Ben Feringa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7462682/publications.pdf

Version: 2024-02-01

445 papers

43,919 citations

100 h-index 192 g-index

463 all docs 463 docs citations

463 times ranked 24008 citing authors

#	Article	IF	CITATIONS
1	Light-driven monodirectional molecular rotor. Nature, 1999, 401, 152-155.	27.8	1,668
2	Making molecular machines work. Nature Nanotechnology, 2006, 1, 25-35.	31.5	1,317
3	Chiroptical Molecular Switches. Chemical Reviews, 2000, 100, 1789-1816.	47.7	1,021
4	Reversible Photocontrol of Biological Systems by the Incorporation of Molecular Photoswitches. Chemical Reviews, 2013, 113, 6114-6178.	47.7	991
5	Photopharmacology: Beyond Proof of Principle. Journal of the American Chemical Society, 2014, 136, 2178-2191.	13.7	875
6	Nanomotor rotates microscale objects. Nature, 2006, 440, 163-163.	27.8	781
7	Absolute Asymmetric Synthesis: The Origin, Control, and Amplification of Chirality. Angewandte Chemie - International Edition, 1999, 38, 3418-3438.	13.8	709
8	Artificial molecular motors. Chemical Society Reviews, 2017, 46, 2592-2621.	38.1	698
9	Catalytic Asymmetric Conjugate Addition and Allylic Alkylation with Grignard Reagents. Chemical Reviews, 2008, 108, 2824-2852.	47.7	692
10	Phosphoramidites:  Marvellous Ligands in Catalytic Asymmetric Conjugate Addition. Accounts of Chemical Research, 2000, 33, 346-353.	15.6	682
11	Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature, 2011, 479, 208-211.	27.8	669
12	Reversible Optical Transcription of Supramolecular Chirality into Molecular Chirality. Science, 2004, 304, 278-281.	12.6	635
13	Phosphoramidites: Privileged Ligands in Asymmetric Catalysis. Angewandte Chemie - International Edition, 2010, 49, 2486-2528.	13.8	611
14	The Art of Building Small: From Molecular Switches to Motors (Nobel Lecture). Angewandte Chemie - International Edition, 2017, 56, 11060-11078.	13.8	568
15	In Control of Motion:  From Molecular Switches to Molecular Motors. Accounts of Chemical Research, 2001, 34, 504-513.	15.6	559
16	Design and Application of Selfâ€Assembled Low Molecular Weight Hydrogels. European Journal of Organic Chemistry, 2005, 2005, 3615-3631.	2.4	541
17	Dynamic Control of Chiral Space in a Catalytic Asymmetric Reaction Using a Molecular Motor. Science, 2011, 331, 1429-1432.	12.6	530
18	One-Way Optoelectronic Switching of Photochromic Molecules on Gold. Physical Review Letters, 2003, 91, 207402.	7.8	522

#	Article	IF	Citations
19	Unidirectional molecular motor on a gold surface. Nature, 2005, 437, 1337-1340.	27.8	504
20	Emerging Targets in Photopharmacology. Angewandte Chemie - International Edition, 2016, 55, 10978-10999.	13.8	504
21	A Light-Actuated Nanovalve Derived from a Channel Protein. Science, 2005, 309, 755-758.	12.6	495
22	The Art of Building Small:  From Molecular Switches to Molecular Motors. Journal of Organic Chemistry, 2007, 72, 6635-6652.	3.2	462
23	Dynamic Control and Amplification of Molecular Chirality by Circular Polarized Light. Science, 1996, 273, 1686-1688.	12.6	439
24	Highly Enantioselective Rhodium-Catalyzed Hydrogenation with Monodentate Ligands. Journal of the American Chemical Society, 2000, 122, 11539-11540.	13.7	433
25	Exploring a naturally tailored small molecule for stretchable, self-healing, and adhesive supramolecular polymers. Science Advances, 2018, 4, eaat8192.	10.3	422
26	A Reversible, Unidirectional Molecular Rotary Motor Driven by Chemical Energy. Science, 2005, 310, 80-82.	12.6	412
27	Cyclic Bis-Urea Compounds as Gelators for Organic Solvents. Chemistry - A European Journal, 1999, 5, 937-950.	3.3	346
28	Second Generation Light-Driven Molecular Motors. Unidirectional Rotation Controlled by a Single Stereogenic Center with Near-Perfect Photoequilibria and Acceleration of the Speed of Rotation by Structural Modification. Journal of the American Chemical Society, 2002, 124, 5037-5051.	13.7	332
29	Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nature Chemistry, 2018, 10, 132-138.	13.6	330
30	Catalytic Asymmetric Synthesis of Butenolides and Butyrolactones. Chemical Reviews, 2017, 117, 10502-10566.	47.7	311
31	Amplification of chirality in liquid crystals. Organic and Biomolecular Chemistry, 2006, 4, 3729.	2.8	299
32	Optical control of antibacterial activity. Nature Chemistry, 2013, 5, 924-928.	13.6	298
33	Wavelength-selective cleavage of photoprotecting groups: strategies and applications in dynamic systems. Chemical Society Reviews, 2015, 44, 3358-3377.	38.1	291
34	Responsive Cyclohexane-Based Low-Molecular-Weight Hydrogelators with Modular Architecture. Angewandte Chemie - International Edition, 2004, 43, 1663-1667.	13.8	280
35	Light Switching of Molecules on Surfaces. Annual Review of Physical Chemistry, 2009, 60, 407-428.	10.8	267
36	Recent developments in reversible photoregulation of oligonucleotide structure and function. Chemical Society Reviews, 2017, 46, 1052-1079.	38.1	263

#	Article	IF	Citations
37	Chiral Recognition in Bis-Urea-Based Aggregates and Organogels through Cooperative Interactions. Angewandte Chemie - International Edition, 2001, 40, 613-616.	13.8	260
38	Remarkable Stabilization of Self-Assembled Organogels by Polymerization. Journal of the American Chemical Society, 1997, 119, 12675-12676.	13.7	250
39	Nonheme Iron Centers in Oxygen Activation: Characterization of an Iron(III) Hydroperoxide Intermediate. Angewandte Chemie International Edition in English, 1995, 34, 1512-1514.	4.4	247
40	Control of dynamic helicity at the macro- and supramolecular level. Soft Matter, 2008, 4, 1349.	2.7	238
41	Selfâ€Assembly of Bisurea Compounds in Organic Solvents and on Solid Substrates. Chemistry - A European Journal, 1997, 3, 1238-1243.	3.3	235
42	Photocontrol of Antibacterial Activity: Shifting from UV to Red Light Activation. Journal of the American Chemical Society, 2017, 139, 17979-17986.	13.7	224
43	Light-Controlled Supramolecular Helicity of a Liquid Crystalline Phase Using a Helical Polymer Functionalized with a Single Chiroptical Molecular Switch. Journal of the American Chemical Society, 2008, 130, 4541-4552.	13.7	214
44	Fine Tuning of the Rotary Motion by Structural Modification in Light-Driven Unidirectional Molecular Motors. Journal of the American Chemical Society, 2006, 128, 5127-5135.	13.7	212
45	The (photo)chemistry of Stenhouse photoswitches: guiding principles and system design. Chemical Society Reviews, 2018, 47, 1910-1937.	38.1	208
46	Orthogonal Self-Assembly of Low Molecular Weight Hydrogelators and Surfactants. Journal of the American Chemical Society, 2003, 125, 14252-14253.	13.7	201
47	Rotational Reorganization of Doped Cholesteric Liquid Crystalline Films. Journal of the American Chemical Society, 2006, 128, 14397-14407.	13.7	200
48	Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble. Chemical Communications, 2008, , 1533-1535.	4.1	193
49	MHz Unidirectional Rotation of Molecular Rotary Motors. Journal of the American Chemical Society, 2008, 130, 10484-10485.	13.7	191
50	Light-Driven Molecular Rotor:  Unidirectional Rotation Controlled by a Single Stereogenic Center. Journal of the American Chemical Society, 2000, 122, 12005-12006.	13.7	190
51	Assembling a Natural Small Molecule into a Supramolecular Network with High Structural Order and Dynamic Functions. Journal of the American Chemical Society, 2019, 141, 12804-12814.	13.7	190
52	Direct catalytic cross-coupling of organolithium compounds. Nature Chemistry, 2013, 5, 667-672.	13.6	188
53	Dynamic control of chirality and self-assembly of double-stranded helicates with light. Nature Chemistry, 2017, 9, 250-256.	13.6	187
54	Rheology and Thermotropic Properties of Bis-Urea-Based Organogels in Various Primary Alcohols. Langmuir, 2000, 16, 9249-9255.	3.5	186

