List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7463340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriersâ~†. Advanced Drug Delivery Reviews, 2008, 60, 1278-1288.	6.6	2,357
2	Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy and Environmental Science, 2014, 7, 3574-3592.	15.6	1,204
3	Layer-by-layer Nanoarchitectonics: Invention, Innovation, and Evolution. Chemistry Letters, 2014, 43, 36-68.	0.7	813
4	Nanoarchitectured Design of Porous Materials and Nanocomposites from Metalâ€Organic Frameworks. Advanced Materials, 2017, 29, 1604898.	11.1	732
5	Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a <i>de Novo</i> Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. Journal of the American Chemical Society, 2015, 137, 4276-4279.	6.6	674
6	Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chemical Communications, 2012, 48, 7259.	2.2	624
7	Templated Synthesis for Nanoarchitectured Porous Materials. Bulletin of the Chemical Society of Japan, 2015, 88, 1171-1200.	2.0	512
8	Mesoporous Silica Nanoparticles for Reducing Hemolytic Activity Towards Mammalian Red Blood Cells. Small, 2009, 5, 57-62.	5.2	465
9	Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coordination Chemistry Reviews, 2020, 416, 213319.	9.5	427
10	Strategies for Improving the Functionality of Zeolitic Imidazolate Frameworks: Tailoring Nanoarchitectures for Functional Applications. Advanced Materials, 2017, 29, 1700213.	11.1	366
11	Nanoarchitectures for Mesoporous Metals. Advanced Materials, 2016, 28, 993-1010.	11.1	357
12	Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles. Advanced Materials, 2020, 32, e1907035.	11.1	336
13	Shielding against Unfolding by Embedding Enzymes in Metal–Organic Frameworks via a <i>de Novo</i> Approach. Journal of the American Chemical Society, 2017, 139, 6530-6533.	6.6	292
14	From Pd(OAc) ₂ to Chiral Catalysts: The Discovery and Development of Bifunctional Mono-N-Protected Amino Acid Ligands for Diverse C–H Functionalization Reactions. Accounts of Chemical Research, 2020, 53, 833-851.	7.6	283
15	Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures. Accounts of Chemical Research, 2018, 51, 1764-1773.	7.6	277
16	Metal–Organic Framework (MOF)-Derived Effective Solid Catalysts for Valorization of Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, 2018, 6, 13628-13643.	3.2	267
17	3D network of cellulose-based energy storage devices and related emerging applications. Materials Horizons, 2017, 4, 522-545.	6.4	261
18	Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives. Journal of Materials Chemistry A, 2019, 7, 17079-17095.	5.2	253

#	Article	IF	CITATIONS
19	Confined Selfâ€Assembly in Twoâ€Dimensional Interlayer Space: Monolayered Mesoporous Carbon Nanosheets with Inâ€Plane Orderly Arranged Mesopores and a Highly Graphitized Framework. Angewandte Chemie - International Edition, 2018, 57, 2894-2898.	7.2	235
20	Engineering a homogeneous alloy-oxide interface derived from metal-organic frameworks for selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Applied Catalysis B: Environmental, 2020, 270, 118805.	10.8	232
21	Controlling physical features of mesoporous silicananoparticles (MSNs) for emerging applications. Journal of Materials Chemistry, 2012, 22, 1251-1256.	6.7	185
22	Platinum-Free Counter Electrode Comprised of Metal-Organic-Framework (MOF)-Derived Cobalt Sulfide Nanoparticles for Efficient Dye-Sensitized Solar Cells (DSSCs). Scientific Reports, 2014, 4, 6983.	1.6	182
23	Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. Bioresource Technology, 2019, 291, 121878.	4.8	177
24	Recent progress in mesoporous titania materials: adjusting morphology for innovative applications. Science and Technology of Advanced Materials, 2012, 13, 013003.	2.8	170
25	Largeâ€Scale Synthesis of Reduced Graphene Oxides with Uniformly Coated Polyaniline for Supercapacitor Applications. ChemSusChem, 2014, 7, 1551-1556.	3.6	170
26	Controlling Particle Size and Structural Properties of Mesoporous Silica Nanoparticles Using the Taguchi Method. Journal of Physical Chemistry C, 2011, 115, 13158-13165.	1.5	169
27	Recent progress in the development of biomass-derived nitrogen-doped porous carbon. Journal of Materials Chemistry A, 2021, 9, 3703-3728.	5.2	167
28	MOF-derived Nanoporous Carbon as Intracellular Drug Delivery Carriers. Chemistry Letters, 2014, 43, 717-719.	0.7	165
29	Mesoporous Metallic Cells: Design of Uniformly Sized Hollow Mesoporous Pt–Ru Particles with Tunable Shell Thicknesses. Small, 2013, 9, 1047-1051.	5.2	159
30	Enhancing Efficiency and Stability of Photovoltaic Cells by Using Perovskite/Zrâ€MOF Heterojunction Including Bilayer and Hybrid Structures. Advanced Science, 2019, 6, 1801715.	5.6	159
31	Waterâ€Based Synthesis of Zeolitic Imidazolate Frameworkâ€90 (ZIFâ€90) with a Controllable Particle Size. Chemistry - A European Journal, 2013, 19, 11139-11142.	1.7	158
32	Highly biocompatible, hollow coordination polymer nanoparticles as cisplatin carriers for efficient intracellular drug delivery. Chemical Communications, 2012, 48, 5151.	2.2	157
33	Construction Hierarchically Mesoporous/Microporous Materials Based on Block Copolymer and Covalent Organic Framework. Journal of the Taiwan Institute of Chemical Engineers, 2020, 112, 180-192.	2.7	155
34	Hollow mesoporous hydroxyapatite nanoparticles (hmHANPs) with enhanced drug loading and pH-responsive release properties for intracellular drug delivery. Journal of Materials Chemistry B, 2013, 1, 2447.	2.9	151
35	Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. Science Advances, 2021, 7, .	4.7	151
