
Edo Kussell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7463479/publications.pdf Version: 2024-02-01

EDO KUSSELL

#	Article	IF	CITATIONS
1	Roadmap on biology in time varying environments. Physical Biology, 2021, 18, 041502.	1.8	23
2	Ecological memory preserves phage resistance mechanisms in bacteria. Nature Communications, 2021, 12, 6817.	12.8	8
3	Origin of exponential growth in nonlinear reaction networks. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27795-27804.	7.1	9
4	Cell Cycle Heritability and Localization Phase Transition in Growing Populations. Physical Review Letters, 2020, 125, 268103.	7.8	8
5	Inferring bacterial recombination rates from large-scale sequencing datasets. Nature Methods, 2019, 16, 199-204.	19.0	58
6	Correlated Mutations and Homologous Recombination Within Bacterial Populations. Genetics, 2017, 205, 891-917.	2.9	16
7	The impact of bottlenecks on microbial survival, adaptation, and phenotypic switching in host-pathogen interactions. Evolution; International Journal of Organic Evolution, 2017, 71, 2803-2816.	2.3	29
8	Inferring fitness landscapes and selection on phenotypic states from single-cell genealogical data. PLoS Genetics, 2017, 13, e1006653.	3.5	42
9	Genome-Wide Motif Statistics are Shaped by DNA Binding Proteins over Evolutionary Time Scales. Physical Review X, 2016, 6, .	8.9	3
10	Complex Interplay of Physiology and Selection in the Emergence of Antibiotic Resistance. Current Biology, 2016, 26, 1486-1493.	3.9	33
11	Evolutionary Phase Transitions in Random Environments. Physical Review Letters, 2016, 117, 038104.	7.8	32
12	Bacterial Autoimmunity Due to a Restriction-Modification System. Current Biology, 2016, 26, 404-409.	3.9	92
13	Noise-driven growth rate gain in clonal cellular populations. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3251-3256.	7.1	144
14	Quantifying Selective Pressures Driving Bacterial Evolution Using Lineage Analysis. Physical Review X, 2015, 5, .	8.9	39
15	Populations adapt to fluctuating selection using derived and ancestral allelic diversity. Evolution; International Journal of Organic Evolution, 2015, 69, 1448-1460.	2.3	4
16	Memory and Fitness Optimization of Bacteria under Fluctuating Environments. PLoS Genetics, 2014, 10, e1004556.	3.5	197
17	Evolution in Microbes. Annual Review of Biophysics, 2013, 42, 493-514.	10.0	47
18	Stochastic De-repression of Rhodopsins in Single Photoreceptors of the Fly Retina. PLoS Computational Biology, 2012, 8, e1002357.	3.2	5

Edo Kussell

#	Article	IF	CITATIONS
19	Evolutionary pressures on simple sequence repeats in prokaryotic coding regions. Nucleic Acids Research, 2012, 40, 2399-2413.	14.5	65
20	OPTIMAL LINEAGE PRINCIPLE FOR AGE-STRUCTURED POPULATIONS. Evolution; International Journal of Organic Evolution, 2012, 66, 115-134.	2.3	40
21	Individual histories and selection in heterogeneous populations. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13183-13188.	7.1	95
22	Polymer-Population Mapping and Localization in the Space of Phenotypes. Physical Review Letters, 2006, 97, 068101.	7.8	22
23	Phenotypic Diversity, Population Growth, and Information in Fluctuating Environments. Science, 2005, 309, 2075-2078.	12.6	1,157
24	Bacterial Persistence. Genetics, 2005, 169, 1807-1814.	2.9	476
25	Core genes can have higher recombination rates than accessory genes within global microbial populations. ELife, 0, 11, .	6.0	9