## David P B T B Strik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7464090/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Concentration-dependent effects of nickel doping on activated carbon biocathodes. Catalysis Science and Technology, 2022, 12, 2500-2518.                                                                                                                          | 2.1 | 5         |
| 2  | Designing a Selective <i>n</i> -Caproate Adsorption–Recovery Process with Granular Activated<br>Carbon and Screening of Conductive Materials in Chain Elongation. ACS ES&T Engineering, 2022, 2,<br>54-64.                                                        | 3.7 | 6         |
| 3  | Lactate Metabolism and Microbiome Composition Are Affected by Nitrogen Gas Supply in Continuous<br>Lactate-Based Chain Elongation. Fermentation, 2021, 7, 41.                                                                                                     | 1.4 | 10        |
| 4  | Catalytic Cooperation between a Copper Oxide Electrocatalyst and a Microbial Community for Microbial Electrosynthesis. ChemPlusChem, 2021, 86, 763-777.                                                                                                           | 1.3 | 5         |
| 5  | nZVI Impacts Substrate Conversion and Microbiome Composition in Chain Elongation From D- and<br>L-Lactate Substrates. Frontiers in Bioengineering and Biotechnology, 2021, 9, 666582.                                                                             | 2.0 | 9         |
| 6  | Open Culture Ethanol-Based Chain Elongation to Form Medium Chain Branched Carboxylates and Alcohols. Frontiers in Bioengineering and Biotechnology, 2021, 9, 697439.                                                                                              | 2.0 | 4         |
| 7  | Cyclic Voltammetry is Invasive on Microbial Electrosynthesis. ChemElectroChem, 2021, 8, 3384-3396.                                                                                                                                                                | 1.7 | 9         |
| 8  | Reactor microbiome enriches vegetable oil with n-caproate and n-caprylate for potential<br>functionalized feed additive production via extractive lactate-based chain elongation. Biotechnology<br>for Biofuels, 2021, 14, 232.                                   | 6.2 | 5         |
| 9  | Consecutive lactate formation and chain elongation to reduce exogenous chemicals input in repeated-batch food waste fermentation. Water Research, 2020, 169, 115215.                                                                                              | 5.3 | 132       |
| 10 | Concurrent use of methanol and ethanol for chain-elongating short chain fatty acids into caproate and isobutyrate. Journal of Environmental Management, 2020, 258, 110008.                                                                                        | 3.8 | 9         |
| 11 | Techno-economic assessment of microbial electrosynthesis from CO2 and/or organics: An interdisciplinary roadmap towards future research and application. Applied Energy, 2020, 279, 115775.                                                                       | 5.1 | 58        |
| 12 | Bioelectrochemical Chain Elongation of Shortâ€Chain Fatty Acids Creates Steering Opportunities for<br>Selective Formation of <i>nâ€</i> Butyrate, <i>nâ€</i> Valerate or <i>nâ€</i> Caproate. ChemistrySelect, 2020,<br>5, 9127-9133.                             | 0.7 | 16        |
| 13 | Methanol-Based Chain Elongation with Acetate to n-Butyrate and Isobutyrate at Varying Selectivities<br>Dependent on pH. ACS Sustainable Chemistry and Engineering, 2020, 8, 8184-8194.                                                                            | 3.2 | 28        |
| 14 | CO <sub>2</sub> Conversion by Combining a Copper Electrocatalyst and Wildâ€ŧype Microorganisms.<br>ChemCatChem, 2020, 12, 3900-3912.                                                                                                                              | 1.8 | 8         |
| 15 | A Thin Layer of Activated Carbon Deposited on Polyurethane Cube Leads to New Conductive Bioanode<br>for (Plant) Microbial Fuel Cell. Energies, 2020, 13, 574.                                                                                                     | 1.6 | 9         |
| 16 | Plant-Microbial Fuel Cells Serve the Environment and People. , 2020, , 315-327.                                                                                                                                                                                   |     | 0         |