36	Biocompatible, surface functionalized mesoporous titania nanoparticles for intracellular imaging and anticancer drug delivery. Chemical Communications, 2011, 47, 5232.	2.2	146

#	Article	IF	CITATIONS
37	Size- and shape-controlled synthesis of Prussian Blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process. CrystEngComm, 2012, 14, 3387.	1.3	143
38	Evaporationâ€Induced Coating of Hydrous Ruthenium Oxide on Mesoporous Silica Nanoparticles to Develop Highâ€Performance Supercapacitors. Small, 2013, 9, 2520-2526.	5.2	142
39	Cellulase immobilized mesoporous silica nanocatalysts for efficient cellulose-to-glucose conversion. Green Chemistry, 2011, 13, 2844.	4.6	140
40	Development of Sulfonicâ€Acidâ€Functionalized Mesoporous Materials: Synthesis and Catalytic Applications. Chemistry - A European Journal, 2019, 25, 1614-1635.	1.7	139
41	Formation of Highly Ordered Mesoporous Titania Films Consisting of Crystalline Nanopillars with Inverse Mesospace by Structural Transformation. Journal of the American Chemical Society, 2006, 128, 4544-4545.	6.6	138
42	Polymeric Micelle Assembly for Preparation of Large-Sized Mesoporous Metal Oxides with Various Compositions. Langmuir, 2014, 30, 651-659.	1.6	138
43	A metal-free, high nitrogen-doped nanoporous graphitic carbon catalyst for an effective aerobic HMF-to-FDCA conversion. Green Chemistry, 2016, 18, 5957-5961.	4.6	129
44	Block copolymer assisted synthesis of porous α-Ni(OH)2 microflowers with high surface areas as electrochemical pseudocapacitor materials. Chemical Communications, 2012, 48, 9150.	2.2	124
45	Reduced graphene oxide nanosheets decorated with Au–Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water. Nanoscale, 2016, 8, 8276-8287.	2.8	124
46	Acid–base bi-functionalized, large-pored mesoporous silica nanoparticles for cooperative catalysis of one-pot cellulose-to-HMF conversion. Journal of Materials Chemistry, 2012, 22, 23181.	6.7	123
47	A Dryingâ€Free, Waterâ€Based Process for Fabricating Mixedâ€Matrix Membranes with Outstanding Pervaporation Performance. Angewandte Chemie - International Edition, 2016, 55, 12793-12796.	7.2	121
48	Cellulose-to-HMF conversion using crystalline mesoporous titania and zirconia nanocatalysts in ionic liquid systems. RSC Advances, 2013, 3, 2028-2034.	1.7	119
49	Conversion and kinetics study of fructose-to-5-hydroxymethylfurfural (HMF) using sulfonic and ionic liquid groups bi-functionalized mesoporous silica nanoparticles as recyclable solid catalysts in DMSO systems. Physical Chemistry Chemical Physics, 2012, 14, 13914.	1.3	117
50	Structural study of highly ordered mesoporous silica thin films and replicated Pt nanowires by high-resolution scanning electron microscopy (HRSEM). Journal of Materials Chemistry, 2006, 16, 3091.	6.7	116
51	New trend on mesoporous films: precise controls of one-dimensional (1D) mesochannels toward innovative applications. Journal of Materials Chemistry, 2011, 21, 8934.	6.7	112
52	Integrated, Cascading Enzymeâ€∤Chemocatalytic Cellulose Conversion using Catalysts based on Mesoporous Silica Nanoparticles. ChemSusChem, 2014, 7, 3241-3246.	3.6	106
53	Enzymatic breakdown of biomass: enzyme active sites, immobilization, and biofuel production. Green Chemistry, 2014, 16, 4615-4626.	4.6	105
54	Functionalized Fe ₃ O ₄ @Silica Core–Shell Nanoparticles as Microalgae Harvester and Catalyst for Biodiesel Production. ChemSusChem, 2015, 8, 789-794.	3.6	105

#	Article	IF	CITATIONS
55	A critical review on biochar-based engineered hierarchical porous carbon for capacitive charge storage. Renewable and Sustainable Energy Reviews, 2021, 145, 111029.	8.2	105
56	A Glucose-Assisted Hydrothermal Reaction for Directly Transforming Metal–Organic Frameworks into Hollow Carbonaceous Materials. Chemistry of Materials, 2018, 30, 4401-4408.	3.2	102
57	Cosynthesis of Cargo-Loaded Hydroxyapatite/Alginate Core–Shell Nanoparticles (HAP@Alg) as pH-Responsive Nanovehicles by a Pre-gel Method. ACS Applied Materials & Interfaces, 2012, 4, 6720-6727.	4.0	101
58	High performance capacitive deionization using modified ZIF-8-derived, N-doped porous carbon with improved conductivity. Nanoscale, 2018, 10, 14852-14859.	2.8	97
59	Emerging strategies for breaking the 3D amorphous network of lignin. Catalysis Science and Technology, 2014, 4, 3785-3799.	2.1	96
60	Synergistic effect of metal-organic framework-derived boron and nitrogen heteroatom-doped three-dimensional porous carbons for precious-metal-free catalytic reduction of nitroarenes. Applied Catalysis B: Environmental, 2019, 257, 117888.	10.8	96
61	A block copolymer micelle template for synthesis of hollow calcium phosphate nanospheres with excellent biocompatibility. Chemical Communications, 2012, 48, 6532.	2.2	95
62	Cellulose Framework Directed Construction of Hierarchically Porous Carbons Offering High-Performance Capacitive Deionization of Brackish Water. ACS Sustainable Chemistry and Engineering, 2016, 4, 1885-1893.	3.2	95
63	Enhanced Charge Collection in MOFâ€525–PEDOT Nanotube Composites Enable Highly Sensitive Biosensing. Advanced Science, 2017, 4, 1700261.	5.6	95
64	Lignocellulosic biomass-derived, graphene sheet-like porous activated carbon for electrochemical supercapacitor and catechin sensing. RSC Advances, 2017, 7, 45668-45675.	1.7	95
65	Cellulosic conversion in ionic liquids (ILs): Effects of H2O/cellulose molar ratios, temperatures, times, and different ILs on the production of monosaccharides and 5-hydroxymethylfurfural (HMF). Catalysis Today, 2011, 174, 65-69.	2.2	93
