.2	507
25	Complex-type <i>N</i> -glycan recognition by potent broadly neutralizing HIV antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3268-77.	7.1	505
26	Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. Journal of Experimental Medicine, 2020, 217, .	8.5	503
27	Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature, 2014, 509, 637-640.	27.8	497
28	Somatic Mutations of the Immunoglobulin Framework Are Generally Required for Broad and Potent HIV-1 Neutralization. Cell, 2013, 153, 126-138.	28.9	478
29	HIV therapy by a combination of broadly neutralizing antibodies in humanized mice. Nature, 2012, 492, 118-122.	27.8	463
30	AID is required to initiate Nbs1/Î ³ -H2AX focus formation and mutations at sites of class switching. Nature, 2001, 414, 660-665.	27.8	459
31	Antibodies in HIV-1 Vaccine Development and Therapy. Science, 2013, 341, 1199-1204.	12.6	433
32	Autoreactivity in Human IgG+ Memory B Cells. Immunity, 2007, 26, 205-213.	14.3	430
33	Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. Journal of Experimental Medicine, 2012, 209, 1153-1165.	8.5	429
34	Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia. Nature, 2013, 503, 277-280.	27.8	424
35	Broadly Neutralizing Anti-HIV-1 Antibodies Require Fc Effector Functions for InÂVivo Activity. Cell, 2014, 158, 1243-1253.	28.9	419
36	The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry. Nature Immunology, 2012, 13, 1083-1091.	14.5	405

#	Article	IF	CITATIONS
37	AID Is Required for the Chromosomal Breaks in c-myc that Lead to c-myc/IgH Translocations. Cell, 2008, 135, 1028-1038.	28.9	404
38	HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption. Nature, 2016, 535, 556-560.	27.8	400
39	Antibody 10-1074 suppresses viremia in HIV-1-infected individuals. Nature Medicine, 2017, 23, 185-191.	30.7	399
40	Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature, 2010, 467, 591-595.	27.8	393
41	HIV-1 Integration Landscape during Latent and Active Infection. Cell, 2015, 160, 420-432.	28.9	393
42	Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature, 2018, 561, 479-484.	27.8	392
43	A robust pipeline for rapid production of versatile nanobody repertoires. Nature Methods, 2014, 11, 1253-1260.	19.0	391
44	Enhanced SARS-CoV-2 neutralization by dimeric IgA. Science Translational Medicine, 2021, 13, .	12.4	379
45	Plasma Neutralization of the SARS-CoV-2 Omicron Variant. New England Journal of Medicine, 2022, 386, 599-601.	27.0	371
46	Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Science Immunology, 2021, 6, .	11.9	357
47	A dynamic T cell–limited checkpoint regulates affinity-dependent B cell entry into the germinal center. Journal of Experimental Medicine, 2011, 208, 1243-1252.	8.5	349
48	A Blueprint for HIV Vaccine Discovery. Cell Host and Microbe, 2012, 12, 396-407.	11.0	348
49	Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas. Blood, 2012, 120, 2240-2248.	1.4	346
50	Increasing the Potency and Breadth of an HIV Antibody by Using Structure-Based Rational Design. Science, 2011, 334, 1289-1293.	12.6	345
51	Broadly Neutralizing Antibodies and Viral Inducers Decrease Rebound from HIV-1 Latent Reservoirs in Humanized Mice. Cell, 2014, 158, 989-999.	28.9	337
52	Translocation-Capture Sequencing Reveals the Extent and Nature of Chromosomal Rearrangements in B Lymphocytes. Cell, 2011, 147, 95-106.	28.9	336
53	HIV Vaccine Design to Target Germline Precursors of Glycan-Dependent Broadly Neutralizing Antibodies. Immunity, 2016, 45, 483-496.	14.3	335
54	Dynamic signaling by T follicular helper cells during germinal center B cell selection. Science, 2014, 345, 1058-1062.	12.6	333

#	Article	IF	CITATIONS
55	Multidonor Analysis Reveals Structural Elements, Genetic Determinants, and Maturation Pathway for HIV-1 Neutralization by VRC01-Class Antibodies. Immunity, 2013, 39, 245-258.	14.3	332
56	Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies. Nature Communications, 2021, 12, 4196.	12.8	332