| 17 | Enhanced selectivity to butyrate and caproate above acetate in continuous bioelectrochemical chain elongation from CO2: Steering with CO2 loading rate and hydraulic retention time. Bioresource Technology Reports, 2019, 7, 100284.                             | 1.5 | 47        |
| 18 | Activated Carbon Mixed with Marine Sediment is Suitable as Bioanode Material for Spartina anglica<br>Sediment/Plant Microbial Fuel Cell: Plant Growth, Electricity Generation, and Spatial Microbial<br>Community Diversity. Water (Switzerland), 2019, 11, 1810. | 1.2 | 26        |

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Branched Medium Chain Fatty Acids: Iso-Caproate Formation from Iso-Butyrate Broadens the Product<br>Spectrum for Microbial Chain Elongation. Environmental Science & Technology, 2019, 53, 7704-7713.                                                             | 4.6 | 40        |
| 20 | Continuous n-valerate formation from propionate and methanol in an anaerobic chain elongation open-culture bioreactor. Biotechnology for Biofuels, 2019, 12, 132.                                                                                                 | 6.2 | 40        |
| 21 | Marine Sediment Mixed With Activated Carbon Allows Electricity Production and Storage From<br>Internal and External Energy Sources: A New Rechargeable Bio-Battery With Bi-Directional Electron<br>Transfer Properties. Frontiers in Microbiology, 2019, 10, 934. | 1.5 | 7         |
| 22 | Performance and Long Distance Data Acquisition via LoRa Technology of a Tubular Plant Microbial<br>Fuel Cell Located in a Paddy Field in West Kalimantan, Indonesia. Sensors, 2019, 19, 4647.                                                                     | 2.1 | 30        |
| 23 | Electricity generation from wetlands with activated carbon bioanode. IOP Conference Series: Earth and Environmental Science, 2018, 131, 012046.                                                                                                                   | 0.2 | 6         |
| 24 | Effect of n-Caproate Concentration on Chain Elongation and Competing Processes. ACS Sustainable<br>Chemistry and Engineering, 2018, 6, 7499-7506.                                                                                                                 | 3.2 | 42        |
| 25 | Controlling Ethanol Use in Chain Elongation by CO <sub>2</sub> Loading Rate. Environmental Science<br>& Technology, 2018, 52, 1496-1505.                                                                                                                          | 4.6 | 127       |
| 26 | Waterâ€Based Synthesis of Hydrophobic Ionic Liquids [N <sub>8888</sub> ][oleate] and<br>[P <sub>666,14</sub> ][oleate] and their Bioprocess Compatibility. ChemistryOpen, 2018, 7, 878-884.                                                                       | 0.9 | 4         |
| 27 | Critical Biofilm Growth throughout Unmodified Carbon Felts Allows Continuous<br>Bioelectrochemical Chain Elongation from CO2 up to Caproate at High Current Density. Frontiers in<br>Energy Research, 2018, 6, .                                                  | 1.2 | 146       |
| 28 | Development of an Effective Chain Elongation Process From Acidified Food Waste and Ethanol Into n-Caproate. Frontiers in Bioengineering and Biotechnology, 2018, 6, 50.                                                                                           | 2.0 | 79        |
| 29 | Biotransformation of carbon dioxide in bioelectrochemical systems: State of the art and future prospects. Journal of Power Sources, 2017, 356, 256-273.                                                                                                           | 4.0 | 194       |
| 30 | Production of Caproic Acid from Mixed Organic Waste: An Environmental Life Cycle Perspective.<br>Environmental Science & Technology, 2017, 51, 7159-7168.                                                                                                         | 4.6 | 120       |
| 31 | In situ acetate separation in microbial electrosynthesis from CO2 using ion-exchange resin.<br>Electrochimica Acta, 2017, 237, 267-275.                                                                                                                           | 2.6 | 52        |
| 32 | Bioelectrochemical conversion of CO <sub>2</sub> to chemicals: CO <sub>2</sub> as a next generation feedstock for electricity-driven bioproduction in batch and continuous modes. Faraday Discussions, 2017, 202, 433-449.                                        | 1.6 | 79        |
| 33 | Electricity from wetlands: Tubular plant microbial fuels with silicone gas-diffusion biocathodes.<br>Applied Energy, 2017, 185, 642-649.                                                                                                                          | 5.1 | 65        |