#	Article	IF	CITATIONS
55	Unidirectional rotary motion in a liquid crystalline environment: Color tuning by a molecular motor. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4945-4949.	7.1	186
56	Molecular Transmission: Controlling the Twist Sense of a Helical Polymer with a Single Light-Driven Molecular Motor. Angewandte Chemie - International Edition, 2007, 46, 3693-3696.	13.8	182
57	Reversing the direction in a light-driven rotary molecular motor. Nature Chemistry, 2011, 3, 53-60.	13.6	181
58	Oxidative Electrochemical Switching in Dithienylcyclopentenes, Part 1: Effect of Electronic Perturbation on the Efficiency and Direction of Molecular Switching. Chemistry - A European Journal, 2005, 11, 6414-6429.	3.3	180
59	Chiroptical Switching between Liquid Crystalline Phases. Journal of the American Chemical Society, 1995, 117, 9929-9930.	13.7	179
60	Chiral separation by enantioselective liquid–liquid extraction. Organic and Biomolecular Chemistry, 2011, 9, 36-51.	2.8	175
61	Orthogonal photoswitching in a multifunctional molecular system. Nature Communications, 2016, 7, 12054.	12.8	174
62	Toughening a Selfâ€Healable Supramolecular Polymer by Ionic Clusterâ€Enhanced Ironâ€Carboxylate Complexes. Angewandte Chemie - International Edition, 2020, 59, 5278-5283.	13.8	173
63	Dynamic control of chirality in phosphine ligands for enantioselective catalysis. Nature Communications, 2015, 6, 6652.	12.8	172
64	Molecular photoswitches in aqueous environments. Chemical Society Reviews, 2021, 50, 12377-12449.	38.1	170
65	Chiroptical molecular switch. Journal of the American Chemical Society, 1991, 113, 5468-5470.	13.7	169
66	Ultrafast dynamics in the power stroke of a molecular rotary motor. Nature Chemistry, 2012, 4, 547-551.	13.6	168
67	Programming nanoparticle valence bonds with single-stranded DNA encoders. Nature Materials, 2020, 19, 781-788.	27.5	166
68	Molecular rotary motors: Unidirectional motion around double bonds. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9423-9431.	7.1	165
69	Dynamic control of function by light-driven molecular motors. Nature Reviews Chemistry, 2017, 1, .	30.2	162
70	Unidirectional rotary motion in a metal–organic framework. Nature Nanotechnology, 2019, 14, 488-494.	31.5	162
71	Increased Speed of Rotation for the Smallest Light-Driven Molecular Motor. Journal of the American Chemical Society, 2003, 125, 15076-15086.	13.7	160
72	Oxidative Electrochemical Switching in Dithienylcyclopentenes, Part 2: Effect of Substitution and Asymmetry on the Efficiency and Direction of Molecular Switching and Redox Stability. Chemistry - A European Journal, 2005, 11, 6430-6441.	3.3	154

#	Article	IF	CITATIONS
73	Reversible Three-State Switching of Luminescence:Â A New Twist to Electro- and Photochromic Behavior. Journal of the American Chemical Society, 2006, 128, 12412-12413.	13.7	150
74	Phosphoramidite accelerated copper(i)-catalyzed $[3+2]$ cycloadditions of azides and alkynes. Chemical Communications, 2009, , 2139.	4.1	149
75	Unraveling the Photoswitching Mechanism in Donor–Acceptor Stenhouse Adducts. Journal of the American Chemical Society, 2016, 138, 6344-6347.	13.7	143
76	A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle. Nature Chemistry, 2016, 8, 860-866.	13.6	142
77	Photoresponsive molecular tools for emerging applications of light in medicine. Chemical Science, 2020, 11, 11672-11691.	7.4	142
78	Remote light-controlled intracellular target recognition by photochromic fluorescent glycoprobes. Nature Communications, 2017, 8, 987.	12.8	141
79	Disulfide-Mediated Reversible Polymerization toward Intrinsically Dynamic Smart Materials. Journal of the American Chemical Society, 2022, 144, 2022-2033.	13.7	140
80	A Chiroptical Molecular Switch with Distinct Chiral and Photochromic Entities and Its Application in Optical Switching of a Cholesteric Liquid Crystal. Chemistry - A European Journal, 2004, 10, 61-70.	3.3	139
81	Photoresponsive rolling and bending of thin crystals of chiral diarylethenes. Chemical Communications, 2008, , 326-328.	4.1	138
82	Unidirectional rotary motion in achiral molecular motors. Nature Chemistry, 2015, 7, 890-896.	13.6	134
83	Control of Surface Wettability Using Tripodal Light-Activated Molecular Motors. Journal of the American Chemical Society, 2014, 136, 3219-3224.	13.7	131
84	Die Kunst, klein zu bauen: von molekularen Schaltern bis zu Motoren (Nobelâ€Aufsatz). Angewandte Chemie, 2017, 129, 11206-11226.	2.0	124
85	Enantioselective Copper-Catalyzed Allylic Alkylation with Dialkylzincs Using Phosphoramidite Ligands. Organic Letters, 2001, 3, 1169-1171.	4.6	121
86	Photoswitchable catalysis based on the isomerisation of double bonds. Chemical Communications, 2019, 55, 6477-6486.	4.1	118
87	Lightâ€Controlled Histone Deacetylase (HDAC) Inhibitors: Towards Photopharmacological Chemotherapy. Chemistry - A European Journal, 2015, 21, 16517-16524.	3.3	117
88	Photocontrolled Fluorescence "Double-Check―Bioimaging Enabled by a Glycoprobe–Protein Hybrid. Journal of the American Chemical Society, 2018, 140, 8671-8674.	13.7	116
89	Direct and Versatile Synthesis of Redâ€Shifted Azobenzenes. Angewandte Chemie - International Edition, 2016, 55, 13514-13518.	13.8	115
90	Digital photoprogramming of liquid-crystal superstructures featuring intrinsic chiral photoswitches. Nature Photonics, 2022, 16, 226-234.	31.4	115

#	Article	IF	Citations
91	Locked synchronous rotor motion in a molecular motor. Science, 2017, 356, 964-968.	12.6	114
92	Strainâ€Promoted Copperâ€Free "Click―Chemistry for ¹⁸ F Radiolabeling of Bombesin. Angewandte Chemie - International Edition, 2011, 50, 11117-11120.	13.8	113
93	A redesign of light-driven rotary molecular motors. Organic and Biomolecular Chemistry, 2008, 6, 507-512.	2.8	112
94	Dual closed-loop chemical recycling of synthetic polymers by intrinsically reconfigurable poly(disulfides). Matter, 2021, 4, 1352-1364.	10.0	112
95	Dynamic Chiral Selection and Amplification Using Photoresponsive Organogelators. Journal of the American Chemical Society, 2005, 127, 13804-13805.	13.7	111
96	Chiroptical molecular switches. Advanced Materials, 1996, 8, 681-684.	21.0	109
97	Light–induced disassembly of self-assembled vesicle-capped nanotubes observed in real time. Nature Nanotechnology, 2011, 6, 547-552.	31.5	109
98	Controlling the speed of rotation in molecular motors. Dramatic acceleration of the rotary motion by structural modification. Chemical Communications, 2005, , 5910.	4.1	108
99	Copper Catalyzed Asymmetric Synthesis of Chiral Allylic Esters. Journal of the American Chemical Society, 2006, 128, 15572-15573.	13.7	106
100	Enantiomeric recognition and interactions. Tetrahedron, 1976, 32, 2831-2834.	1.9	105
101	Controlling Molecular Rotary Motion with a Selfâ€Complexing Lock. Angewandte Chemie - International Edition, 2010, 49, 1107-1110.	13.8	105
102	Neue Ziele fýr die Photopharmakologie. Angewandte Chemie, 2016, 128, 11140-11163.	2.0	105
103	Lipase-Catalyzed Second-Order Asymmetric Transformations as Resolution and Synthesis Strategies for Chiral 5-(Acyloxy)-2(5H)-furanone and Pyrrolinone Synthons. Journal of the American Chemical Society, 1996, 118, 3801-3803.	13.7	103
104	Toward a Switchable Molecular Rotor. Unexpected Dynamic Behavior of Functionalized Overcrowded Alkenes. Journal of Organic Chemistry, 1997, 62, 4943-4948.	3.2	103
105	Dynamic Responsive Systems for Catalytic Function. Chemistry - A European Journal, 2016, 22, 17080-17111.	3.3	103
106	A donorâ \in acceptor substituted molecular motor: unidirectional rotation driven by visible light. Organic and Biomolecular Chemistry, 2003, 1, 33-35.	2.8	101
107	Catalytic asymmetric carbon–carbon bond formation via allylic alkylations with organolithium compounds. Nature Chemistry, 2011, 3, 377-381.	13.6	101
108	Amphiphilic Molecular Motors for Responsive Aggregation in Water. Journal of the American Chemical Society, 2016, 138, 660-669.	13.7	101