57	Structural Insights on the Role of Antibodies in HIV-1 Vaccine and Therapy. Cell, 2014, 156, 633-648.	28.9	318
58	Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors. Cell, 2015, 161, 1280-1292.	28.9	305
59	Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science, 2021, 371, 735-741.	12.6	305
60	T Follicular Helper Cell Dynamics in Germinal Centers. Science, 2013, 341, 673-677.	12.6	302
61	Enhanced clearance of HIV-1–infected cells by broadly neutralizing antibodies against HIV-1 in vivo. Science, 2016, 352, 1001-1004.	12.6	302
62	Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques. Journal of Experimental Medicine, 2014, 211, 2061-2074.	8.5	297
63	Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo. Journal of Experimental Medicine, 2021, 218, .	8.5	283
64	A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges. Nature, 2016, 533, 105-109.	27.8	281
65	Recurrent Potent Human Neutralizing Antibodies to Zika Virus in Brazil and Mexico. Cell, 2017, 169, 597-609.e11.	28.9	279
66	Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature, 2022, 606, 585-593.	27.8	276
67	Sequential Immunization Elicits Broadly Neutralizing Anti-HIV-1 Antibodies in Ig Knockin Mice. Cell, 2016, 166, 1445-1458.e12.	28.9	270
68	Origin of Chromosomal Translocations in Lymphoid Cancer. Cell, 2010, 141, 27-38.	28.9	269
69	AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges. Nature, 2015, 519, 87-91.	27.8	265
70	Role of BCR affinity in T cell–dependent antibody responses in vivo. Nature Immunology, 2002, 3, 570-575.	14.5	264
71	HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1. Science, 2016, 352, 997-1001.	12.6	263
72	Germinal Centers. Annual Review of Immunology, 2022, 40, 413-442.	21.8	255

#	Article	IF	CITATIONS
73	Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow. Journal of Experimental Medicine, 2015, 212, 385-399.	8.5	249
74	HIV-1 suppression and durable control by combining single broadly neutralizing antibodies and antiretroviral drugs in humanized mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16538-16543.	7.1	247
75	Early antibody therapy can induce long-lasting immunity to SHIV. Nature, 2017, 543, 559-563.	27.8	244
76	Immunization for HIV-1 Broadly Neutralizing Antibodies in Human Ig Knockin Mice. Cell, 2015, 161, 1505-1515.	28.9	239
77	Anti-SARS-CoV-2 receptor-binding domain antibody evolution after mRNA vaccination. Nature, 2021, 600, 517-522.	27.8	239
78	The B-cell-specific transcription coactivator OCA-B/OBF-1/Bob-1 is essential for normal production of immunoglobulin isotypes. Nature, 1996, 383, 542-547.	27.8	238
79	Role of antigen receptor affinity in T cell–independent antibody responses in vivo. Nature Immunology, 2002, 3, 399-406.	14.5	236
80	T-independent type II immune responses generate memory B cells. Journal of Experimental Medicine, 2006, 203, 305-310.	8.5	236
81	AID Produces DNA Double-Strand Breaks in Non-Ig Genes and Mature B Cell Lymphomas with Reciprocal Chromosome Translocations. Molecular Cell, 2009, 36, 631-641.	9.7	234
82	B Cell Super-Enhancers and Regulatory Clusters Recruit AID Tumorigenic Activity. Cell, 2014, 159, 1524-1537.	28.9	234
83	Affinity maturation of SARS-CoV-2 neutralizing antibodies confers potency, breadth, and resilience to viral escape mutations. Immunity, 2021, 54, 1853-1868.e7.	14.3	230
84	Antibody regulation of B cell development. Nature Immunology, 2000, 1, 379-385.	14.5	229
85	Convergent Transcription at Intragenic Super-Enhancers Targets AID-Initiated Genomic Instability. Cell, 2014, 159, 1538-1548.	28.9	221
86	Structural basis for germ-line gene usage of a potent class of antibodies targeting the CD4-binding site of HIV-1 gp120. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2083-90.	7.1	212
87	Somatic Hypermutation Is Limited by CRM1-dependent Nuclear Export of Activation-induced Deaminase. Journal of Experimental Medicine, 2004, 199, 1235-1244.	8.5	205