| 34 | Isobutyrate biosynthesis via methanol chain elongation: converting organic wastes to platform chemicals. Journal of Chemical Technology and Biotechnology, 2017, 92, 1370-1379.                                                                                   | 1.6 | 27        |
| 35 | Long-term operation of microbial electrosynthesis cell reducing CO2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis. Bioelectrochemistry, 2017, 113, 26-34.                                                                                | 2.4 | 154       |
| 36 | Continuous Longâ€Term Bioelectrochemical Chain Elongation to Butyrate. ChemElectroChem, 2017, 4, 386-395.                                                                                                                                                         | 1.7 | 95        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Electrodes for Cathodic Microbial Electrosynthesis Processes: Key Developments and Criteria for Effective Research and Implementation. , 2017, , 429-473.                                                                   |     | 6         |
| 38 | Methanol as an alternative electron donor in chain elongation for butyrate and caproate formation.<br>Biomass and Bioenergy, 2016, 93, 201-208.                                                                             | 2.9 | 58        |
| 39 | Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide.<br>Environmental Science and Pollution Research, 2016, 23, 22292-22308.                                                          | 2.7 | 170       |
| 40 | Integrated Product Separation in Bioelectrochemical CO2Reduction for Improved Process Efficiency.<br>Chemie-Ingenieur-Technik, 2016, 88, 1255-1256.                                                                         | 0.4 | 4         |
| 41 | Product Specificity Influenced by Catholyte Conditions during the Microbial Electrosynthesis<br>Process CO2to Acetate. Chemie-Ingenieur-Technik, 2016, 88, 1253-1253.                                                       | 0.4 | 0         |
| 42 | Granular sludge formation and characterization in a chain elongation process. Process Biochemistry, 2016, 51, 1594-1598.                                                                                                    | 1.8 | 39        |
| 43 | An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renewable Energy, 2016, 98, 153-170.               | 4.3 | 334       |
| 44 | Chain Elongation with Reactor Microbiomes: Open-Culture Biotechnology To Produce Biochemicals.<br>Environmental Science & Technology, 2016, 50, 2796-2810.                                                                  | 4.6 | 426       |
| 45 | Selective short-chain carboxylates production: A review of control mechanisms to direct mixed culture fermentations. Critical Reviews in Environmental Science and Technology, 2016, 46, 592-634.                           | 6.6 | 101       |
| 46 | Monophyletic group of unclassified γ- Proteobacteria dominates in mixed culture biofilm of high-performing oxygen reducing biocathode. Bioelectrochemistry, 2015, 106, 167-176.                                             | 2.4 | 48        |
| 47 | Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode. Bioresource Technology, 2015, 195, 14-24.                            | 4.8 | 276       |
| 48 | Plant microbial fuel cell applied in wetlands: Spatial, temporal and potential electricity generation of<br>Spartina anglica salt marshes and Phragmites australis peat soils. Biomass and Bioenergy, 2015, 83,<br>543-550. | 2.9 | 47        |
| 49 | Compost in plant microbial fuel cell for bioelectricity generation. Waste Management, 2015, 36, 63-69.                                                                                                                      | 3.7 | 118       |
| 50 | Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode.<br>Applied Energy, 2015, 137, 151-157.                                                                                 | 5.1 | 136       |
| 51 | Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol. Applied Energy, 2014, 116, 223-229.                                                                                             | 5.1 | 181       |
| 52 | Electricity generation by a novel design tubular plant microbial fuel cell. Biomass and Bioenergy, 2013, 51, 60-67.                                                                                                         | 2.9 | 89        |
| 53 | Increase of power output by change of ion transport direction in a plant microbial fuel cell.<br>International Journal of Energy Research, 2013, 37, 1103-1111.                                                             | 2.2 | 13        |
