
Mohsen Abbaspour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7464156/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An accurate expression for radial distribution function of the Lennard-Jones fluid. Chemical Physics, 2005, 310, 11-15.	0.9	44
2	Investigation of the melting of ionic liquid [emim][PF ₆] confined inside carbon nanotubes using molecular dynamics simulations. RSC Advances, 2015, 5, 3868-3874.	1.7	31
3	Molecular Dynamics Simulation of Argon, Krypton, and Xenon Using Two-Body and Three-Body Intermolecular Potentials. Journal of Chemical Theory and Computation, 2006, 2, 920-926.	2.3	30
4	Investigation of thermal evolution of copper nanoclusters encapsulated in carbon nanotubes: a molecular dynamics study. Physical Chemistry Chemical Physics, 2015, 17, 12747-12759.	1.3	29
5	Delivery of Cisplatin Anti-Cancer Drug from Carbon, Boron Nitride, and Silicon Carbide Nanotubes Forced by Ag-Nanowire: A Comprehensive Molecular Dynamics Study. Molecular Pharmaceutics, 2017, 14, 2273-2284.	2.3	29
6	Au@void@AgAu Yolk–Shell Nanoparticles with Dominant Strain Effects: A Molecular Dynamics Simulation. Journal of Physical Chemistry Letters, 2017, 8, 5064-5068.	2.1	24
7	Investigation of doped carbon nanotubes on desalination process using molecular dynamics simulations. Journal of Molecular Liquids, 2022, 348, 118040.	2.3	24
8	Computation of some thermodynamics, transport, structural properties, and new equation of state for fluid neon using a new intermolecular potential from molecular dynamics simulation. Theoretical Chemistry Accounts, 2010, 127, 573-585.	0.5	22
9	Investigation of melting and freezing of Ag–Au alloy nanoclusters supported on carbon nanotube using molecular dynamics simulations. Journal of Molecular Liquids, 2016, 216, 671-682.	2.3	21
10	Molecular dynamics simulation of carbon peapod-like nanomaterials in desalination process. Desalination, 2021, 504, 114975.	4.0	21
11	Quantum computation of the properties of helium using two-body and three-body intermolecular potentials: a molecular dynamics study. Theoretical Chemistry Accounts, 2008, 119, 355-368.	0.5	20
12	Phase transition in crown-jewel structured Au–Ir nanoalloys with different shapes: a molecular dynamics study. Physical Chemistry Chemical Physics, 2016, 18, 25676-25686.	1.3	20
13	Dynamical investigation of formation of Ni Pt nanoclusters in gas phase. Journal of Molecular Liquids, 2017, 240, 221-224.	2.3	19
14	New molecular insights into the stability of Ni–Pd hollow nanoparticles. Inorganic Chemistry Frontiers, 2017, 4, 1679-1690.	3.0	18
15	AgPd@Pt nanoparticles with different morphologies of cuboctahedron, icosahedron, decahedron, octahedron, and Marks-decahedron: insights from atomistic simulations. Inorganic Chemistry Frontiers, 2018, 5, 870-878.	3.0	18
16	Size dependence of the equation of state for Ne nanoclusters from an effective two-body potential via molecular dynamics simulations. RSC Advances, 2015, 5, 11297-11308.	1.7	16
17	Melting Behavior of Bimetallic and Trimetallic Nanoparticles: A Review of MD Simulation Studies. Topics in Current Chemistry, 2021, 379, 22.	3.0	15
18	Determination of potential energy functions of CO–CO, CO2–CO2, and N2O–N2O and calculation of their transport properties. Chemical Physics, 2006, 330, 313-325.	0.9	14

#	Article	IF	CITATIONS
19	Transport, thermodynamic, and structural properties of fluid ammonia using a new intermolecular potential: The inversion method and molecular dynamics simulation. Chemical Physics, 2011, 389, 121-127.	0.9	14
20	Au–Ir nanoalloy nucleation during the gas-phase condensation: a comprehensive MD study including different effects. Inorganic Chemistry Frontiers, 2018, 5, 1445-1457.	3.0	14
21	Investigation of the thermal properties of phase change materials encapsulated in capped carbon nanotubes using molecular dynamics simulations. RSC Advances, 2021, 11, 24594-24606.	1.7	14
22	Investigation of Possible Formation of Au@M (M = Cu, Ir, Pt, and Rh) Core–Shell Nanoclusters in a Condensation–Coalescence Process Using Molecular Dynamics Simulations. Industrial & Engineering Chemistry Research, 2018, 57, 14837-14845.	1.8	13