88	A method for identification of HIV gp140 binding memory B cells in human blood. Journal of Immunological Methods, 2009, 343, 65-67.	1.4	204
89	T cell help controls the speed of the cell cycle in germinal center B cells. Science, 2015, 349, 643-646.	12.6	204
90	The microanatomic segregation of selection by apoptosis in the germinal center. Science, 2017, 358, .	12.6	204

#	Article	IF	CITATIONS
91	Antibody 8ANC195 Reveals a Site of Broad Vulnerability on the HIV-1 Envelope Spike. Cell Reports, 2014, 7, 785-795.	6.4	199
92	Autoreactive IgG memory antibodies in patients with systemic lupus erythematosus arise from nonreactive and polyreactive precursors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9727-9732.	7.1	197
93	Increased memory B cell potency and breadth after a SARS-CoV-2 mRNA boost. Nature, 2022, 607, 128-134.	27.8	197
94	Safety and antiviral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals. Nature Medicine, 2018, 24, 1701-1707.	30.7	195
95	Broadly neutralizing anti-HIV-1 monoclonal antibodies in the clinic. Nature Medicine, 2019, 25, 547-553.	30.7	191
96	Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site. Nature Structural and Molecular Biology, 2016, 23, 906-915.	8.2	188
97	Circulating precursors of human CD1c+ and CD141+ dendritic cells. Journal of Experimental Medicine, 2015, 212, 401-413.	8.5	187
98	High genetic barrier to SARS-CoV-2 polyclonal neutralizing antibody escape. Nature, 2021, 600, 512-516.	27.8	174
99	Specifically modified Env immunogens activate B-cell precursors of broadly neutralizing HIV-1 antibodies in transgenic mice. Nature Communications, 2016, 7, 10618.	12.8	166
100	Paired quantitative and qualitative assessment of the replication-competent HIV-1 reservoir and comparison with integrated proviral DNA. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7908-E7916.	7.1	164
101	Chromosome Translocation, B Cell Lymphoma, and Activation-Induced Cytidine Deaminase. Annual Review of Pathology: Mechanisms of Disease, 2013, 8, 79-103.	22.4	163
102	Antibody Affinity Shapes the Choice between Memory and Germinal Center B Cell Fates. Cell, 2020, 183, 1298-1311.e11.	28.9	158
103	Broad neutralization by a combination of antibodies recognizing the CD4 binding site and a new conformational epitope on the HIV-1 envelope protein. Journal of Experimental Medicine, 2012, 209, 1469-1479.	8.5	156
104	Sequencing and cloning of antigen-specific antibodies from mouse memory B cells. Nature Protocols, 2016, 11, 1908-1923.	12.0	154
105	Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature, 2021, 595, 278-282.	27.8	154
106	Design and crystal structure of a native-like HIV-1 envelope trimer that engages multiple broadly neutralizing antibody precursors in vivo. Journal of Experimental Medicine, 2017, 214, 2573-2590.	8.5	151
107	Optimal Combinations of Broadly Neutralizing Antibodies for Prevention and Treatment of HIV-1 Clade C Infection. PLoS Pathogens, 2016, 12, e1005520.	4.7	150
108	Broadly neutralizing antibodies that inhibit HIV-1 cell to cell transmission. Journal of Experimental Medicine, 2013, 210, 2813-2821.	8.5	147

#	Article	IF	CITATIONS
109	Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature, 2019, 570, 468-473.	27.8	145
110	Development and Migration of Plasma Cells in the Mouse Lymph Node. Immunity, 2010, 33, 118-127.	14.3	143
111	Plasmodium Infection Promotes Genomic Instability and AID-Dependent B Cell Lymphoma. Cell, 2015, 162, 727-737.	28.9	141
112	Bispecific Anti-HIV-1 Antibodies with Enhanced Breadth and Potency. Cell, 2016, 165, 1609-1620.	28.9	130
113	Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Science Translational Medicine, 2017, 9, .	12.4	128
114	Independent Roles of Switching and Hypermutation in the Development and Persistence of B Lymphocyte Memory. Immunity, 2016, 44, 769-781.	14.3	125
115	V(D)J Recombination: Modulation of RAG1 and RAG2 Cleavage Activity on 12/23 Substrates by Whole Cell Extract and DNA-bending Proteins. Journal of Experimental Medicine, 1997, 185, 2025-2032.	8.5	124