66	Mesoporous Carbon Incorporated with In ₂ O ₃ Nanoparticles as Highâ€Performance Supercapacitors. European Journal of Inorganic Chemistry, 2013, 2013, 1109-1112.	1.0	92
67	Combined treatments for producing 5-hydroxymethylfurfural (HMF) from lignocellulosic biomass. Catalysis Today, 2016, 278, 344-349.	2.2	90
68	Three-Dimensional Nanoarchitecture of Carbon Nanotube-Interwoven Metal–Organic Frameworks for Capacitive Deionization of Saline Water. ACS Sustainable Chemistry and Engineering, 2019, 7, 13949-13954.	3.2	88
69	High-Performance Supercapacitor Electrodes Prepared From Dispersions of Tetrabenzonaphthalene-Based Conjugated Microporous Polymers and Carbon Nanotubes. ACS Applied Materials & Interfaces, 2021, 13, 51906-51916.	4.0	88
70	The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in early life stages of medaka fish. Water Research, 2013, 47, 3899-3909.	5.3	83
71	Highly efficient plastic-based quasi-solid-state dye-sensitized solarÂcells with light-harvesting mesoporous silica nanoparticles gel-electrolyte. Journal of Power Sources, 2014, 245, 411-417.	4.0	82
72	Direct Production of Furfural in One-pot Fashion from Raw Biomass Using BrÃ,nsted Acidic Ionic Liquids. Scientific Reports, 2017, 7, 13508.	1.6	82

KEVIN C-W WU

#	Article	IF	CITATIONS
73	Multimodal Superparamagnetic Nanoparticles with Unusually Enhanced Specific Absorption Rate for Synergetic Cancer Therapeutics and Magnetic Resonance Imaging. ACS Applied Materials & Interfaces, 2016, 8, 14656-14664.	4.0	78
74	Nanoarchitectonics of Biofunctionalized Metal–Organic Frameworks with Biological Macromolecules and Living Cells. Small Methods, 2019, 3, 1900213.	4.6	76
75	An Effective Celluloseâ€toâ€Clucoseâ€toâ€Fructose Conversion Sequence by Using Enzyme Immobilized Fe ₃ O ₄ â€Loaded Mesoporous Silica Nanoparticles as Recyclable Biocatalysts. ChemCatChem, 2013, 5, 2153-2157.	1.8	74
76	Heterogeneous Metal Azolate Framework-6 (MAF-6) Catalysts with High Zinc Density for Enhanced Polyethylene Terephthalate (PET) Conversion. ACS Sustainable Chemistry and Engineering, 2021, 9, 6541-6550.	3.2	74
77	Synthesis of Hierarchical Micro/Mesoporous Structures via Solid–Aqueous Interface Growth: Zeolitic Imidazolate Framework-8 on Siliceous Mesocellular Foams for Enhanced Pervaporation of Water/Ethanol Mixtures. ACS Applied Materials & Interfaces, 2014, 6, 5192-5198.	4.0	73
78	Green synthesis of metal oxide nanostructures using naturally occurring compounds for energy, environmental, and bio-related applications. New Journal of Chemistry, 2019, 43, 15846-15856.	1.4	72
79	Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia. International Journal of Nanomedicine, 2015, 10, 3315.	3.3	71
80	Metal–organic frameworks: preparation and applications in highly efficient heterogeneous photocatalysis. Sustainable Energy and Fuels, 2020, 4, 504-521.	2.5	71
81	Significant Effect of Pore Sizes on Energy Storage in Nanoporous Carbon Supercapacitors. Chemistry - A European Journal, 2018, 24, 6127-6132.	1.7	68
82	Inorganic–Organic Hybrid Nanoparticles with Biocompatible Calcium Phosphate Thin Shells for Fluorescence Enhancement. Chemistry - an Asian Journal, 2013, 8, 1301-1305.	1.7	66
83	Electronically conductive metal–organic framework-based materials. APL Materials, 2019, 7, .	2.2	66
84	Multifunctional Coreâ€Shellâ€Coronaâ€Type Polymeric Micelles for Anticancer Drugâ€Delivery and Imaging. Chemistry - A European Journal, 2013, 19, 4812-4817.	1.7	64
85	Characterization and molecular simulation of Pebax-1657-based mixed matrix membranes incorporating MoS2 nanosheets for carbon dioxide capture enhancement. Journal of Membrane Science, 2019, 582, 358-366.	4.1	64
86	Fabrication of Nanoporous Carbon Materials with Hard- and Soft-Templating Approaches: A Review. Journal of Nanoscience and Nanotechnology, 2019, 19, 3673-3685.	0.9	64
87	Effective Dispersion of MgO Nanostructure on Biochar Support as a Basic Catalyst for Glucose Isomerization. ACS Sustainable Chemistry and Engineering, 2020, 8, 6990-7001.	3.2	63
88	Size-adjustable annular ring-functionalized mesoporous silica as effective and selective adsorbents for heavy metal ions. RSC Advances, 2013, 3, 25686.	1.7	62
89	Hydrothermal Synthesis of Binary Ni–Co Hydroxides and Carbonate Hydroxides as Pseudosupercapacitors. European Journal of Inorganic Chemistry, 2013, 2013, 39-43.	1.0	62
90	Deâ€Novo Synthesis of Goldâ€Nanoparticleâ€Embedded, Nitrogenâ€Doped Nanoporous Carbon Nanoparticles (Au@NC) with Enhanced Reduction Ability. ChemCatChem, 2016, 8, 502-509.	1.8	62

#	Article	IF	CITATIONS
91	Mesoporous TiO ₂ Embedded with a Uniform Distribution of CuO Exhibit Enhanced Charge Separation and Photocatalytic Efficiency. ACS Applied Materials & Interfaces, 2017, 9, 42425-42429.	4.0	62
92	Prussian Blue Derived Nanoporous Iron Oxides as Anticancer Drug Carriers for Magneticâ€Guided Chemotherapy. Chemistry - an Asian Journal, 2015, 10, 1457-1462.	1.7	61
93	A gold surface plasmon enhanced mesoporous titanium dioxide photoelectrode for the plastic-based flexible dye-sensitized solar cells. Journal of Power Sources, 2015, 288, 221-228.	4.0	61
94	Effects of structural crystallinity and defects in microporous Al-MOF filled chitosan mixed matrix membranes for pervaporation of water/ethanol mixtures. Journal of the Taiwan Institute of Chemical Engineers, 2018, 83, 143-151.	2.7	60
95	Hydrogen Peroxide Assisted Selective Oxidation of 5â€Hydroxymethylfurfural in Water under Mild Conditions. ChemCatChem, 2018, 10, 361-365.	1.8	59