#	Article	IF	CITATIONS
109	Di-urea compounds as gelators for organic solvents. Tetrahedron Letters, 1997, 38, 281-284.	1.4	100
110	Driving Unidirectional Molecular Rotary Motors with Visible Light by Intra- And Intermolecular Energy Transfer from Palladium Porphyrin. Journal of the American Chemical Society, 2012, 134, 17613-17619.	13.7	99
111	Towards artificial molecular factories from framework-embedded molecular machines. Nature Reviews Chemistry, 2020, 4, 550-562.	30.2	97
112	Torsionally distorted olefins. Resolution of cis- and trans-4,4'-Bi-1,1',2,2',3,3'-hexahydrophenanthrylidene. Journal of the American Chemical Society, 1977, 99, 602-603.	13.7	96
113	Understanding the Dynamics Behind the Photoisomerization of a Light-Driven Fluorene Molecular Rotary Motor. Journal of Physical Chemistry A, 2010, 114, 5058-5067.	2.5	96
114	Chemically Optimizing Operational Efficiency of Molecular Rotary Motors. Journal of the American Chemical Society, 2014, 136, 9692-9700.	13.7	96
115	Photoswitchable Intramolecular H-Stacking of Perylenebisimide. Journal of the American Chemical Society, 2010, 132, 4191-4196.	13.7	95
116	An Optical and Theoretical Investigation of the Ultrafast Dynamics of a Bisthienylethene-Based Photochromic Switch. Journal of Physical Chemistry A, 2002, 106, 8498-8507.	2.5	91
117	Dual stereocontrol over the Henry reaction using a light- and heat-triggered organocatalyst. Chemical Communications, 2014, 50, 7773.	4.1	90
118	Acceleration of a Nanomotor:  Electronic Control of the Rotary Speed of a Light-Driven Molecular Rotor. Journal of the American Chemical Society, 2005, 127, 17612-17613.	13.7	89
119	Photo- and electro-chromism of diarylethene modified ITO electrodes—towards molecular based read–write–erase information storage. Chemical Communications, 2006, , 3930-3932.	4.1	89
120	Synthesis of enantiomerically pure .gamma(menthyloxy)butenolides and (R)- and (S)-2-methyl-1,4-butanediol. Journal of Organic Chemistry, 1989, 54, 2471-2475.	3.2	88
121	Controlled Rotary Motion in a Monolayer of Molecular Motors. Angewandte Chemie - International Edition, 2007, 46, 1278-1280.	13.8	88
122	Shedding Light on the Photoisomerization Pathway of Donor–Acceptor Stenhouse Adducts. Journal of the American Chemical Society, 2017, 139, 15596-15599.	13.7	88
123	Chemistry of Unique Chiral Olefins. 3. Synthesis and Absolute Stereochemistry of trans- and cis-1,1â€~,2,2â€~,3,3â€~,4,4â€~ Octahydro-3,3â€~-dimethyl-4,4â€~-biphenanthrylidenes. Journal of the American C Society, 1997, 119, 7256-7264.	h emt cal	86
124	Ciprofloxacin–Photoswitch Conjugates: A Facile Strategy for Photopharmacology. Bioconjugate Chemistry, 2015, 26, 2592-2597.	3.6	86
125	Visible-Light-Driven Rotation of Molecular Motors in a Dual-Function Metal–Organic Framework Enabled by Energy Transfer. Journal of the American Chemical Society, 2020, 142, 9048-9056.	13.7	86
126	An astrophysically-relevant mechanism for amino acid enantiomer enrichment. Chemical Communications, 2007, , 2578.	4.1	85

#	Article	IF	Citations
127	Designing light-driven rotary molecular motors. Chemical Science, 2021, 12, 14964-14986.	7.4	85
128	Molecular chirality at fluid/solid interfaces: expression of asymmetry in self-organised monolayers. Journal of Materials Chemistry, 2008, 18, 2065.	6.7	83
129	Selfâ€Assembly of Photoresponsive Molecular Amphiphiles in Aqueous Media. Angewandte Chemie - International Edition, 2021, 60, 11604-11627.	13.8	81
130	Photoinduced Reorganization of Motor-Doped Chiral Liquid Crystals: Bridging Molecular Isomerization and Texture Rotation. Journal of the American Chemical Society, 2008, 130, 14615-14624.	13.7	80
131	Transition metal functionalized photo- and redox-switchable diarylethene based molecular switches. Coordination Chemistry Reviews, 2015, 282-283, 77-86.	18.8	80
132	Allosteric Regulation of the Rotational Speed in a Light-Driven Molecular Motor. Journal of the American Chemical Society, 2016, 138, 13597-13603.	13.7	80
133	General Principles for the Design of Visibleâ€Lightâ€Responsive Photoswitches: Tetraâ€ <i>ortho</i> â€Chloroâ€Azobenzenes. Angewandte Chemie - International Edition, 2020, 59, 21663-21670.	13.8	80
134	Catalytic Enantioselective Synthesis of Naturally Occurring Butenolides via <i>Hetero</i> Allylic Alkylation and Ring Closing Metathesis. Organic Letters, 2011, 13, 948-951.	4.6	79
135	Autoamplification of Molecular Chirality through the Induction of Supramolecular Chirality. Angewandte Chemie - International Edition, 2014, 53, 5073-5077.	13.8	79
136	Molecular Organization of Bis-urea Substituted Thiophene Derivatives at the Liquid/Solid Interface Studied by Scanning Tunneling Microscopy. Langmuir, 2000, 16, 10385-10391.	3.5	78
137	Multi-State Regulation of the Dihydrogen Phosphate Binding Affinity to a Light- and Heat-Responsive Bis-Urea Receptor. Journal of the American Chemical Society, 2014, 136, 16784-16787.	13.7	78
138	Reversible gel–sol photoswitching with an overcrowded alkene-based bis-urea supergelator. Chemical Science, 2016, 7, 4341-4346.	7.4	78
139	Engineering methylaspartate ammonia lyase for the asymmetric synthesis of unnatural amino acids. Nature Chemistry, 2012, 4, 478-484.	13.6	77
140	UV/Vis and NIR Light-Responsive Spiropyran Self-Assembled Monolayers. Langmuir, 2013, 29, 4290-4297.	3.5	76
141	Light-Driven Molecular Motors:Â Stepwise Thermal Helix Inversion during Unidirectional Rotation of Sterically Overcrowded Biphenanthrylidenes. Journal of the American Chemical Society, 2005, 127, 14208-14222.	13.7	7 5
142	Chiral Separation of Underivatized Amino Acids by Reactive Extraction with Palladiumâ [^] 'BINAP Complexes. Journal of Organic Chemistry, 2009, 74, 6526-6533.	3.2	75
143	Ultrafast Dynamics in Light-Driven Molecular Rotary Motors Probed by Femtosecond Stimulated Raman Spectroscopy. Journal of the American Chemical Society, 2017, 139, 7408-7414.	13.7	75
144	Mixed Monolayers of Spiropyrans Maximize Tunneling Conductance Switching by Photoisomerization at the Molecule–Electrode Interface in EGaIn Junctions. Journal of the American Chemical Society, 2016, 138, 12519-12526.	13.7	74