23	Determination of potential energy function of methane via the inversion of reduced viscosity collision integrals at zero pressure. Fluid Phase Equilibria, 2003, 212, 53-65.	1.4	12
24	Determination of potential energy functions and calculation transport properties of oxygen and nitric oxide via the inversion of reduced viscosity collision integrals at zero pressure. Chemical Physics, 2006, 326, 620-630.	0.9	12
25	Carbon monoxide adsorption on the single-walled carbon nanotube supported gold–silver nanoalloys. New Journal of Chemistry, 2016, 40, 310-319.	1.4	12
26	Structural evolution of Pt/Pd nanoparticles in condensation process. Journal of Molecular Liquids, 2017, 248, 822-829.	2.3	12
27	Icosahedral Ir, Rh, Pt, and Cu nanoclusters into gold vapor environment: Thermodynamic and structural analysis of the formed core@shell nanoclusters using MD simulations. Journal of Alloys and Compounds, 2018, 764, 323-332.	2.8	11
28	Ag, Au, Pt, and Au-Pt nanoclusters in [N1114][C1SO3] ionic liquid: A molecular dynamics study. Journal of Molecular Liquids, 2022, 360, 119447.	2.3	11
29	A molecular dynamics study of the effect of the substrate on the thermodynamic properties of bound Pt–Cu bimetallic nanoclusters. Physical Chemistry Chemical Physics, 2016, 18, 21730-21736.	1.3	10
30	Au Pd nanoclusters supported on bundles of nanotubes and graphite surface: A comprehensive molecular dynamics study. Journal of Alloys and Compounds, 2016, 687, 431-441.	2.8	10
31	Investigation of solvation of iron nanoclusters in ionic liquid 1-butyl-1,1,1-trimethylammonium methane sulfonate using molecular dynamics simulations: Effect of cluster size at different temperatures. Journal of Colloid and Interface Science, 2017, 504, 171-177.	5.0	10
32	Determination of the Potential Energy Function of CF4â^'CF4via the Inversion of Reduced Viscosity Collision Integrals at Zero Pressure. Industrial & Engineering Chemistry Research, 2003, 42, 2256-2261.	1.8	9
33	Stability Control of AgPd@Pt Trimetallic Nanoparticles via Ag–Pd Core Structure and Composition: A Molecular Dynamics Study. Industrial & Engineering Chemistry Research, 2018, 57, 6236-6245.	1.8	9
34	Au–Fe nanoparticles visited by MD simulation: structural and thermodynamic properties affected by chemical composition. New Journal of Chemistry, 2018, 42, 9666-9675.	1.4	9
35	Density-dependent phase transition in nano-confinement water using molecular dynamics simulation. Journal of Molecular Liquids, 2018, 250, 26-34.	2.3	9
36	Ag–Au nanoparticles encapsulated inside porous hollow carbon nanospheres: a molecular dynamics study. New Journal of Chemistry, 2018, 42, 13619-13628.	1.4	9

#	Article	IF	CITATIONS
37	Thermodynamic, structural, and dynamical properties of nano-confined water using SPC/E and TIP4P models by molecular dynamics simulations. New Journal of Chemistry, 2018, 42, 16258-16272.	1.4	9
38	Thermodynamics, Structure, and Dynamic Properties of Nanostructured Water Confined into B-, N-, and Si-Doped Graphene Surfaces and Carbon Nanotubes. Industrial & Engineering Chemistry Research, 2020, 59, 9642-9654.	1.8	9
39	Investigation of thermal, structural and dynamical properties of (Au _x –Cu _y –Ni _y) _{N=32,108,256} ternary nanosystems: effect of Au addition to Cu–Ni bimetallic nanoclusters via MD simulation. RSC Advances, 2016, 6, 67619-67629.	1.7	8
40	Molecular dynamics simulation of anticancer drug delivery from carbon nanotube using metal nanowires. Journal of Computational Chemistry, 2019, 40, 2179-2190.	1.5	8
41	A comparative study of graphite and CNT supported Au-Ag, Au-Pd, Au-Pt and Au-Rh nanoalloys using MD simulation. Journal of Molecular Liquids, 2019, 280, 87-96.	2.3	8
42	Prediction of surface tension of HFD-like fluids using the Fowler's approximation. Chemical Physics, 2006, 328, 379-384.	0.9	7
43	Many-body and quantum effects in the surface tension and surface energy of liquid neon and argon using the Fowler's approximation. Chemical Physics, 2012, 392, 107-113.	0.9	7
44	Effects of diameter and chirality on structural and dynamical behavior of [EMIM][PF6] encapsulated in carbon nanotube: A molecular dynamics study. Journal of Molecular Liquids, 2015, 212, 423-429.	2.3	7