96	Electrophoretic deposition of mesoporous TiO2 nanoparticles consisting of primary anatase nanocrystallites on a plastic substrate for flexible dye-sensitized solar cells. Chemical Communications, 2011, 47, 8346.	2.2	58
97	Gelatin-functionalized mesoporous silica nanoparticles with sustained release properties for intracameral pharmacotherapy of glaucoma. Journal of Materials Chemistry B, 2017, 5, 7008-7013.	2.9	58
98	Synthesis of [3 + 3] β-ketoenamine-tethered covalent organic frameworks (COFs) for high-performance supercapacitance and CO2 storage. Journal of the Taiwan Institute of Chemical Engineers, 2019, 103, 199-208.	2.7	57
99	ZIF-8 Derived, Nitrogen-Doped Porous Electrodes of Carbon Polyhedron Particles for High-Performance Electrosorption of Salt Ions. Scientific Reports, 2016, 6, 28847.	1.6	55
100	Orientational Control of Hexagonally Packed Silica Mesochannels in Lithographically Designed Confined Nanospaces. Angewandte Chemie - International Edition, 2007, 46, 5364-5368.	7.2	52
101	Synthesis of mesoporous titania thin films (MTTFs) with two different structures as photocatalysts for generating hydrogen from water splitting. Applied Energy, 2012, 100, 75-80.	5.1	52
102	Synthesis, Bifunctionalization, and Remarkable Adsorption Performance of Benzeneâ€Bridged Periodic Mesoporous Organosilicas Functionalized with High Loadings of Carboxylic Acids. Chemistry - A European Journal, 2013, 19, 6358-6367.	1.7	52
103	Synthesis of MOFâ€525 Derived Nanoporous Carbons with Different Particle Sizes for Supercapacitor Application. Chemistry - an Asian Journal, 2017, 12, 2857-2862.	1.7	52
104	Microwave-assisted depolymerization of various types of waste lignins over two-dimensional CuO/BCN catalysts. Green Chemistry, 2020, 22, 725-736.	4.6	52
105	Rapid synthesis of biocompatible gold nanoflowers with tailored surface textures with the assistance of amino acid molecules. RSC Advances, 2012, 2, 4608.	1.7	51
106	Efficient oxygen evolution on mesoporous IrO _x nanosheets. Catalysis Science and Technology, 2019, 9, 3697-3702.	2.1	51
107	Cytotoxicity of Postmodified Zeolitic Imidazolate Frameworkâ€90 (ZIFâ€90) Nanocrystals: Correlation between Functionality and Toxicity. Chemistry - A European Journal, 2016, 22, 2925-2929.	1.7	50
108	Fabrication and characterization of plastic-based flexible dye-sensitized solar cells consisting of crystalline mesoporous titania nanoparticles as photoanodes. Journal of Materials Chemistry, 2011, 21, 17511.	6.7	49

#	Article	IF	CITATIONS
109	Thermally stable polymer composites with improved transparency by using colloidal mesoporous silica nanoparticles as inorganic fillers. Physical Chemistry Chemical Physics, 2012, 14, 7427.	1.3	49
110	Ligand Conformation Dictates Membrane and Endosomal Trafficking of Arginineâ€Glycineâ€Aspartate (RGD)â€Functionalized Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 2012, 18, 7787-7792.	1.7	48
111	Superparamagnetic Gadolinium Ferrite Nanoparticles with Controllable Curie Temperature – Cancer Theranostics for MRâ€Imagingâ€Guided Magnetoâ€Chemotherapy. European Journal of Inorganic Chemistry, 2016, 2016, 4586-4597.	1.0	47
112	Jute-derived microporous/mesoporous carbon with ultra-high surface area using a chemical activation process. Microporous and Mesoporous Materials, 2019, 274, 251-256.	2.2	47
113	Selective hydrogenation of furfural to tetrahydrofurfuryl alcohol over a Rh-loaded carbon catalyst in aqueous solution under mild conditions. Sustainable Energy and Fuels, 2020, 4, 293-301.	2.5	47
114	Thermochemical Conversion of Plastic Waste into Fuels, Chemicals, and Valueâ€Added Materials: A Critical Review and Outlooks. ChemSusChem, 2022, 15, .	3.6	47
115	A Hierarchical Study on Load/Release Kinetics of Guest Molecules into/from Mesoporous Silica Thin Films. Journal of Physical Chemistry C, 2011, 115, 6581-6590.	1.5	46
116	Facile Synthesis of Hollow Mesoporous Hydroxyapatite Nanoparticles for Intracellular Bio-imaging. Current Nanoscience, 2011, 7, 926-931.	0.7	45
117	Nanomaterials for sustainable remediation of chemical contaminants in water and soil. Critical Reviews in Environmental Science and Technology, 2022, 52, 2611-2660.	6.6	45
118	A nanofluidic osmotic power generator demonstrated in polymer gel electrolytes with substantially enhanced performance. Journal of Materials Chemistry A, 2019, 7, 26791-26796.	5.2	44
119	De Novo synthesis of platinum-nanoparticle-encapsulated UiO-66-NH2 for photocatalytic thin film fabrication with enhanced performance of phenol degradation. Journal of Hazardous Materials, 2020, 397, 122431.	6.5	44
120	Synthesis of Continuous Mesoporous Alumina Films with Largeâ€6ized Cageâ€Type Mesopores by Using Diblock Copolymers. Chemistry - an Asian Journal, 2012, 7, 1713-1718.	1.7	43
121	Effect of Solvent, Role of Formic Acid and Rh/C Catalyst for the Efficient Liquefaction of Lignin. ChemCatChem, 2019, 11, 4604-4616.	1.8	43
122	Synergistic effects of Pt-embedded, MIL-53-derived catalysts (Pt@Al2O3) and NaBH4 for water-mediated hydrogenolysis of biomass-derived furfural to 1,5-pentanediol at near-ambient temperature. Journal of Catalysis, 2020, 390, 46-56.	3.1	43
123	A universal approach for the synthesis of mesoporous gold, palladium and platinum films for applications in electrocatalysis. Nature Protocols, 2020, 15, 2980-3008.	5.5	43
124	Flexible nitrogen-doped carbon heteroarchitecture derived from ZIF-8/ZIF-67 hybrid coating on cotton biomass waste with high supercapacitive properties. Microporous and Mesoporous Materials, 2020, 303, 110257.	2.2	43
125	Predictable Shrinkage during the Precise Design of Porous Materials and Nanomaterials. Chemistry of Materials, 2015, 27, 6918-6928.	3.2	40