| 54 | Electricity production with living plants on a green roof: environmental performance of the plantâ€microbial fuel cell. Biofuels, Bioproducts and Biorefining, 2013, 7, 52-64.                                              | 1.9 | 51        |

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Resilience of roof-top Plant-Microbial Fuel Cells during Dutch winter. Biomass and Bioenergy, 2013, 51, 1-7.                                                                                      | 2.9  | 71        |
| 56 | pH and Temperature Determine Performance of Oxygen Reducing Biocathodes. Electroanalysis, 2013, 25, 652-655.                                                                                      | 1.5  | 20        |
| 57 | The flat-plate plant-microbial fuel cell: the effect of a new design on internal resistances.<br>Biotechnology for Biofuels, 2012, 5, 70.                                                         | 6.2  | 74        |
| 58 | Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell.<br>Applied Microbiology and Biotechnology, 2012, 94, 537-548.                                  | 1.7  | 121       |
| 59 | Characterization of the internal resistance of a plant microbial fuel cell. Electrochimica Acta, 2012, 72, 165-171.                                                                               | 2.6  | 50        |
| 60 | Rhizosphere anode model explains high oxygen levels during operation of a Glyceria maxima PMFC.<br>Bioresource Technology, 2012, 108, 60-67.                                                      | 4.8  | 48        |
| 61 | New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell. Bioresource Technology, 2012, 104, 417-423.                                                                  | 4.8  | 80        |
| 62 | Identifying charge and mass transfer resistances of an oxygen reducing biocathode. Energy and Environmental Science, 2011, 4, 5035.                                                               | 15.6 | 107       |
| 63 | Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends in Biotechnology, 2011, 29, 41-49.                                                                  | 4.9  | 225       |
| 64 | New applications and performance of bioelectrochemical systems. Applied Microbiology and Biotechnology, 2010, 85, 1673-1685.                                                                      | 1.7  | 237       |
| 65 | Long-term performance of a plant microbial fuel cell with Spartina anglica. Applied Microbiology and<br>Biotechnology, 2010, 86, 973-981.                                                         | 1.7  | 163       |
| 66 | Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresource Technology, 2010, 101, 3541-3547. | 4.8  | 202       |
| 67 | Solar Energy Powered Microbial Fuel Cell with a Reversible Bioelectrode. Environmental Science<br>& Technology, 2010, 44, 532-537.                                                                | 4.6  | 117       |
| 68 | Cathode Potential and Mass Transfer Determine Performance of Oxygen Reducing Biocathodes in<br>Microbial Fuel Cells. Environmental Science & Technology, 2010, 44, 7151-7156.                     | 4.6  | 125       |
| 69 | Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). Applied Microbiology and Biotechnology, 2008, 81, 659-668.                       | 1.7  | 163       |
| 70 | Green electricity production with living plants and bacteria in a fuel cell. International Journal of<br>Energy Research, 2008, 32, 870-876.                                                      | 2.2  | 313       |
| 71 | Feasibility Study on Electrochemical Impedance Spectroscopy for Microbial Fuel Cells: Measurement<br>Modes & Data Validation. ECS Transactions, 2008, 13, 27-41.                                  | 0.3  | 16        |
| 72 | A pH-based control of ammonia in biogas during anaerobic digestion of artificial pig manure and maize silage. Process Biochemistry, 2006, 41, 1235-1238.                                          | 1.8  | 99        |

| #  | Article                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Prediction of trace compounds in biogas from anaerobic digestion using the MATLAB Neural Network<br>Toolbox. Environmental Modelling and Software, 2005, 20, 803-810. | 1.9 | 117       |
| 74 | Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotechnology and Bioengineering, 2001, 75, 691-701.   | 1.7 | 171       |
| 75 | Editorial: Microbial Chain Elongation- Close the Carbon Loop by Connecting-Communities. Frontiers in Bioengineering and Biotechnology, 0, 10, .                       | 2.0 | 4         |