116	Human dendritic cells (DCs) are derived from distinct circulating precursors that are precommitted to become CD1c+ or CD141+ DCs. Journal of Experimental Medicine, 2016, 213, 2861-2870.	8.5	124
117	Clonal CD4+ T cells in the HIV-1 latent reservoir display a distinct gene profile upon reactivation. Nature Medicine, 2018, 24, 604-609.	30.7	124
118	Improving Neutralization Potency and Breadth by Combining Broadly Reactive HIV-1 Antibodies Targeting Major Neutralization Epitopes. Journal of Virology, 2015, 89, 2659-2671.	3.4	123
119	Progress toward active or passive HIV-1 vaccination. Journal of Experimental Medicine, 2017, 214, 3-16.	8.5	118
120	Persistent cellular immunity to SARS-CoV-2 infection. Journal of Experimental Medicine, 2021, 218, .	8.5	115
121	A monoclonal antibody to the DEC-205 endocytosis receptor on human dendritic cells. Human Immunology, 2000, 61, 729-738.	2.4	114
122	Protein Amounts of the MYC Transcription Factor Determine Germinal Center B Cell Division Capacity. Immunity, 2019, 51, 324-336.e5.	14.3	112
123	Non-neutralizing Antibodies Alter the Course of HIV-1 Infection InÂVivo. Cell, 2017, 170, 637-648.e10.	28.9	111
124	Absence of MHC class II on cDCs results in microbial-dependent intestinal inflammation. Journal of Experimental Medicine, 2016, 213, 517-534.	8.5	110
125	The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200413119.	7.1	110
126	Circulating human B cells that express surrogate light chains and edited receptors. Nature Immunology, 2000, 1, 207-213.	14.5	109

#	Article	IF	CITATIONS
127	Intra-Spike Crosslinking Overcomes Antibody Evasion by HIV-1. Cell, 2015, 160, 433-446.	28.9	109
128	Bispecific IgG neutralizes SARS-CoV-2 variants and prevents escape in mice. Nature, 2021, 593, 424-428.	27.8	108
129	Combination anti-HIV-1 antibody therapy is associated with increased virus-specific T cell immunity. Nature Medicine, 2020, 26, 222-227.	30.7	108
130	Computational analysis of anti–HIV-1 antibody neutralization panel data to identify potential functional epitope residues. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10598-10603.	7.1	106
131	Polyreactive antibodies in adaptive immune responses to viruses. Cellular and Molecular Life Sciences, 2012, 69, 1435-1445.	5.4	103
132	Collecting Lymphatic Vessel Permeability Facilitates Adipose Tissue Inflammation and Distribution of Antigen to Lymph Node–Homing Adipose Tissue Dendritic Cells. Journal of Immunology, 2015, 194, 5200-5210.	0.8	102
133	Memory B Cell Antibodies to HIV-1 gp140 Cloned from Individuals Infected with Clade A and B Viruses. PLoS ONE, 2011, 6, e24078.	2.5	99
134	Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nature Immunology, 2018, 19, 973-985.	14.5	96
135	Recommendations for measuring HIV reservoir size in cure-directed clinical trials. Nature Medicine, 2020, 26, 1339-1350.	30.7	96
136	Germinal center reutilization by newly activated B cells. Journal of Experimental Medicine, 2009, 206, 2907-2914.	8.5	94
137	A single injection of crystallizable fragment domain–modified antibodies elicits durable protection from SHIV infection. Nature Medicine, 2018, 24, 610-616.	30.7	94
138	Orientation-specific joining of AID-initiated DNA breaks promotes antibody class switching. Nature, 2015, 525, 134-139.	27.8	93
139	Combination of quadruplex qPCR and next-generation sequencing for qualitative and quantitative analysis of the HIV-1 latent reservoir. Journal of Experimental Medicine, 2019, 216, 2253-2264.	8.5	92
140	Partially Open HIV-1 Envelope Structures Exhibit Conformational Changes Relevant for Coreceptor Binding and Fusion. Cell Host and Microbe, 2018, 24, 579-592.e4.	11.0	88
141	L-Myc expression by dendritic cells is required for optimal T-cell priming. Nature, 2014, 507, 243-247.	27.8	87
142	Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike. Nature Communications, 2015, 6, 8167.	12.8	87