126	Boronâ€Functionalized Graphene Oxideâ€Organic Frameworks for Highly Efficient CO ₂ Capture. Chemistry - an Asian Journal, 2017, 12, 283-288.	1.7	40

#	Article	IF	CITATIONS
127	Electron-beam lithography assisted patterning of surfactant-templated mesoporous thin films. Nanotechnology, 2004, 15, 1886-1889.	1.3	39
128	Biodiesel production by pervaporation-assisted esterification and pre-esterification using graphene oxide/chitosan composite membranes. Journal of the Taiwan Institute of Chemical Engineers, 2017, 79, 23-30.	2.7	39
129	Biocompatible and multifunctional gold nanorods for effective photothermal therapy of oral squamous cell carcinoma. Journal of Materials Chemistry B, 2019, 7, 4451-4460.	2.9	39
130	Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres. International Journal of Nanomedicine, 2014, 9, 2767.	3.3	38
131	Synthesis of highly ordered mesoporous alumina thin films and their framework crystallization to \hat{I}^3 -alumina phase. Dalton Transactions, 2011, 40, 10851.	1.6	37
132	Synthesis of Mixed-Ligand Zeolitic Imidazolate Framework (ZIF-8-90) for CO2 Adsorption. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 251-258.	1.9	35
133	Glucose isomerization catalyzed by bone char and the selective production of 5-hydroxymethylfurfural in aqueous media. Sustainable Energy and Fuels, 2018, 2, 2148-2153.	2.5	35
134	A stirring packed-bed reactor to enhance the esterification–transesterification in biodiesel production by lowering mass-transfer resistance. Chemical Engineering Journal, 2013, 234, 9-15.	6.6	34
135	Highly Crystallized Nanometer‧ized Zeolite A with Large Cs Adsorption Capability for the Decontamination of Water. Chemistry - an Asian Journal, 2014, 9, 759-763.	1.7	34
136	Trifunctional Fe ₃ O ₄ /CaP/Alginate Core–Shell–Corona Nanoparticles for Magnetically Guided, pH-Responsive, and Chemically Targeted Chemotherapy. ACS Biomaterials Science and Engineering, 2017, 3, 2366-2374.	2.6	34
137	Assessment of agricultural waste-derived activated carbon in multiple applications. Environmental Research, 2020, 191, 110176.	3.7	34
138	In Search of Excellence: Convex versus Concave Noble Metal Nanostructures for Electrocatalytic Applications. Advanced Materials, 2021, 33, e2004554.	11.1	34
139	Rational Design and Synthesis of Cyanoâ€Bridged Coordination Polymers with PreciseÂ-Control of Particle Size from 20 to 500 nm. European Journal of Inorganic Chemistry, 2013, 2013, 3141-3145.	1.0	33
140	Effect of microwave-assisted wet torrefaction on liquefaction of biomass from palm oil and sugarcane wastes to bio-oil and carbon nanodots/nanoflakes by hydrothermolysis and solvothermolysis. Renewable Energy, 2020, 154, 1204-1217.	4.3	33
141	Perpendicular mesoporous Pt thin films: electrodeposition from titania nanopillars and their electrochemical properties. Chemical Communications, 2008, , 2888.	2.2	32
142	Highly Zeolite-Loaded Polyvinyl Alcohol Composite Membranes for Alkaline Fuel-Cell Electrolytes. Polymers, 2018, 10, 102.	2.0	32
143	Efficient liquid-phase hydrogenolysis of a lignin model compound (benzyl phenyl ether) using a Ni/carbon catalyst. Reaction Chemistry and Engineering, 2019, 4, 618-626.	1.9	31
144	Oxidation of biomass-derived furans to maleic acid over nitrogen-doped carbon catalysts under acid-free conditions. Catalysis Science and Technology, 2020, 10, 1498-1506.	2.1	30

#	Article	IF	CITATIONS
145	Ultrastable Conjugated Microporous Polymers Containing Benzobisthiadiazole and Pyrene Building Blocks for Energy Storage Applications. Molecules, 2022, 27, 2025.	1.7	29
146	Functional nanostructured materials: Aerosol, aerogel, and de novo synthesis to emerging energy and environmental applications. Advanced Powder Technology, 2020, 31, 104-120.	2.0	28
147	Synthesis of Highly Strained Mesostructured SrTiO ₃ /BaTiO ₃ Composite Films with Robust Ferroelectricity. Chemistry - A European Journal, 2013, 19, 4446-4450.	1.7	27
148	Thermal Conversion of Hollow Prussian Blue Nanoparticles into Nanoporous Iron Oxides with Crystallized Hematite Phase. European Journal of Inorganic Chemistry, 2014, 2014, 1137-1141.	1.0	27
149	Sequential Fractionation of Palm Empty Fruit Bunch and Microwave-Assisted Depolymerization of Lignin for Producing Monophenolic Compounds. ACS Sustainable Chemistry and Engineering, 2018, 6, 16896-16906.	3.2	27
150	Metal organic framework derived nickel phosphide/graphitic carbon hybrid for electrochemical hydrogen generation reaction. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 634-638.	2.7	27
151	Diels–Alder Conversion of Acrylic Acid and 2,5â€Dimethylfuran to <i>para</i> â€Xylene Over Heterogeneous Biâ€BTC Metalâ€Organic Framework Catalysts Under Mild Conditions. Angewandte Chemie - International Edition, 2021, 60, 624-629.	7.2	27
152	Novel block copolymer templates for tuning mesopore connectivity in cage-type mesoporous silica films. Journal of Materials Chemistry, 2012, 22, 20008.	6.7	26
153	Synthesis and Cytotoxicity of Dendritic Platinum Nanoparticles with HEKâ€293 Cells. Chemistry - an Asian Journal, 2017, 12, 21-26.	1.7	25
154	Prussian Blueâ€Derived Synthesis of Hollow Porous Iron Pyrite Nanoparticles as Platinumâ€Free Counter Electrodes for Highly Efficient Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2017, 23, 13284-13288.	1.7	25
155	Fineâ€Tuning Mesochannel Orientation of Organically Functionalized Mesoporous Silica Nanoparticles. Chemistry - an Asian Journal, 2009, 4, 658-661.	1.7	24