#	Article	IF	Citations
145	Light-driven altitudinal molecular motors on surfaces. Chemical Communications, 2009, , 1712.	4.1	73
146	A Chiroptical Photoswitchable DNA Complex. Journal of Physical Chemistry B, 2011, 115, 11581-11587.	2.6	73
147	Orthogonal Control of Antibacterial Activity with Light. ACS Chemical Biology, 2014, 9, 1969-1974.	3.4	73
148	Enantioselective Synthesis of Tertiary and Quaternary Stereogenic Centers: Copper/Phosphoramidite atalyzed Allylic Alkylation with Organolithium Reagents. Angewandte Chemie - International Edition, 2012, 51, 1922-1925.	13.8	72
149	Visible-Light-Driven Rotation of Molecular Motors in Discrete Supramolecular Metallacycles. Journal of the American Chemical Society, 2021, 143, 442-452.	13.7	72
150	Dynamic Inversion of Stereoselective Phosphate Binding to a Bisurea Receptor Controlled by Light and Heat. Angewandte Chemie - International Edition, 2016, 55, 1001-1004.	13.8	71
151	Photoswitching of DNA Hybridization Using a Molecular Motor. Journal of the American Chemical Society, 2018, 140, 5069-5076.	13.7	70
152	Solvent Effects on the Actinic Step of Donor–Acceptor Stenhouse Adduct Photoswitching. Angewandte Chemie - International Edition, 2018, 57, 8063-8068.	13.8	70
153	Ultrafast Light-Driven Nanomotors Based on an Acridane Stator. Journal of Organic Chemistry, 2010, 75, 666-679.	3.2	68
154	Cyclohexane-Based Low Molecular Weight Hydrogelators: A Chirality Investigation. Chemistry - A European Journal, 2005, 11, 5353-5361.	3.3	67
155	Rationally Designed Chemical Modulators Convert a Bacterial Channel Protein into a pH-Sensory Valve. Angewandte Chemie - International Edition, 2006, 45, 3126-3130.	13.8	66
156	Catalytic Direct Cross-Coupling of Organolithium Compounds with Aryl Chlorides. Organic Letters, 2013, 15, 5114-5117.	4.6	66
157	Taming the Complexity of Donor–Acceptor Stenhouse Adducts: Infrared Motion Pictures of the Complete Switching Pathway. Journal of the American Chemical Society, 2019, 141, 7376-7384.	13.7	66
158	From Photoinduced Supramolecular Polymerization to Responsive Organogels. Journal of the American Chemical Society, 2021, 143, 5990-5997.	13.7	66
159	Modulation of porosity in a solid material enabled by bulk photoisomerization of an overcrowded alkene. Nature Chemistry, 2020, 12, 595-602.	13.6	65
160	Direct catalytic cross-coupling of alkenyllithium compounds. Chemical Science, 2015, 6, 1394-1398.	7.4	64
161	Synthesis and utilization of reversible and irreversible light-activated nanovalves derived from the channel protein MscL. Nature Protocols, 2007, 2, 1426-1437.	12.0	63
162	Hindered Aryllithium Reagents as Partners in Palladiumâ€Catalyzed Crossâ€Coupling: Synthesis of Tri―and Tetraâ€ <i>ortho</i> â€Substituted Biaryls under Ambient Conditions. Angewandte Chemie - International Edition, 2013, 52, 13329-13333.	13.8	63

#	Article	IF	Citations
163	Visibleâ€Lightâ€Driven Photoisomerization and Increased Rotation Speed of a Molecular Motor Acting as a Ligand in a Ruthenium(II) Complex. Angewandte Chemie - International Edition, 2015, 54, 11457-11461.	13.8	63
164	Nickelâ€Catalyzed Crossâ€Coupling of Organolithium Reagents with (Hetero)Aryl Electrophiles. Chemistry - A European Journal, 2016, 22, 3991-3995.	3.3	63
165	Iminothioindoxyl as a molecular photoswitch with 100 nm band separation in the visible range. Nature Communications, 2019, 10, 2390.	12.8	63
166	Oxygen Activated, Palladium Nanoparticle Catalyzed, Ultrafast Crossâ€Coupling of Organolithium Reagents. Angewandte Chemie - International Edition, 2017, 56, 3354-3359.	13.8	62
167	Photoresponsive porous materials. Nanoscale Advances, 2021, 3, 24-40.	4.6	62
168	Photocontrol of Anion Binding Affinity to a Bis-urea Receptor Derived from Stiff-Stilbene. Organic Letters, 2017, 19, 324-327.	4.6	61
169	Copper-catalyzed asymmetric allylic substitution reactions with organozinc and Grignard reagents. Pure and Applied Chemistry, 2008, 80, 1025-1037.	1.9	60
170	Stereodivergent Anion Binding Catalysis with Molecular Motors. Angewandte Chemie - International Edition, 2020, 59, 785-789.	13.8	60
171	Optimizing rotary processes in synthetic molecular motors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16919-16924.	7.1	59
172	Two-Dimensional Molecular Patterning by Surface-Enhanced Zn-Porphyrin Coordination. Langmuir, 2009, 25, 5980-5985.	3.5	59
173	Proteasome Inhibitors with Photocontrolled Activity. ChemBioChem, 2014, 15, 2053-2057.	2.6	59
174	The isolation and photochemistry of individual atropisomers of photochromic diarylethenes. Chemical Communications, 2007, , 1745.	4.1	58
175	Bottom-Up: Can Supramolecular Tools Deliver Responsiveness from Molecular Motors to Macroscopic Materials?. Matter, 2020, 3, 355-370.	10.0	58
176	Acylhydrazine-based reticular hydrogen bonds enable robust, tough, and dynamic supramolecular materials. Science Advances, 2022, 8, eabk3286.	10.3	58
177	Macroscopic Expression of the Chirality of Amino Alcohols by a Double Amplification Mechanism in Liquid Crystalline Media. Journal of the American Chemical Society, 2005, 127, 13480-13481.	13.7	57
178	Highly Enantioselective Synthesis of 3â€Substituted Furanones by Palladiumâ€Catalyzed Kinetic Resolution of Unsymmetrical Allyl Acetates. Angewandte Chemie - International Edition, 2012, 51, 3168-3173.	13.8	57
179	Lightâ€Controlled Formation of Vesicles and Supramolecular Organogels by a Cholesterolâ€Bearing Amphiphilic Molecular Switch. Chemistry - A European Journal, 2014, 20, 1737-1742.	3.3	57
180	Central-to-Helical-to-Axial-to-Central Transfer of Chirality with a Photoresponsive Catalyst. Journal of the American Chemical Society, 2018, 140, 17278-17289.	13.7	57

#	Article	IF	CITATIONS
181	Toughening a Selfâ€Healable Supramolecular Polymer by Ionic Clusterâ€Enhanced Ironâ€Carboxylate Complexes. Angewandte Chemie, 2020, 132, 5316-5321.	2.0	57
182	Motorized Macrocycle: A Photoâ€responsive Host with Switchable and Stereoselective Guest Recognition. Angewandte Chemie - International Edition, 2021, 60, 16129-16138.	13.8	57
183	Resolution of sterically overcrowded ethylenes; a remarkable correlation between bond lengths and racemization barriers Tetrahedron Letters, 1992, 33, 2887-2890.	1.4	56
184	Lightâ€Induced Control of Protein Translocation by the SecYEG Complex. Angewandte Chemie - International Edition, 2010, 49, 7234-7238.	13.8	56
185	Tuning the Rotation Rate of Light-Driven Molecular Motors. Journal of Organic Chemistry, 2014, 79, 4446-4455.	3.2	56
186	Green-Light-Sensitive BODIPY Photoprotecting Groups for Amines. Journal of Organic Chemistry, 2018, 83, 1819-1827.	3.2	56
187	Lightâ€Gated Rotation in a Molecular Motor Functionalized with a Dithienylethene Switch. Angewandte Chemie - International Edition, 2018, 57, 10515-10519.	13.8	56
188	Chemical Locking in Molecular Tunneling Junctions Enables Nonvolatile Memory with Large On–Off Ratios. Advanced Materials, 2019, 31, 1807831.	21.0	56
189	Excited-State Dynamics of Tetraphenylethylene:Â Ultrafast Stokes Shift, Isomerization, and Charge Separation. Journal of Physical Chemistry A, 1997, 101, 9828-9836.	2.5	55
190	Controlled rotary motion of light-driven molecular motors assembled on a gold film. Chemical Science, 2010, 1, 97.	7.4	55
191	Photoswitchable Intramolecular Through-Space Magnetic Interaction. Journal of the American Chemical Society, 2011, 133, 8162-8164.	13.7	54
192	Adhesion of Photon-Driven Molecular Motors to Surfaces $\langle i \rangle via \langle i \rangle$ 1,3-Dipolar Cycloadditions: Effect of Interfacial Interactions on Molecular Motion. ACS Nano, 2011, 5, 622-630.	14.6	54
193	Molecular Stirrers in Action. Journal of the American Chemical Society, 2014, 136, 14924-14932.	13.7	54
194	Intramolecular transport of small-molecule cargo in a nanoscale device operated by light. Chemical Communications, 2016, 52, 6765-6768.	4.1	54
195	Third-Generation Light-Driven Symmetric Molecular Motors. Journal of the American Chemical Society, 2017, 139, 9650-9661.	13.7	54
196	Tailoring Photoisomerization Pathways in Donor–Acceptor Stenhouse Adducts: The Role of the Hydroxy Group. Journal of Physical Chemistry A, 2018, 122, 955-964.	2.5	54
197	Supramolecularly directed rotary motion in a photoresponsive receptor. Nature Communications, 2018, 9, 1984.	12.8	54
198	Palladiumâ€Catalysed Direct Crossâ€Coupling of Organolithium Reagents with Aryl and Vinyl Triflates. Chemistry - A European Journal, 2014, 20, 13078-13083.	3.3	53

