Biplab K Patra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7464462/publications.pdf

Version: 2024-02-01

687363 752698 19 519 13 20 citations h-index g-index papers 20 20 20 949 times ranked docs citations citing authors all docs

#	Article	IF	Citations
1	Hybrid Dot–Disk Au-CulnS ₂ Nanostructures as Active Photocathode for Efficient Evolution of Hydrogen from Water. Chemistry of Materials, 2016, 28, 4358-4366.	6.7	62
2	Au-SnS Hetero Nanostructures: Size of Au Matters. Chemistry of Materials, 2014, 26, 7194-7200.	6.7	60
3	Saraca indica bark extract mediated green synthesis of polyshaped gold nanoparticles and its application in catalytic reduction. Applied Nanoscience (Switzerland), 2014, 4, 485-490.	3.1	58
4	Coincident Site Epitaxy at the Junction of Au–Cu ₂ ZnSnS ₄ Heteronanostructures. Chemistry of Materials, 2015, 27, 650-657.	6.7	54
5	Monodisperse SnS Nanocrystals: In Just 5 Seconds. Journal of Physical Chemistry Letters, 2013, 4, 3929-3934.	4.6	40
6	Chemically Filled and Au-Coupled BiSbS ₃ Nanorod Heterostructures for Photoelectrocatalysis. Chemistry of Materials, 2017, 29, 1116-1126.	6.7	33
7	Dopant-Controlled Selenization in Pd Nanocrystals: The Triggered Kirkendall Effect. Journal of the American Chemical Society, 2015, 137, 5123-5129.	13.7	28
8	The Redox Chemistry at the Interface for Retrieving and Brightening the Emission of Doped Semiconductor Nanocrystals. Journal of Physical Chemistry Letters, 2013, 4, 2084-2090.	4.6	27
9	State of the art and prospects of metal halide perovskite core@shell nanocrystals and nanocomposites. Materials Today Chemistry, 2021, 20, 100424.	3.5	27
10	Efficient Superionic Conductor Catalyst for Solid in Solution–Solid–Solid Growth of Heteronanowires. Journal of Physical Chemistry Letters, 2014, 5, 732-736.	4.6	25
11	Tuning the Growth Pattern in 2D Confinement Regime of Sm2O3 and the Emerging Room Temperature Unusual Superparamagnetism. Scientific Reports, 2014, 4, 6514.	3.3	21
12	Diffusion-Induced Shape Evolution in Multinary Semiconductor Nanostructures. Journal of Physical Chemistry Letters, 2015, 6, 2421-2426.	4.6	18
13	Close-Packed Ultrasmooth Self-assembled Monolayer of CsPbBr ₃ Perovskite Nanocubes. ACS Applied Materials & Diterfaces, 2020, 12, 31764-31769.	8.0	18
14	Chemical Sealing of Nanotubes: A Case Study on Sb ₂ S ₃ . Angewandte Chemie - International Edition, 2014, 53, 12566-12570.	13.8	13
15	Synthesis and photo-darkening/photo-brightening of blue emitting doped semiconductor nanocrystals. Nanoscale, 2014, 6, 3786-3790.	5.6	11
16	Monodisperse AuCuSn trimetallic nanocube catalysts. Chemical Communications, 2016, 52, 1614-1617.	4.1	8
17	Fano Lineshapes and Rabi Splittings: Can They Be Artificially Generated or Obscured by the Numerical Aperture?. ACS Photonics, 2021, 8, 1271-1276.	6.6	7
18	Quantifying Strain and Dislocation Density at Nanocube Interfaces after Assembly and Epitaxy. ACS Applied Materials & Dislocation Density at Nanocube Interfaces after Assembly and Epitaxy. ACS Applied Materials & Dislocation Density at Nanocube Interfaces after Assembly and Epitaxy. ACS Applied Materials & Dislocation Density at Nanocube Interfaces after Assembly and Epitaxy. ACS Applied Materials & Dislocation Density at Nanocube Interfaces after Assembly and Epitaxy. ACS Applied Materials & Dislocation Density at Nanocube Interfaces after Assembly and Epitaxy. ACS Applied Materials & Dislocation Density at Nanocube Interfaces after Assembly and Epitaxy. ACS Applied Materials & Dislocation Density at Nanocube Interfaces after Assembly and Epitaxy. ACS Applied Materials & Dislocation Density at Nanocube Interfaces after Assembly and Epitaxy. ACS Applied Materials & Dislocation Density at Nanocube Interfaces after Dislocation Density at Nanocube Interface	8.0	4

#	Article	IF	CITATIONS
19	Intermittency of CsPbBr ₃ Perovskite Quantum Dots Analyzed by an Unbiased Statistical Analysis. Journal of Physical Chemistry C, 2021, 125, 12061-12072.	3.1	4