156	pH-responsive polymeric micelles with core–shell–corona architectures as intracellular anti-cancer drug carriers. Science and Technology of Advanced Materials, 2013, 14, 044402.	2.8	24
157	High surface area nanoporous carbon derived from high quality jute from Bangladesh. Materials Chemistry and Physics, 2018, 216, 491-495.	2.0	24
158	MIL-53-NH2-derived carbon-Al2O3 composites supported Ru catalyst for effective hydrogenation of levulinic acid to γ-valerolactone under ambient conditions. Molecular Catalysis, 2019, 475, 110478.	1.0	24
159	Synthesis and characterization of highly ordered titania-alumina mixed oxide mesoporous films with high alumina content. Microporous and Mesoporous Materials, 2010, 134, 150-156.	2.2	23
160	Highly Carboxylicâ€Acidâ€Functionalized Ethaneâ€Bridged Periodic Mesoporous Organosilicas: Synthesis, Characterization, and Adsorption Properties. Chemistry - an Asian Journal, 2012, 7, 2111-2117.	1.7	23
161	Acute oral toxicity and repeated dose 28-day oral toxicity studies of MIL-101 nanoparticles. Regulatory Toxicology and Pharmacology, 2019, 107, 104426.	1.3	23
162	Catalytic glycolysis of polyethylene terephthalate (PET) by solvent-free mechanochemically synthesized MFe2O4 (MÂ=ÂCo, Ni, Cu and Zn) spinel. Chemical Engineering Journal, 2022, 450, 137926.	6.6	23

#	Article	IF	CITATIONS
163	Synthesis of mesoporous silica nanoparticleâ€encapsulated alginate microparticles for sustained release and targeting therapy. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 293-302.	1.6	22
164	An unique approach of applying magnetic nanoparticles attached commercial lipase acrylic resin for biodiesel production. Catalysis Today, 2016, 278, 330-334.	2.2	21
165	Catalytic Conversion of Biomass. ChemCatChem, 2017, 9, 2613-2614.	1.8	21
166	<i>A Special Section on</i> Nanoarchitectonics. Journal of Nanoscience and Nanotechnology, 2018, 18, 1-2.	0.9	21
167	<i>De novo</i> synthesis of Cr-embedded MOF-199 and derived porous CuO/CuCr ₂ O ₄ composites for enhanced phenol hydroxylation. Green Chemistry, 2019, 21, 1889-1894.	4.6	21
168	The Role of N and S Doping on Photoluminescent Characteristics of Carbon Dots from Palm Bunches for Fluorimetric Sensing of Fe3+ Ion. International Journal of Molecular Sciences, 2022, 23, 5001.	1.8	21
169	Synthesis of magnetic mesoporous titania colloidal crystals through evaporation induced self-assembly in emulsion as effective and recyclable photocatalysts. Physical Chemistry Chemical Physics, 2015, 17, 27653-27657.	1.3	20
170	Towards Acid-Tolerated Ethanol Dehydration: Chitosan-Based Mixed Matrix Membranes Containing Cyano-Bridged Coordination Polymer Nanoparticles. Journal of Nanoscience and Nanotechnology, 2016, 16, 4141-4146.	0.9	20
171	Syngas production with low tar content from cellulose pyrolysis in molten salt combined with Ni/Al2O3 catalyst. Journal of Analytical and Applied Pyrolysis, 2021, 158, 105243.	2.6	20
172	Ball-milled, solvent-free Sn-functionalisation of wood waste biochar for sugar conversion in food waste valorisation. Journal of Cleaner Production, 2020, 268, 122300.	4.6	20
173	Synthesis of metal ion–histidine complex functionalized mesoporous silica nanocatalysts for enhanced light-free tooth bleaching. Acta Biomaterialia, 2011, 7, 2276-2284.	4.1	19
174	Effect of N2 flow rate on kinetic investigation of lignin pyrolysis. Environmental Research, 2020, 190, 109976.	3.7	19
175	A high ZIF-8 loading PVA mixed matrix membrane on alumina hollow fiber with enhanced ethanol dehydration. Journal of Membrane Science, 2021, 621, 118935.	4.1	19
176	Synthesis of Highly Photocatalytic TiO ₂ Microflowers Based on Solvothermal Approach Using <i>N,N</i> -Dimethylformamide. Journal of Nanoscience and Nanotechnology, 2015, 15, 4747-4751.	0.9	18
177	Electrochemical analysis of perpendicular mesoporous Pt electrode filled with pure water for clarifying the active region in fuel cell catalyst layers. Journal of Power Sources, 2010, 195, 2236-2240.	4.0	17
178	Au Nanoparticles Prepared Using a Coated Electrode in Plasma-in-Liquid Process: Effect of the Solution pH. Journal of Nanoscience and Nanotechnology, 2016, 16, 9257-9262.	0.9	17
179	Synthesis of mesoporous antimony-doped tin oxide (ATO) thin films and investigation of their electrical conductivity. CrystEngComm, 2013, 15, 4404.	1.3	16
180	A Dryingâ€Free, Waterâ€Based Process for Fabricating Mixedâ€Matrix Membranes with Outstanding Pervaporation Performance. Angewandte Chemie, 2016, 128, 12985-12988.	1.6	16

#	Article	IF	CITATIONS
181	Nanostructured Cementite/Ferrous Sulfide Encapsulated Carbon with Heteroatoms for Oxygen Reduction in Alkaline Environment. ACS Sustainable Chemistry and Engineering, 2019, 7, 3185-3194.	3.2	16
182	Synthesis of porous iron oxide microspheres by a double hydrophilic block copolymer. RSC Advances, 2014, 4, 9986.	1.7	15
183	ZnO-loaded mesoporous silica (KIT-6) as an efficient solid catalyst for production of various substituted quinoxalines. Catalysis Communications, 2017, 90, 111-115.	1.6	15
184	Threeâ€Dimensional Macroporous Graphitic Carbon for Supercapacitor Application. ChemistrySelect, 2018, 3, 4522-4526.	0.7	15
185	Confined Selfâ€Assembly in Twoâ€Dimensional Interlayer Space: Monolayered Mesoporous Carbon Nanosheets with Inâ€Plane Orderly Arranged Mesopores and a Highly Graphitized Framework. Angewandte Chemie, 2018, 130, 2944-2948.	1.6	15
186	An efficient method for the synthesis of 2,4,5-trisubstituted imidazoles using lactic acid as promoter. SN Applied Sciences, 2019, 1, 1.	1.5	15
187	Water- and Thermal-Stable Silver-Based Photoluminescent Metal-Organic Coordination Polymer for Highly Selective Lead Ion Sensing. Bulletin of the Chemical Society of Japan, 2019, 92, 1430-1435.	2.0	15