#	Article	IF	CITATIONS
199	Visible-Light-Driven Tunable Molecular Motors Based on Oxindole. Journal of the American Chemical Society, 2019, 141, 7622-7627.	13.7	53
200	Red-light-sensitive BODIPY photoprotecting groups for amines and their biological application in controlling heart rhythm. Chemical Communications, 2020, 56, 5480-5483.	4.1	53
201	Directing Coupled Motion with Light: A Key Step Toward Machine-Like Function. Chemical Reviews, 2021, 121, 13213-13237.	47.7	53
202	Reversible photochemical control of cholesteric liquid crystals with a diamine-based diarylethene chiroptical switch. Journal of Materials Chemistry, 2011, 21, 3142.	6.7	52
203	Surface Inclusion of Unidirectional Molecular Motors in Hexagonal Tris(<i>>o</i> >-phenylene)cyclotriphosphazene. Journal of the American Chemical Society, 2017, 139, 10486-10498.	13.7	52
204	Fast, greener and scalable direct coupling of organolithium compounds with no additional solvents. Nature Communications, 2016, 7, 11698.	12.8	51
205	On/Off Photoswitching of the Electropolymerizability of Terthiophenes. Journal of the American Chemical Society, 2008, 130, 12850-12851.	13.7	50
206	Time-programmed helix inversion in phototunable liquid crystals. Chemical Communications, 2013, 49, 4256-4258.	4.1	50
207	Exploring the boundaries of a light-driven molecular motor design: new sterically overcrowded alkenes with preferred direction of rotationElectronic supplementary information (ESI) available: a table to convert the labels in the X-ray structure used in the paper and the cif-files. See http://www.rsc.org/suppdata/ob/b4/b402222i/. Organic and Biomolecular Chemistry, 2004, 2, 1531.	2.8	49
208	Lightâ€driven rotary molecular motors: an ultrafast optical study. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 181-184.	0.8	49
209	Structural Dynamics of Overcrowded Alkene-Based Molecular Motors during Thermal Isomerization. Journal of Organic Chemistry, 2014, 79, 927-935.	3.2	49
210	Photoâ€responsive Helical Motion by Lightâ€Driven Molecular Motors in a Liquidâ€Crystal Network. Angewandte Chemie - International Edition, 2021, 60, 8251-8257.	13.8	49
211	Reversible Photocontrolled Nanopore Assembly. Journal of the American Chemical Society, 2019, 141, 14356-14363.	13.7	48
212	Helix Inversion Controlled by Molecular Motors in Multistate Liquid Crystals. Advanced Materials, 2020, 32, e2004420.	21.0	48
213	Photomodulation of Transmembrane Transport and Potential by Stiff-Stilbene Based Bis(thio)ureas. Journal of the American Chemical Society, 2022, 144, 331-338.	13.7	48
214	On the effect of donor and acceptor substituents on the behaviour of light-driven rotary molecular motors. Organic and Biomolecular Chemistry, 2008, 6, 1605.	2.8	47
215	Palladium atalyzed, <i>tertâ€</i> Butyllithiumâ€Mediated Dimerization of Aryl Halides and Its Application in the Atropselective Total Synthesis of Mastigophoreneâ€A. Angewandte Chemie - International Edition, 2016, 55, 3620-3624.	13.8	47
216	In situ control of polymer helicity with a non-covalently bound photoresponsive molecular motor dopant. Chemical Communications, 2017, 53, 6393-6396.	4.1	47

#	Article	IF	Citations
217	Copper Phosphoramidite-Catalyzed Enantioselective Desymmetrization ofmeso-Cyclic Allylic Bisdiethyl Phosphates. Organic Letters, 2003, 5, 4493-4496.	4.6	46
218	Lightâ€Driven Rotary Molecular Motors on Gold Nanoparticles. Chemistry - A European Journal, 2008, 14, 11610-11622.	3.3	46
219	Supramolecular Packing and Macroscopic Alignment Controls Actuation Speed in Macroscopic Strings of Molecular Motor Amphiphiles. Journal of the American Chemical Society, 2018, 140, 17724-17733.	13.7	46
220	Electrochemical Write and Read Functionality through Oxidative Dimerization of Spiropyran Self-Assembled Monolayers on Gold. Journal of Physical Chemistry C, 2013, 117, 18567-18577.	3.1	45
221	Visible-Light Excitation of a Molecular Motor with an Extended Aromatic Core. Organic Letters, 2017, 19, 1402-1405.	4.6	45
222	Azobenzene Photoswitches for Staudinger–Bertozzi Ligation. Angewandte Chemie - International Edition, 2013, 52, 2068-2072.	13.8	44
223	An ultrafast surface-bound photo-active molecular motor. Photochemical and Photobiological Sciences, 2014, 13, 241-246.	2.9	44
224	Tuning the Temperature Dependence for Switching in Dithienylethene Photochromic Switches. Journal of Physical Chemistry A, 2013, 117, 8222-8229.	2.5	43
225	Design, Synthesis, and Inhibitory Activity of Potent, Photoswitchable Mast Cell Activation Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 4456-4464.	6.4	43
226	Designing dynamic functional molecular systems. Tetrahedron, 2017, 73, 4837-4848.	1.9	43
227	Palladium catalyzed stereospecific allylic substitution of 5-acetoxy-2(5H)-furanone and 6-acetoxy-2H-pyran-3(6H)-one by alcohols. Tetrahedron Letters, 1999, 40, 1755-1758.	1.4	42
228	Chiral separation of substituted phenylalanine analogues using chiral palladium phosphine complexes with enantioselective liquid–liquid extraction. Organic and Biomolecular Chemistry, 2010, 8, 3045.	2.8	42
229	Bright Ion Channels and Lipid Bilayers. Accounts of Chemical Research, 2013, 46, 2910-2923.	15.6	42
230	Chiral Diarylmethanes via Copper-Catalyzed Asymmetric Allylic Arylation with Organolithium Compounds. Organic Letters, 2016, 18, 252-255.	4.6	42
231	Unidirectional rotating molecular motors dynamically interact with adsorbed proteins to direct the fate of mesenchymal stem cells. Science Advances, 2020, 6, eaay2756.	10.3	42
232	Nontrivial Differentiation between Two Identical Functionalities within the Same Molecule Studied by STM. Journal of Physical Chemistry B, 1998, 102, 8981-8987.	2.6	41
233	A light-fuelled nanoratchet shifts a coupled chemical equilibrium. Nature Nanotechnology, 2022, 17, 159-165.	31.5	41
234	Self-Assembly of Low-Dimensional Arrays of Thiophene Oligomers from Solution on Solid Substrates. Advanced Materials, 2000, 12, 563-566.	21.0	40