143	Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins. Immunity, 2022, 55, 998-1012.e8.	14.3	86
144	Restricting HIV-1 pathways for escape using rationally designed anti–HIV-1 antibodies. Journal of Experimental Medicine, 2013, 210, 1235-1249.	8.5	85

#	Article	IF	CITATIONS
145	Classical Flt3L-dependent dendritic cells control immunity to protein vaccine. Journal of Experimental Medicine, 2014, 211, 1875-1891.	8.5	85
146	Anti–HIV-1 B cell responses are dependent on B cell precursor frequency and antigen-binding affinity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4743-4748.	7.1	85
147	Structural characterization of a highly-potent V3-glycan broadly neutralizing antibody bound to natively-glycosylated HIV-1 envelope. Nature Communications, 2018, 9, 1251.	12.8	85
148	Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope. Immunity, 2019, 50, 1513-1529.e9.	14.3	85
149	Relationship between latent and rebound viruses in a clinical trial of anti–HIV-1 antibody 3BNC117. Journal of Experimental Medicine, 2018, 215, 2311-2324.	8.5	84
150	HIV-specific humoral immune responses by CRISPR/Cas9-edited B cells. Journal of Experimental Medicine, 2019, 216, 1301-1310.	8.5	80
151	Broad cross-reactivity across sarbecoviruses exhibited by a subset of COVID-19 donor-derived neutralizing antibodies. Cell Reports, 2021, 36, 109760.	6.4	80
152	Enhanced HIV-1 immunotherapy by commonly arising antibodies that target virus escape variants. Journal of Experimental Medicine, 2014, 211, 2361-2372.	8.5	79
153	A mouse model for HIV-1 entry. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15859-15864.	7.1	75
154	Antigen-responsive CD4+ T cell clones contribute to the HIV-1 latent reservoir. Journal of Experimental Medicine, 2020, 217, .	8.5	75
155	Prolonged viral suppression with anti-HIV-1 antibody therapy. Nature, 2022, 606, 368-374.	27.8	75
156	Differential regulation of self-reactivity discriminates between IgG ⁺ human circulating memory B cells and bone marrow plasma cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18044-18048.	7.1	74
157	A humanized mouse model of chronic COVID-19. Nature Biotechnology, 2022, 40, 906-920.	17.5	71
158	ReScan, a Multiplex Diagnostic Pipeline, Pans Human Sera for SARS-CoV-2 Antigens. Cell Reports Medicine, 2020, 1, 100123.	6.5	70
159	Structural basis for germline antibody recognition of HIV-1 immunogens. ELife, 2016, 5, .	6.0	68
160	Potential of conventional & bispecific broadly neutralizing antibodies for prevention of HIV-1 subtype A, C & D infections. PLoS Pathogens, 2018, 14, e1006860.	4.7	68
161	Broadly Neutralizing Antibodies for HIV-1 Prevention or Immunotherapy. New England Journal of Medicine, 2016, 375, 2019-2021.	27.0	66
162	Relationship between intact HIV-1 proviruses in circulating CD4 ⁺ T cells and rebound viruses emerging during treatment interruption. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11341-E11348.	7.1	65

#	Article	IF	CITATIONS
163	Germinal center–dependent and –independent memory B cells produced throughout the immune response. Journal of Experimental Medicine, 2021, 218, .	8.5	65
164	Detection and characterization of the SARS-CoV-2 lineage B.1.526 in New York. Nature Communications, 2021, 12, 4886.	12.8	65
165	Combination anti-HIV antibodies provide sustained virological suppression. Nature, 2022, 606, 375-381.	27.8	65
166	Residue-Level Prediction of HIV-1 Antibody Epitopes Based on Neutralization of Diverse Viral Strains. Journal of Virology, 2013, 87, 10047-10058.	3.4	64
167	Towards HIV-1 remission: potential roles for broadly neutralizing antibodies. Journal of Clinical Investigation, 2016, 126, 415-423.	8.2	64
168	Secondary V(D)J recombination in B-1 cells. Nature, 1999, 397, 355-359.	27.8	63
169	Antigen Delivery to CD11c+CD8â^' Dendritic Cells Induces Protective Immune Responses against Experimental Melanoma in Mice In Vivo. Journal of Immunology, 2014, 192, 5830-5838.	0.8	63