188	Development of glycyrrhizin-conjugated, chitosan-coated, lysine-embedded mesoporous silica nanoparticles for hepatocyte-targeted liver tissue regeneration. Materialia, 2020, 9, 100568.	1.3	15
189	MCP-1-Functionalized, Core–Shell Gold Nanorod@Iron-Based Metal–Organic Framework (MCP-1/GNR@MIL-100(Fe)) for Photothermal Therapy. ACS Applied Materials & Interfaces, 2021, 13, 52092-52105.	4.0	15
190	Hard-templating Synthesis of Mesoporous Pt-Based Alloy Particles with Low Ni and Co Contents. Chemistry Letters, 2013, 42, 447-449.	0.7	14
191	Analytical Understanding of the Materials Design with Wellâ€Described Shrinkages on Multiscale. Chemistry - A European Journal, 2018, 24, 6886-6904.	1.7	14
192	In Vitro Cytotoxicity and Intracellular Bioimaging of Dendritic Platinum Nanoparticles by Differential Interference Contrast (DIC). Chemistry Letters, 2011, 40, 408-409.	0.7	13
193	Low-Frequency Dipolar Dynamics and Atmospheric Effects in ZIF-90 Metal–Organic Framework. Journal of Physical Chemistry C, 2019, 123, 631-636.	1.5	13
194	Ordered Hexagonal Mesoporous Aluminosilicates and their Application in Ligandâ€Free Synthesis of Secondary Amines. ChemCatChem, 2015, 7, 747-751.	1.8	12
195	Advances in bioconversion of microalgae with high biomass and lipid productivity. Journal of the Taiwan Institute of Chemical Engineers, 2017, 79, 37-42.	2.7	12
196	Curved Fragmented Graphenic Hierarchical Architectures for Extraordinary Charging Capacities. Small, 2018, 14, e1702054.	5.2	12
197	Extrastriate connectivity of the mouse dorsal lateral geniculate thalamic nucleus. Journal of Comparative Neurology, 2019, 527, 1419-1442.	0.9	12
198	Enhancement of biodiesel production via sequential esterification/transesterification over solid superacidic and superbasic catalysts. Catalysis Today, 2020, 348, 257-269.	2.2	12

#	Article	IF	CITATIONS
199	Synthesis of MOF525/PEDOT Composites as Microelectrodes for Electrochemical Sensing of Dopamine. Polymers, 2020, 12, 1976.	2.0	12
200	Unraveling the highly selective nature of silver-based metal–organic complexes for the detection of metal ions: the synergistic effect of dicarboxylic acid linkers. Journal of Materials Chemistry C, 2020, 8, 5051-5057.	2.7	12
201	A High Through-Put Screen for Small Molecules Modulating MCM2 Phosphorylation Identifies Ryuvidine as an Inducer of the DNA Damage Response. PLoS ONE, 2014, 9, e98891.	1.1	11
202	Grapheneâ€Wrapped Nanoporous Nickelâ€Cobalt Oxide Flakes for Electrochemical Supercapacitors. ChemistrySelect, 2018, 3, 8505-8510.	0.7	11
203	Recycling Polymeric Solid Wastes for Energyâ€Efficient Water Purification, Organic Distillation, and Oil Spill Cleanup. Small, 2021, 17, e2102459.	5.2	11
204	Highly efficient one-pot conversion of saccharides to 2,5-dimethylfuran using P-UiO-66 and Ni–Co@NC noble metal-free catalysts. Green Chemistry, 2022, 24, 5070-5076.	4.6	11
205	Kinetic study of Acid Orange 7 degradation using plasmas in NaNO3 solution sustained by pulsed power. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1558-1563.	2.7	10
206	Lignin-Derived Syringol and Acetosyringone from Palm Bunch Using Heterogeneous Oxidative Depolymerization over Mixed Metal Oxide Catalysts under Microwave Heating. Molecules, 2021, 26, 7444.	1.7	10
207	Synthesis of Fine Gold Nanoparticles in Mesoporous Titania Nanoparticles Through Different Reduction Methods. Journal of Nanoscience and Nanotechnology, 2013, 13, 2735-2739.	0.9	9
208	Current Progress and Scalable Approach toward the Synthesis of 2D Metal–Organic Frameworks. Advanced Materials Interfaces, 2022, 9, .	1.9	9
209	Synthesis of modular building blocks using glycosyl phosphate donors for the construction of asymmetric N-glycans. Tetrahedron, 2018, 74, 6003-6011.	1.0	8
210	DNAâ€Templated Copper Nanoprobes: Overview, Feature, Application, and Current Development in Detection Technologies. Chemical Record, 2020, 20, 174-186.	2.9	8
211	Dielectric Spectroscopy of Water Dynamics in Functionalized UiO-66 Metal-Organic Frameworks. Molecules, 2020, 25, 1962.	1.7	8
212	Diels–Alder Conversion of Acrylic Acid and 2,5â€Dimethylfuran to <i>para</i> â€Xylene Over Heterogeneous Biâ€BTC Metalâ€Organic Framework Catalysts Under Mild Conditions. Angewandte Chemie, 2021, 133, 634-639.	1.6	8
213	Morphology control of ionic-liquid-templated ZSM-22 and ZSM-5 zeolites using a two-step process and its effect on toluene methylation. Microporous and Mesoporous Materials, 2021, 328, 111475.	2.2	8
214	Lithography-assisted alignment control for preparation of mesoporous silica films with uniaxially oriented mesochannels. Chemical Communications, 2014, 50, 2448.	2.2	7
215	Template-free synthesis of nanoporous gadolinium phosphonate as a magnetic resonance imaging (MRI) agent. RSC Advances, 2015, 5, 42762-42767.	1.7	7
216	Perovskite Solar Cells: Enhancing Efficiency and Stability of Photovoltaic Cells by Using Perovskite/Zrâ€MOF Heterojunction Including Bilayer and Hybrid Structures (Adv. Sci. 5/2019). Advanced Science, 2019, 6, 1970030.	5.6	7

#	Article	IF	CITATIONS
217	Highly-efficient Ru/Al–SBA-15 catalysts with strong Lewis acid sites for the water-assisted hydrogenation of <i>p</i> -phthalic acid. Catalysis Science and Technology, 2020, 10, 2443-2451.	2.1	7
218	Fabrication of an Extremely Cheap Poly(3,4-ethylenedioxythiophene) Modified Pencil Lead Electrode for Effective Hydroquinone Sensing. Polymers, 2021, 13, 343.	2.0	7
219	Quantum Mechanical Calculations for Biomass Valorization over Metalâ€Organic Frameworks (MOFs). Chemistry - an Asian Journal, 2021, 16, 1049-1056.	1.7	7