#	Article	IF	CITATIONS
235	Remarkable Stability of High Energy Conformers in Self-Assembled Monolayers of a Bistable Electroand Photoswitchable Overcrowded Alkene. Journal of Physical Chemistry C, 2011, 115, 22965-22975.	3.1	40
236	Solvent Mixing To Induce Molecular Motor Aggregation into Bowl-Shaped Particles: Underlying Mechanism, Particle Nature, and Application To Control Motor Behavior. Journal of the American Chemical Society, 2018, 140, 7860-7868.	13.7	40
237	New procedure for the preparation of highly sterically hindered alkenes using a hypervalent iodine reagent. Organic and Biomolecular Chemistry, 2005, 3, 28.	2.8	39
238	Asymmetric Allylic Alkylation of Acyclic Allylic Ethers with Organolithium Reagents. Chemistry - A European Journal, 2012, 18, 11880-11883.	3.3	39
239	Enantioselective liquid–liquid extraction of (R,S)-phenylglycinol using a bisnaphthyl phosphoric acid derivative as chiral extractant. Tetrahedron, 2011, 67, 462-470.	1.9	38
240	Towards Dynamic Control of Wettability by Using Functionalized Altitudinal Molecular Motors on Solid Surfaces. Chemistry - A European Journal, 2013, 19, 10690-10697.	3.3	38
241	Dualâ€Controlled Macroscopic Motions in a Supramolecular Hierarchical Assembly of Motor Amphiphiles. Angewandte Chemie - International Edition, 2019, 58, 10985-10989.	13.8	38
242	Dynamic Assemblies of Molecular Motor Amphiphiles Control Macroscopic Foam Properties. Journal of the American Chemical Society, 2020, 142, 10163-10172.	13.7	38
243	Photoefficient 2 nd generation molecular motors responsive to visible light. Chemical Science, 2019, 10, 8768-8773.	7.4	37
244	Controlling the Circadian Clock with High Temporal Resolution through Photodosing. Journal of the American Chemical Society, 2019, 141, 15784-15791.	13.7	37
245	Chemistry of Unique Chiral Olefins. 4. Theoretical Studies of the Racemization Mechanism oftrans- andcis-1,1â€~,2,2â€~,3,3â€~,4,4â€~-Octahydro-4,4â€~-biphenanthrylidenes. Journal of Organic Chemistry, 1999, 64, 1667-1674.	3.2	36
246	Unidirectional Light-Driven Molecular Motors Based on Overcrowded Alkenes. Topics in Current Chemistry, 2014, 354, 139-162.	4.0	36
247	Palladium-Catalyzed C(<i>sp</i> ³)–C(<i>sp</i> ²) Cross-Coupling of (Trimethylsilyl)methyllithium with (Hetero)Aryl Halides. Organic Letters, 2015, 17, 2262-2265.	4.6	36
248	Controlling the activity of quorum sensing autoinducers with light. Chemical Science, 2015, 6, 3593-3598.	7.4	36
249	Direct Observation of a Dark State in the Photocycle of a Light-Driven Molecular Motor. Journal of Physical Chemistry A, 2016, 120, 8606-8612.	2.5	36
250	A chiral self-sorting photoresponsive coordination cage based on overcrowded alkenes. Beilstein Journal of Organic Chemistry, 2019, 15, 2767-2773.	2.2	36
251	Dynamic Control of a Multistate Chiral Supramolecular Polymer in Water. Journal of the American Chemical Society, 2022, 144, 6019-6027.	13.7	36
252	Kinetic analysis of the rotation rate of light-driven unidirectional molecular motors. Physical Chemistry Chemical Physics, 2009, 11, 9124.	2.8	35

#	Article	IF	Citations
253	Pd-Catalyzed Cross-Coupling of Aryllithium Reagents with 2-Alkoxy-Substituted Aryl Chlorides: Mild and Efficient Synthesis of 3,3′-Diaryl BINOLs. Organic Letters, 2015, 17, 62-65.	4.6	35
254	Photoactivation of MDM2 Inhibitors: Controlling Protein–Protein Interaction with Light. Journal of the American Chemical Society, 2018, 140, 13136-13141.	13.7	35
255	Controlled Diffusion of Photoswitchable Receptors by Binding Anti-electrostatic Hydrogen-Bonded Phosphate Oligomers. Journal of the American Chemical Society, 2020, 142, 20014-20020.	13.7	35
256	A coating from nature. Science Advances, 2020, 6, .	10.3	35
257	Phosphoramidite-based photoresponsive ligands displaying multifold transfer of chirality in dynamic enantioselective metal catalysis. Nature Catalysis, 2020, 3, 488-496.	34.4	35
258	Reversible modulation of circadian time with chronophotopharmacology. Nature Communications, 2021, 12, 3164.	12.8	35
259	Exploring molecular motors. Materials Chemistry Frontiers, 2021, 5, 2900-2906.	5.9	35
260	Diastereoselective cyclization of a dithienylethene switch through single crystal confinement. Organic and Biomolecular Chemistry, 2006, 4, 1002.	2.8	34
261	Rotary Molecular Motors: A Large Increase in Speed through a Small Change in Design. Journal of Organic Chemistry, 2010, 75, 5323-5325.	3.2	34
262	Light-triggered self-assembly of a dichromonyl compound in water. Chemical Communications, 2013, 49, 5001.	4.1	34
263	A Fast, Visibleâ€Lightâ€Sensitive Azobenzene for Bioorthogonal Ligation. Chemistry - A European Journal, 2014, 20, 946-951.	3.3	34
264	Asymmetric Synthesis of First Generation Molecular Motors. Organic Letters, 2014, 16, 4220-4223.	4.6	34
265	Pumping a Ring-Sliding Molecular Motion by a Light-Powered Molecular Motor. Journal of Organic Chemistry, 2019, 84, 5790-5802.	3.2	34
266	Cooperative light-induced breathing of soft porous crystals via azobenzene buckling. Nature Communications, 2022, 13, 1951.	12.8	33
267	In control of the speed of rotation in molecular motors. Unexpected retardation of rotary motionElectronic supplementary information (ESI) available: experimental section. See http://www.rsc.org/suppdata/cc/b2/b208323j/. Chemical Communications, 2002, , 2962-2963.	4.1	32
268	Direct and Versatile Synthesis of Redâ€Shifted Azobenzenes. Angewandte Chemie, 2016, 128, 13712-13716.	2.0	32
269	Photo-crosslinking polymers by dynamic covalent disulfide bonds. Chemical Communications, 2021, 57, 9838-9841.	4.1	32
270	Highly Efficient Biobased Synthesis of Acrylic Acid. Angewandte Chemie - International Edition, 2022, 61, .	13.8	32

#	Article	IF	Citations
271	Two-Step, One-Pot Synthesis of Visible-Light-Responsive 6-Azopurines. Organic Letters, 2017, 19, 5090-5093.	4.6	31
272	Light-controlled inhibition of BRAFV600E kinase. European Journal of Medicinal Chemistry, 2019, 179, 133-146.	5.5	31
273	Enantioselective "organocatalysis in disguise―by the ligand sphere of chiral metal-templated complexes. Chemical Society Reviews, 2021, 50, 9715-9740.	38.1	31
274	Photopharmacological Manipulation of Mammalian CRY1 for Regulation of the Circadian Clock. Journal of the American Chemical Society, 2021, 143, 2078-2087.	13.7	31
275	Spectroscopic and Theoretical Identification of Two Thermal Isomerization Pathways for Bistable Chiral Overcrowded Alkenes. Chemistry - A European Journal, 2016, 22, 13478-13487.	3.3	30
276	Molecular Motors in Aqueous Environment. Journal of Organic Chemistry, 2018, 83, 11008-11018.	3.2	30
277	Sterically overcrowded alkenes; synthesis, resolution and circular dichroism studies of substituted bithioxanthylidenes. Tetrahedron: Asymmetry, 1993, 4, 1481-1497.	1.8	29
278	NichthÃĦâ€Eisenzentren in der Sauerstoffaktivierung: Charakterisierung einer Eisen(III)â€hydroperoxidâ€Zwischenstufe. Angewandte Chemie, 1995, 107, 1610-1612.	2.0	29
279	Bifunctional Molecular Photoswitches Based on Overcrowded Alkenes for Dynamic Control of Catalytic Activity in Michael Addition Reactions. Chemistry - A European Journal, 2017, 23, 6174-6184.	3.3	29
280	Photoinduced swing of a diarylethene thin broad sword shaped crystal: a study on the detailed mechanism. Chemical Science, 2020, 11, 12307-12315.	7.4	29
281	Structural Aspects of Photopharmacology: Insight into the Binding of Photoswitchable and Photocaged Inhibitors to the Glutamate Transporter Homologue. Journal of the American Chemical Society, 2021, 143, 1513-1520.	13.7	29
282	New Mechanistic Insight in the Thermal Helix Inversion of Secondâ€Generation Molecular Motors. Chemistry - A European Journal, 2008, 14, 11183-11193.	3.3	28
283	Asymmetric Allylic Substitutions Using Organometallic Reagents. Topics in Organometallic Chemistry, 2016, , 1-39.	0.7	28
284	Tetrapodal Molecular Switches and Motors: Synthesis and Photochemistry. Journal of Organic Chemistry, 2014, 79, 7032-7040.	3.2	27
285	Defocused Imaging of UV-Driven Surface-Bound Molecular Motors. Journal of the American Chemical Society, 2017, 139, 7156-7159.	13.7	27
286	Object Transportation System Mimicking the Cilia of Paramecium aurelia Making Use of the Lightâ€Controllable Crystal Bending Behavior of a Photochromic Diarylethene. Angewandte Chemie - International Edition, 2019, 58, 13308-13312.	13.8	27
287	A Chemically Driven Rotary Molecular Motor Based on Reversible Lactone Formation with Perfect Unidirectionality. CheM, 2020, 6, 2420-2429.	11.7	27
288	All-Photochemical Rotation of Molecular Motors with a Phosphorus Stereoelement. Journal of the American Chemical Society, 2020, 142, 16868-16876.	13.7	27