170	Defining human dendritic cell progenitors by multiparametric flow cytometry. Nature Protocols, 2015, 10, 1407-1422.	12.0	63
171	The cell cycle restricts activation-induced cytidine deaminase activity to early G1. Journal of Experimental Medicine, 2017, 214, 49-58.	8.5	63
172	Human anti–HIV-neutralizing antibodies frequently target a conserved epitope essential for viral fitness. Journal of Experimental Medicine, 2010, 207, 1995-2002.	8.5	62
173	A Combination of Two Human Monoclonal Antibodies Prevents Zika Virus Escape Mutations in Non-human Primates. Cell Reports, 2018, 25, 1385-1394.e7.	6.4	61
174	Structural basis for HIV-1 gp120 recognition by a germ-line version of a broadly neutralizing antibody. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6049-6054.	7.1	60
175	Safety, pharmacokinetics, and immunogenicity of the combination of the broadly neutralizing anti-HIV-1 antibodies 3BNC117 and 10-1074 in healthy adults: A randomized, phase 1 study. PLoS ONE, 2019, 14, e0219142.	2.5	58
176	Dynamic regulation of TFH selection during the germinal centre reaction. Nature, 2021, 591, 458-463.	27.8	58
177	Inducible targeting of cDCs and their subsets in vivo. Journal of Immunological Methods, 2016, 434, 32-38.	1.4	55
178	Heightened resistance to host type 1 interferons characterizes HIV-1 at transmission and after antiretroviral therapy interruption. Science Translational Medicine, 2021, 13, .	12.4	54
179	Enhanced HIV-1 neutralization by antibody heteroligation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 875-880.	7.1	52
180	Asymmetric recognition of HIV-1 Envelope trimer by V1V2 loop-targeting antibodies. ELife, 2017, 6, .	6.0	52

#	Article	IF	CITATIONS
181	Longitudinal clonal dynamics of HIV-1 latent reservoirs measured by combination quadruplex polymerase chain reaction and sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	52
182	Anti-gp41 Antibodies Cloned from HIV-Infected Patients with Broadly Neutralizing Serologic Activity. Journal of Virology, 2010, 84, 5032-5042.	3.4	49
183	Characterization of Intact Proviruses in Blood and Lymph Node from HIV-Infected Individuals Undergoing Analytical Treatment Interruption. Journal of Virology, 2019, 93, .	3.4	49
184	Epigenetic targeting of activation-induced cytidine deaminase. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18667-18672.	7.1	48
185	A Combination of Human Broadly Neutralizing Antibodies against Hepatitis B Virus HBsAg with Distinct Epitopes Suppresses Escape Mutations. Cell Host and Microbe, 2020, 28, 335-349.e6.	11.0	48
186	Sequence Evaluation and Comparative Analysis of Novel Assays for Intact Proviral HIV-1 DNA. Journal of Virology, 2021, 95, .	3.4	47
187	A New Glycan-Dependent CD4-Binding Site Neutralizing Antibody Exerts Pressure on HIV-1 In Vivo. PLoS Pathogens, 2015, 11, e1005238.	4.7	43
188	Risk of Zika microcephaly correlates with features of maternal antibodies. Journal of Experimental Medicine, 2019, 216, 2302-2315.	8.5	41
189	Neutralizing Activity of Broadly Neutralizing Anti-HIV-1 Antibodies against Clade B Clinical Isolates Produced in Peripheral Blood Mononuclear Cells. Journal of Virology, 2018, 92, .	3.4	39
190	Prevention and therapy of SARS-CoV-2 and the B.1.351 variant in mice. Cell Reports, 2021, 36, 109450.	6.4	38
191	An inherited immunoglobulin class-switch recombination deficiency associated with a defect in the INO80 chromatin remodeling complex. Journal of Allergy and Clinical Immunology, 2015, 135, 998-1007.e6.	2.9	37
192	The Chromatin Reader ZMYND8 Regulates Igh Enhancers to Promote Immunoglobulin Class Switch Recombination. Molecular Cell, 2018, 72, 636-649.e8.	9.7	34
193	Effect of 3BNC117 and romidepsin on the HIV-1 reservoir in people taking suppressive antiretroviral therapy (ROADMAP): a randomised, open-label, phase 2A trial. Lancet Microbe, The, 2022, 3, e203-e214.	7.3	33