220	Metal Complexes of the Porphyrin-Functionalized Polybenzoxazine. Polymers, 2022, 14, 449.	2.0	7
221	Interfacial nanoarchitectonics for ZIF-8 membranes with enhanced gas separation. Beilstein Journal of Nanotechnology, 2022, 13, 313-324.	1.5	7
222	Effect of carboxylic acid of periodic mesoporous organosilicas on the fructose-to-5-hydroxymethylfurfural conversion in dimethylsulfoxide systems. APL Materials, 2014, 2, .	2.2	6
223	Fabrication of inorganic hydroxyapatite nanoparticles and organic biomolecules-dual encapsulated alginate microspheres. Biointerphases, 2015, 10, 021005.	0.6	6
224	Correction: Reduced graphene oxide nanosheets decorated with Au–Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water. Nanoscale, 2016, 8, 19174-19175.	2.8	6
225	Hard-templating synthesis of macroporous platinum microballs (MPtM). Materials Letters, 2016, 164, 488-492.	1.3	6
226	A metabolite binding protein moonlights as a bileâ€responsive chaperone. EMBO Journal, 2020, 39, e104231.	3.5	6
227	Controlled Sequential Assembly of Metal–Organic Polyhedra into Colloidal Gels with High Chemical Complexity. Small Structures, 2022, 3, .	6.9	6
228	Mesoporous Europium-Doped Titania Nanoparticles (Eu-MTNs) for Luminescence-Based Intracellular Bio-Imaging. Journal of Nanoscience and Nanotechnology, 2015, 15, 9802-9806.	0.9	5
229	One-step hydrogenolysis of 5-hydroxymethylfurfural to 1,2,6-hexanetriol using a Pt@MIL-53-derived Pt@Al ₂ O ₃ catalyst and NaBH ₄ in aqueous media. Sustainable Energy and Fuels, 2021, 5, 4087-4094.	2.5	5
230	Replication of Mesoporous Silica Films from Block Copolymer Films through a Chemical Vapor Approach. Chemistry - A European Journal, 2013, 19, 10478-10481.	1.7	4
231	Integrated, Cascading Enzymeâ€∤Chemocatalytic Cellulose Conversion using Catalysts based on Mesoporous Silica Nanoparticles. ChemSusChem, 2014, 7, 3181-3181.	3.6	4
232	A Novel Method for the Pentosan Analysis Present in Jute Biomass and Its Conversion into Sugar Monomers Using Acidic Ionic Liquid. Journal of Visualized Experiments, 2018, , .	0.2	4
233	Decoration of silver nanoparticles on nitrogen-doped nanoporous carbon derived from zeolitic imidazole framework-8 (ZIF-8) <i>via in situ</i> auto-reduction. RSC Advances, 2021, 11, 6614-6619.	1.7	4
234	Silica sacrificial layer-assisted in-plane incorporation of Au nanoparticles into mesoporous titania thin films through different reduction methods. Dalton Transactions, 2013, 42, 8704.	1.6	3

#	Article	IF	CITATIONS
235	Self-Assembled Mesoporous Silica Nanoparticles in Controlled Patterns Produced by Soft-Lithography and Ink-Jet Printing. Journal of Nanoscience and Nanotechnology, 2013, 13, 2804-2808.	0.9	3
236	Synthesis of Copper/Silver Core/Shell Nanoparticles by a Transmetallation Method. Nanoscience and Nanotechnology Letters, 2016, 8, 247-250.	0.4	3
237	Swelling-Resistant, Crosslinked Polyvinyl Alcohol Membranes with High ZIF-8 Nanofiller Loadings as Effective Solid Electrolytes for Alkaline Fuel Cells. Nanomaterials, 2022, 12, 865.	1.9	3
238	Confocal Viviperception of a Transparent Medaka Fish (<i>Oryzias latipes</i>) Using Functionalized Mesoporous Silica Nanoparticles (MSNs). Chemistry Letters, 2011, 40, 533-535.	0.7	2
239	Titelbild: Confined Selfâ€Assembly in Twoâ€Dimensional Interlayer Space: Monolayered Mesoporous Carbon Nanosheets with Inâ€Plane Orderly Arranged Mesopores and a Highly Graphitized Framework (Angew. Chem. 11/2018). Angewandte Chemie, 2018, 130, 2777-2777.	1.6	2
240	Hydrogen Peroxide Assisted Selective Oxidation of 5-Hydroxymethylfurfural in Water under Mild Conditions. ChemCatChem, 2018, 10, 337-337.	1.8	2
241	Waterâ€Based Synthesis of Gold Single Atomsâ€Embedded, Metal–Organic Frameworksâ€Derived Nanoporous Carbon Nanoparticles with Enhanced Reduction Ability. Advanced Materials Interfaces, 2021, 8, 2001638.	1.9	2
242	Recycling Polymeric Solid Wastes for Energyâ€Efficient Water Purification, Organic Distillation, and Oil Spill Cleanup (Small 46/2021). Small, 2021, 17, 2170244.	5.2	2
243	Agricultural waste-derived biochar for environmental management. , 2022, , 3-13.		2
244	CrCl ₃ · 6H ₂ O and Boric Acid as a New Catalytic System: Enhanced 5-Hydroxymethylfurfural Production from Cellulose Under Milder Conditions. Nanoscience and Nanotechnology Letters, 2016, 8, 273-276.	0.4	1
245	Microreactor equipped with naturally acid-resistant histidine ammonia lyase from an extremophile. Materials Advances, 2022, 3, 3649-3662.	2.6	1
246	<i>A Special Issue on</i> Nanoarchitectonics of Porous Materials. Journal of Nanoscience and Nanotechnology, 2013, 13, 2397-2398.	0.9	0
247	Focus on nanospace materials. Science and Technology of Advanced Materials, 2015, 16, 050301.	2.8	0
248	Ethanol Dissolution-Assisted Synthesis of Ordered Mesostructured Titania Spheres. Journal of Nanoscience and Nanotechnology, 2016, 16, 9245-9249.	0.9	0
249	Annulated Mesoporous Silica as Potent Lanthanide Ion Adsorbents and Magnetic Resonance Contrast Enhancing Agents. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 165-171.	1.9	0
250	Prussian Blue-Derived Synthesis of Hollow Porous Iron Pyrite Nanoparticles as Platinum-Free Counter Electrodes for Highly Efficient Dye-Sensitized Solar Cells. Chemistry - A European Journal, 2017, 23, 13263-13263.	1.7	0
251	Innentitelbild: Diels–Alder Conversion of Acrylic Acid and 2,5â€Dimethylfuran to <i>para</i> â€Xylene Over Heterogeneous Biâ€BTC Metalâ€Organic Framework Catalysts Under Mild Conditions (Angew. Chem.) Tj E	ТQq & 1 0.	78 6 314 rg8