#	Article	IF	Citations
289	Stereodivergent Chirality Transfer by Noncovalent Control of Disulfide Bonds. Journal of the American Chemical Society, 2022, 144, 4376-4382.	13.7	27
290	Photoactuating Artificial Muscles of Motor Amphiphiles as an Extracellular Matrix Mimetic Scaffold for Mesenchymal Stem Cells. Journal of the American Chemical Society, 2022, 144, 3543-3553.	13.7	27
291	Autonomous Movement of Silica and Glass Microâ€Objects Based on a Catalytic Molecular Propulsion System. Chemistry - A European Journal, 2008, 14, 3146-3153.	3.3	26
292	Dynamic chirality, chirality transfer and aggregation behaviour of dithienylethene switches. Tetrahedron, 2008, 64, 8324-8335.	1.9	26
293	An Enantioselective Synthetic Route toward Second-Generation Light-Driven Rotary Molecular Motors. Journal of Organic Chemistry, 2010, 75, 825-838.	3.2	26
294	Light and heat control over secondary structure and amyloid-like fiber formation in an overcrowded-alkene-modified Trp zipper. Chemical Science, 2015, 6, 7311-7318.	7.4	26
295	Mapping the Excited-State Potential Energy Surface of a Photomolecular Motor. Angewandte Chemie - International Edition, 2018, 57, 6203-6207.	13.8	26
296	Desymmetrization of <i>meso</i> -Dibromocycloalkenes through Copper(I)-Catalyzed Asymmetric Allylic Substitution with Organolithium Reagents. Journal of the American Chemical Society, 2018, 140, 7052-7055.	13.7	26
297	General Principles for the Design of Visibleâ€Lightâ€Responsive Photoswitches: Tetraâ€ <i>ortho</i> à€€hloroâ€Azobenzenes. Angewandte Chemie, 2020, 132, 21847-21854.	2.0	26
298	P-chirogenic phosphorus compounds by stereoselective Pd-catalysed arylation of phosphoramidites. Nature Catalysis, 2022, 5, 10-19.	34.4	26
299	Synthesis, stereochemistry, and photochemical and thermal behaviour of bis-tert-butyl substituted overcrowded alkenes. Organic and Biomolecular Chemistry, 2007, 5, 87-96.	2.8	25
300	Photocaging of Carboxylic Acids: A Modular Approach. Angewandte Chemie - International Edition, 2014, 53, 8682-8686.	13.8	25
301	Braking of a Lightâ€Driven Molecular Rotary Motor by Chemical Stimuli. Chemistry - A European Journal, 2018, 24, 81-84.	3.3	25
302	The influence of viscosity on the functioning of molecular motors. Faraday Discussions, 2009, 143, 319.	3.2	24
303	3,3′â€diarylâ€BINOL phosphoric acids as enantioselective extractants of benzylic primary amines. Chirality, 2011, 23, 34-43.	2.6	24
304	Powering rotary molecular motors with low-intensity near-infrared light. Science Advances, 2020, 6, .	10.3	24
305	Vision Statement: Materials in Motion. Advanced Materials, 2020, 32, e1906416.	21.0	24
306	Synthesis and absolute configuration of enantiomerically pure vitamin K3 2,3-epoxide. Journal of Organic Chemistry, 1980, 45, 4094-4096.	3.2	23

#	Article	IF	Citations
307	Dynamic Inversion of Stereoselective Phosphate Binding to a Bisurea Receptor Controlled by Light and Heat. Angewandte Chemie, 2016, 128, 1013-1016.	2.0	23
308	Easily Accessible, Highly Potent, Photocontrolled Modulators of Bacterial Communication. CheM, 2019, 5, 1293-1301.	11.7	23
309	Palladium-catalysed cross-coupling of lithium acetylides. Nature Catalysis, 2020, 3, 664-671.	34.4	23
310	Synthesis and Functionalization of Allenes by Direct Pdâ€Catalyzed Organolithium Crossâ€Coupling. Angewandte Chemie - International Edition, 2020, 59, 7823-7829.	13.8	23
311	In Situ Generation of Wavelengthâ€Shifting Donor–Acceptor Mixedâ€Monolayerâ€Modified Surfaces. Angewandte Chemie - International Edition, 2010, 49, 6580-6584.	13.8	22
312	Enantioselective Synthesis of Di- and Tri-Arylated All-Carbon Quaternary Stereocenters via Copper-Catalyzed Allylic Arylations with Organolithium Compounds. ACS Catalysis, 2016, 6, 6591-6595.	11.2	22
313	Effect of charge-transfer enhancement on the efficiency and rotary mechanism of an oxindole-based molecular motor. Chemical Science, 2021, 12, 7486-7497.	7.4	22
314	Ultrafast Photoclick Reaction for Selective ¹⁸ F-Positron Emission Tomography Tracer Synthesis in Flow. Journal of the American Chemical Society, 2021, 143, 10041-10047.	13.7	22
315	Strategy for Engineering High Photolysis Efficiency of Photocleavable Protecting Groups through Cation Stabilization. Journal of the American Chemical Society, 2022, 144, 12421-12430.	13.7	22
316	Loading of Vesicles into Soft Amphiphilic Nanotubes using Osmosis. Angewandte Chemie - International Edition, 2015, 54, 15122-15127.	13.8	21
317	Dynamic control over catalytic function using responsive bisthiourea catalysts. Organic and Biomolecular Chemistry, 2017, 15, 8285-8294.	2.8	21
318	Solvent Effects on the Actinic Step of Donor–Acceptor Stenhouse Adduct Photoswitching. Angewandte Chemie, 2018, 130, 8195-8200.	2.0	21
319	Molecular motor-functionalized porphyrin macrocycles. Nature Communications, 2020, 11, 5291.	12.8	21
320	Rational design of a photoswitchable DNA glue enabling high regulatory function and supramolecular chirality transfer. Chemical Science, 2021, 12, 9207-9220.	7.4	21
321	Phenylimino Indolinone: A Greenâ€Lightâ€Responsive Tâ€Type Photoswitch Exhibiting Negative Photochromism. Angewandte Chemie - International Edition, 2021, 60, 25290-25295.	13.8	21
322	Remarkable solvent isotope dependence on gelation strength in low molecular weight hydro-gelators. Chemical Communications, 2017, 53, 1719-1722.	4.1	20
323	Chirality controlled responsive self-assembled nanotubes in water. Chemical Science, 2017, 8, 1783-1789.	7.4	20
324	Fast, Efficient and Low Eâ€Factor Oneâ€Pot Palladium atalyzed Cross oupling of (Hetero)Arenes. Angewandte Chemie - International Edition, 2018, 57, 9452-9455.	13.8	20