194	Clonal analysis of human dendritic cell progenitor using a stromal cell culture. Journal of Immunological Methods, 2015, 425, 21-26.	1.4	32
195	Integration features of intact latent HIV-1 in CD4+ T cell clones contribute to viral persistence. Journal of Experimental Medicine, 2021, 218, .	8.5	32
196	Immunotherapy during the acute SHIV infection of macaques confers long-term suppression of viremia. Journal of Experimental Medicine, 2021, 218, .	8.5	31
197	Neutralizing Antibody Induction by HIV-1 Envelope Glycoprotein SOSIP Trimers on Iron Oxide Nanoparticles May Be Impaired by Mannose Binding Lectin. Journal of Virology, 2020, 94, .	3.4	29
198	Roadmaps to a vaccine. Nature, 2013, 496, 441-442.	27.8	28

#	Article	IF	CITATIONS
199	Sequential immunization of macaques elicits heterologous neutralizing antibodies targeting the V3-glycan patch of HIV-1 Env. Science Translational Medicine, 2021, 13, eabk1533.	12.4	27
200	Translocation capture sequencing: A method for high throughput mapping of chromosomal rearrangements. Journal of Immunological Methods, 2012, 375, 176-181.	1.4	25
201	Neutralization Properties of Simian Immunodeficiency Viruses Infecting Chimpanzees and Gorillas. MBio, 2015, 6, .	4.1	25
202	Broad and potent neutralizing human antibodies to tick-borne flaviviruses protect mice from disease. Journal of Experimental Medicine, 2021, 218, .	8.5	25
203	Antibody and Antiretroviral Preexposure Prophylaxis Prevent Cervicovaginal HIV-1 Infection in a Transgenic Mouse Model. Journal of Virology, 2013, 87, 8535-8544.	3.4	24
204	A combination of two human monoclonal antibodies limits fetal damage by Zika virus in macaques. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7981-7989.	7.1	24
205	All eyes on a hurdle race for a SARS-CoV-2 vaccine. Nature, 2020, 586, 501-502.	27.8	23
206	OcaB regulates transitional B cell selection. International Immunology, 2003, 15, 1099-1104.	4.0	21
207	Nanoparticles presenting clusters of CD4 expose a universal vulnerability of HIV-1 by mimicking target cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18719-18728.	7.1	21
208	Identification of chromosomal translocation hotspots via scan statistics. Bioinformatics, 2014, 30, 2551-2558.	4.1	20
209	Anti-idiotypic antibodies elicit anti-HIV-1–specific B cell responses. Journal of Experimental Medicine, 2019, 216, 2316-2330.	8.5	19
210	Neutralizing antibodies induced in immunized macaques recognize the CD4-binding site on an occluded-open HIV-1 envelope trimer. Nature Communications, 2022, 13, 732.	12.8	19
211	An apoptosis-dependent checkpoint for autoimmunity in memory B and plasma cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24957-24963.	7.1	18
212	Neutralizing Activity of Broadly Neutralizing Anti-HIV-1 Antibodies against Primary African Isolates. Journal of Virology, 2021, 95, .	3.4	18
213	Early treatment with a combination of two potent neutralizing antibodies improves clinical outcomes and reduces virus replication and lung inflammation in SARS-CoV-2 infected macaques. PLoS Pathogens, 2021, 17, e1009688.	4.7	16
214	RAG1/2 induces genomic insertions by mobilizing DNA into RAG1/2-independent breaks. Journal of Experimental Medicine, 2017, 214, 815-831.	8.5	15
215	Isolation of single HIV-1 Envelope specific B cells and antibody cloning from immunized rhesus macaques. Journal of Immunological Methods, 2020, 478, 112734.	1.4	15
216	Durable protection against repeated penile exposures to simian-human immunodeficiency virus by broadly neutralizing antibodies. Nature Communications, 2020, 11, 3195.	12.8	15

#	Article	IF	CITATIONS
217	A clinical trial of non-invasive imaging with an anti-HIV antibody labelled with copper-64 in people living with HIV and uninfected controls. EBioMedicine, 2021, 65, 103252.	6.1	12
218	TOP-Plus Is a Versatile Biosensor Platform for Monitoring SARS-CoV-2 Antibody Durability. Clinical Chemistry, 2021, 67, 1249-1258.	3.2	12