45	Properties of silver nanoclusters and bulk silver, using a new and accurate HFD-like potential, including many-body interactions: the inversion scheme and molecular dynamics simulation. RSC Advances, 2016, 6, 43924-43936.	1.7	7
46	A comprehensive study of methane/carbon dioxide adsorptive selectivity in different bundle nanotubes. RSC Advances, 2016, 6, 69845-69854.	1.7	7
47	Pt–Co nanocluster in hollow carbon nanospheres. Journal of Computational Chemistry, 2018, 39, 1267-1274.	1.5	7
48	Surface energy, relative stability, and structural properties of Au-Pt, Au-Rh, Au-Cu, and Au-Pd nanoclusters created in inert-gas condensation process using MD simulation. Journal of Physics and Chemistry of Solids, 2020, 144, 109480.	1.9	7
49	Computation of some thermodynamic, structural, and transport properties of fluid oxygen using two-body and three-body intermolecular potentials from molecular dynamics simulation. Chemical Physics, 2010, 377, 115-122.	0.9	6
50	A new and accurate expression for the radial distribution function of confined Lennard-Jones fluid in carbon nanotubes. RSC Advances, 2015, 5, 95781-95787.	1.7	6
51	Equation of state and some structural and dynamical properties of the confined Lennard-Jones fluid into carbon nanotube: A molecular dynamics study. Physica A: Statistical Mechanics and Its Applications, 2016, 462, 1075-1090.	1.2	6
52	Extended many-body potential of Hauschild and Prausnitz for pure HFD-like fluids. Physica A: Statistical Mechanics and Its Applications, 2014, 413, 459-472.	1.2	5
53	Investigation of Thermodynamic, Dynamic, and Structural Properties of H ₂ Adsorption on a Ag–Au Nanoalloy with a Carbon Nanotube Support. ChemPhysChem, 2015, 16, 1676-1682.	1.0	5
54	Formation of methane clathrates in carbon nanotubes: a molecular dynamics study. New Journal of Chemistry, 2018, 42, 7083-7095.	1.4	5

Mohsen Abbaspour

#	Article	IF	CITATIONS
55	Nucleation, coalescence, thermal evolution, and statistical probability of formation of Au/Ir/Pd nanoalloys in gas-phase condensation process. Journal of Molecular Liquids, 2019, 274, 434-446.	2.3	5
56	Accurate melting temperatures for Ne nanoclusters and bulk from an effective two-body potential via molecular dynamics simulations. Fluid Phase Equilibria, 2014, 381, 90-94.	1.4	4
57	Investigation of different effects on the capacity of supercapacitor comprising an ionic liquid between graphene oxide nanosheets. Journal of Molecular Liquids, 2018, 266, 658-672.	2.3	4
58	Molecular dynamics investigation on the deliquescence of NH ₄ Cl and NH ₄ NO ₃ nanoparticles under atmospheric conditions. RSC Advances, 2015, 5, 38345-38353.	1.7	3
59	Propene adsorption on gold–palladium nanoalloys supported on bundle nanotubes. RSC Advances, 2016, 6, 66275-66287.	1.7	3
60	Investigation of temperature and pressure effects on thermodynamics and structural properties of gold nanoparticles formed during the gas condensation procedure. Journal of Molecular Liquids, 2019, 281, 39-47.	2.3	3
61	Effective potential for many-body interactions in some properties of the HFD-like solids. Physica A: Statistical Mechanics and Its Applications, 2015, 439, 20-33.	1.2	2
62	Molecular dynamics simulation of liquid water and ice nanoclusters using a new effective HFDâ€like model. Journal of Computational Chemistry, 2018, 39, 269-278.	1.5	2
63	Phase transitions in nanostructured water confined in carbon nanotubes by external electric and magnetic fields: a molecular dynamics investigation. RSC Advances, 2021, 11, 10532-10539.	1.7	2
64	Structure, dynamics, and morphology of nanostructured water confined between parallel graphene surfaces and in carbon nanotubes by applying magnetic and electric fields. Soft Matter, 2021, 17, 3085-3095.	1.2	2
65	Boron Nitride- and Graphene-Supported Trimetallic Yolk–Shell and Hollow Nanoparticles. Industrial & Engineering Chemistry Research, 0, , .	1.8	2
66	Accurate equations of state for CF 4 , CF 4 –Ar, and CF 4 –CH 4 fluids using two-body and three-body intermolecular potentials from molecular dynamics simulation. Journal of Fluorine Chemistry, 2014, 168, 81-92.	0.9	1
67	A modified thermodynamic insight to deliquescence of a void ontaining nanocrystal confirmed by MD simulation. AICHE Journal, 2016, 62, 4066-4077.	1.8	1