219	Amplification of highly mutated human Ig lambda light chains from an HIV-1 infected patient. Journal of Immunological Methods, 2015, 418, 61-65.	1.4	11
220	A broadly neutralizing macaque monoclonal antibody against the HIV-1 V3-Glycan patch. ELife, 2020, 9, .	6.0	10
221	Antibody evolution to SARS-CoV-2 after single-dose Ad26.COV2.S vaccine in humans. Journal of Experimental Medicine, 2022, 219, .	8.5	10
222	Sequencing, cloning, and antigen binding analysis of monoclonal antibodies isolated from single mouse B cells. STAR Protocols, 2021, 2, 100389.	1.2	9
223	Monoclonal antibodies protect aged rhesus macaques from SARS-CoV-2-induced immune activation and neuroinflammation. Cell Reports, 2021, 37, 109942.	6.4	9
224	Isolation of HIV-1-reactive antibodies using cell surface-expressed gp160î"cBaL. Journal of Immunological Methods, 2013, 397, 47-54.	1.4	8
225	Ralph Steinman (1943–2011). Nature, 2011, 478, 460-460.	27.8	7
226	Characterization of Co-Formulated High-Concentration Broadly Neutralizing Anti-HIV-1 Monoclonal Antibodies for Subcutaneous Administration. Antibodies, 2020, 9, 36.	2.5	7
227	Structural basis for Zika envelope domain III recognition by a germline version of a recurrent neutralizing antibody. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9865-9875.	7.1	7
228	Broadly neutralizing antibody-mediated protection of macaques against repeated intravenous exposures to simian-human immunodeficiency virus. Aids, 2021, 35, 1567-1574.	2.2	6
229	The RIO trial: rationale, design, and the role of community involvement in a randomised placebo-controlled trial of antiretroviral therapy plus dual long-acting HIV-specific broadly neutralising antibodies (bNAbs) in participants diagnosed with recent HIV infection—study protocol for a two-stage randomised phase II trial Trials 2022, 23, 263	1.6	6
230	Plasma and memory antibody responses to Gamma SARS-CoV-2 provide limited cross-protection to other variants. Journal of Experimental Medicine, 2022, 219, .	8.5	6
231	Redemption for self-reactive antibodies. Science, 2018, 360, 152-153.	12.6	5
232	Severe Acute Respiratory Syndrome Coronavirus 2 Neutralization After Messenger RNA Vaccination and Variant Breakthrough Infection. Open Forum Infectious Diseases, 2022, 9, .	0.9	5
233	Single-Cell Sorting of HBsAg-Binding Memory B Cells from Human Peripheral Blood Mononuclear Cells and Antibody Cloning. STAR Protocols, 2020, 1, 100129.	1.2	4
234	Human studies at JEM: Immunology and beyond. Journal of Experimental Medicine, 2016, 213, 467-468.	8.5	3

#	Article	IF	CITATIONS
235	A New Way to Diversify Antibodies by DNA Transposition. Cell, 2016, 164, 601-602.	28.9	3
236	Engineering Antibodies to Enhance Activity and Increase Half-life. AIDS Research and Human Retroviruses, 2014, 30, A210-A210.	1.1	2
237	A time of change. Journal of Experimental Medicine, 2017, 214, 1-2.	8.5	2
238	HIV: Persistence through division. Journal of Experimental Medicine, 2017, 214, 875-876.	8.5	2
239	Antibody elicited by HIV-1 immunogen vaccination in macaques displaces Env fusion peptide and destroys a neutralizing epitope. Npj Vaccines, 2021, 6, 126.	6.0	2
240	Adaptation of HIV-1 Envelope Glycoprotein gp120 to Humoral Immunity over the Course of the Epidemic. AIDS Research and Human Retroviruses, 2014, 30, A224-A224.	1.1	1
241	JEM Advisory Editorial Board: Increasing diversity. Journal of Experimental Medicine, 2017, 214, 2169-2169.	8.5	1
242	CRISPR comes a-knock-in to reprogram antibodies in vivo. Nature Biotechnology, 0, , .	17.5	1
243	Immunoglobulins and B cell development. Biochemical Society Transactions, 2000, 28, A487-A487.	3.4	0
244	The new face of JEM. Journal of Experimental Medicine, 2017, 214, 3467-3467.	8.5	0
245	JEM Editorial Board: Expanding on the basis of cancer. Journal of Experimental Medicine, 2019, 216, 1725-1725.	8.5	0
246	We are here for you and ready to hear from you. Journal of Experimental Medicine, 2020, 217, .	8.5	0
247	JEM goes viral. Journal of Experimental Medicine, 2020, 217, .	8.5	0