#	Article	IF	CITATIONS
325	Cation-Modulated Rotary Speed in a Light-Driven Crown Ether Functionalized Molecular Motor. Organic Letters, 2018, 20, 3715-3718.	4.6	19
326	Lightâ€Modulated Selfâ€Blockage of a Urea Binding Site in a Stiffâ€Stilbene Based Anion Receptor. ChemPhysChem, 2019, 20, 3306-3310.	2.1	19
327	Murahashi Crossâ€Coupling at â^'78 °C: A Oneâ€Pot Procedure for Sequential Câ^'C/Câ^'C, Câ^'C/Câ^'N, and Câ^'C/Câ^'S Crossâ€Coupling of Bromoâ€Chloroâ€Arenes. Chemistry - A European Journal, 2019, 25, 9180-9184.	3.3	19
328	Correlating the Influence of Disulfides in Monolayers across Photoelectron Spectroscopy Wettability and Tunneling Charge-Transport. Journal of the American Chemical Society, 2020, 142, 15075-15083.	13.7	19
329	Engineering Long-Range Order in Supramolecular Assemblies on Surfaces: The Paramount Role of Internal Double Bonds in Discrete Long-Chain Naphthalenediimides. Journal of the American Chemical Society, 2020, 142, 4070-4078.	13.7	19
330	Light-driven molecular motors embedded in covalent organic frameworks. Chemical Science, 2022, 13, 8253-8264.	7.4	19
331	Asymmetric Synthesis of Overcrowded Alkenes by Transfer of Axial Single Bond Chirality to Axial Double Bond Chirality. Angewandte Chemie - International Edition, 1999, 38, 2738-2741.	13.8	18
332	Molecular Switches Get Wired: Synthesis of Diarylethenes Containing One or Two Sulphurs. Molecular Crystals and Liquid Crystals, 2005, 430, 205-210.	0.9	18
333	Facile assembly of light-driven molecular motors onto a solid surface. Chemical Communications, 2014, 50, 12641-12644.	4.1	18
334	Solvent effects on the thermal isomerization of a rotary molecular motor. Physical Chemistry Chemical Physics, 2016, 18, 26725-26735.	2.8	18
335	Ultrafast Excited State Dynamics in Molecular Motors: Coupling of Motor Length to Medium Viscosity. Journal of Physical Chemistry A, 2017, 121, 2138-2150.	2.5	18
336	Oxygen Activated, Palladium Nanoparticle Catalyzed, Ultrafast Crossâ€Coupling of Organolithium Reagents. Angewandte Chemie, 2017, 129, 3402-3407.	2.0	18
337	A light-responsive liposomal agent for MRI contrast enhancement and monitoring of cargo delivery. Chemical Communications, 2019, 55, 10784-10787.	4.1	18
338	Selfâ€Assembly of Photoresponsive Molecular Amphiphiles in Aqueous Media. Angewandte Chemie, 2021, 133, 11708-11731.	2.0	18
339	Enantiopure Functional Molecular Motors Obtained by a Switchable Chiralâ€Resolution Process. Chemistry - A European Journal, 2016, 22, 7054-7058.	3.3	17
340	On the Role of Viscosity in the Eyring Equation. ChemPhysChem, 2016, 17, 1819-1822.	2.1	17
341	Highly efficient enantioselective liquid–liquid extraction of 1,2-amino-alcohols using SPINOL based phosphoric acid hosts. Chemical Science, 2017, 8, 6409-6418.	7.4	17
342	Stereospecific Ring Contraction of Bromocycloheptenes through Dyotropic Rearrangements via Nonclassical Carbocation–Anion Pairs. Journal of the American Chemical Society, 2018, 140, 4986-4990.	13.7	17

#	Article	IF	CITATIONS
343	Glutamate Transporter Inhibitors with Photoâ€Controlled Activity. Advanced Therapeutics, 2018, 1, 1800028.	3.2	17
344	Lightâ€Gated Rotation in a Molecular Motor Functionalized with a Dithienylethene Switch. Angewandte Chemie, 2018, 130, 10675-10679.	2.0	17
345	Multistate Switching of Spin Selectivity in Electron Transport through Lightâ€Đriven Molecular Motors. Advanced Science, 2021, 8, e2101773.	11.2	17
346	Computational Design, Synthesis, and Photochemistry of Cy7â€PPG, an Efficient NIRâ€Activated Photolabile Protecting Group for Therapeutic Applications**. Angewandte Chemie - International Edition, 2022, 61, e202201308.	13.8	17
347	Palladium atalyzed, <i>tertâ€</i> Butyllithiumâ€Mediated Dimerization of Aryl Halides and Its Application in the Atropselective Total Synthesis of Mastigophoreneâ€A. Angewandte Chemie, 2016, 128, 3684-3688.	2.0	16
348	Design, Synthesis, and Isomerization Studies of Light-Driven Molecular Motors for Single Molecular Imaging. Journal of Organic Chemistry, 2018, 83, 6025-6034.	3.2	16
349	Cooperative and synchronized rotation in motorized porous frameworks: impact on local and global transport properties of confined fluids. Faraday Discussions, 2021, 225, 286-300.	3.2	16
350	Synthesis of [18F]RGD-K5 by catalyzed [3+2] cycloaddition for imaging integrin $\hat{l}\pm v\hat{l}^2$ 3 expression in vivo. Nuclear Medicine and Biology, 2013, 40, 710-716.	0.6	15
351	Towards Redoxâ€Driven Unidirectional Molecular Motion. ChemPhysChem, 2016, 17, 1895-1901.	2.1	15
352	Light-induced molecular rotation triggers on-demand release from liposomes. Chemical Communications, 2020, 56, 8774-8777.	4.1	15
353	Reductive stability evaluation of 6-azopurine photoswitches for the regulation of CKIÎ \pm activity and circadian rhythms. Organic and Biomolecular Chemistry, 2021, 19, 2312-2321.	2.8	15
354	Three-State Switching of an Anthracene Extended Bis-thiaxanthylidene with a Highly Stable Diradical State. Journal of the American Chemical Society, 2021, 143, 18020-18028.	13.7	15
355	Transforming Dyes into Fluorophores: Excitonâ€Induced Emission with Chainâ€Iike Oligoâ€BODIPY Superstructures. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
356	Phototriggered Complex Motion by Programmable Construction of Light-Driven Molecular Motors in Liquid Crystal Networks. Journal of the American Chemical Society, 2022, 144, 6851-6860.	13.7	15
357	Controlling forward and backward rotary molecular motion on demand. Nature Communications, 2022, 13, 2124.	12.8	15
358	One-pot sequential 1,2-addition, Pd-catalysed cross-coupling of organolithium reagents with Weinreb amides. Chemical Communications, 2016, 52, 1206-1209.	4.1	14
359	Asymmetric Synthesis of Second-Generation Light-Driven Molecular Motors. Journal of Organic Chemistry, 2017, 82, 5027-5033.	3.2	14
360	Proof of concept for continuous enantioselective liquid–liquid extraction in capillary microreactors using 1-octanol as a sustainable solvent. Green Chemistry, 2017, 19, 4334-4343.	9.0	14

#	Article	IF	CITATIONS
361	Multi-modal control over the assembly of a molecular motor bola-amphiphile in water. Chemical Communications, 2020, 56, 7451-7454.	4.1	14
362	Stereodivergent Anion Binding Catalysis with Molecular Motors. Angewandte Chemie, 2020, 132, 795-799.	2.0	14
363	The Influence of Strain on the Rotation of an Artificial Molecular Motor. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
364	Bidirectional Photomodulation of Surface Tension in Langmuir Films. Angewandte Chemie - International Edition, 2017, 56, 291-296.	13.8	13
365	Unravelling the electronic structure and dynamics of an isolated molecular rotary motor in the gas-phase. Chemical Science, 2017, 8, 6141-6148.	7.4	13
366	A Visibleâ€Lightâ€Driven Molecular Motor Based on Pyrene. Helvetica Chimica Acta, 2019, 102, e1800221.	1.6	13
367	Supramolecular control of unidirectional rotary motion in a sterically overcrowded photoswitchable receptor. Organic Chemistry Frontiers, 2020, 7, 3874-3879.	4.5	13
368	Ultrafast Excited State Dynamics in a First Generation Photomolecular Motor. ChemPhysChem, 2020, 21, 594-599.	2.1	13
369	Modular Medical Imaging Agents Based on Azide–Alkyne Huisgen Cycloadditions: Synthesis and Preâ€Clinical Evaluation of ¹⁸ Fâ€Labeled PSMAâ€Tracers for Prostate Cancer Imaging. Chemistry - A European Journal, 2020, 26, 10871-10881.	3.3	13
370	Tailoring the optical and dynamic properties of iminothioindoxyl photoswitches through acidochromism. Chemical Science, 2021, 12, 4588-4598.	7.4	13
371	Inherently chiral olefins. Synthesis and resolution of 4â€(9â€fluorenylidene)â€1,2,3,4â€tetrahydrophenanthrene. Recueil Des Travaux Chimiques Des Pays-Bas, 1978, 249-252.	9 ō, o	12
372	Asymmetric Synthesis of Bi(thio)xanthylidene Overcrowded Alkenes. European Journal of Organic Chemistry, 2006, 2006, 3596-3605.	2.4	12
373	Following the Autonomous Movement of Silica Microparticles Using Fluorescence Microscopy. Small, 2008, 4, 476-480.	10.0	12
374	Fluorineâ€Substituted Molecular Motors with a Quaternary Stereogenic Center. Chemistry - A European Journal, 2017, 23, 6643-6653.	3.3	12
375	Comparative Study of Photoswitchable Zincâ€Finger Domain and ATâ€Hook Motif for Lightâ€Controlled Peptide–DNA Binding. Chemistry - A European Journal, 2019, 25, 4965-4973.	3.3	12
376	Modulation of a Supramolecular Figureâ€ofâ€Eight Strip Based on a Photoswitchable Stiffâ€Stilbene. Chemistry - A European Journal, 2020, 26, 7783-7787.	3.3	12
377	Motorized Macrocycle: A Photoâ€responsive Host with Switchable and Stereoselective Guest Recognition. Angewandte Chemie, 2021, 133, 16265-16274.	2.0	11
378	Chiral overcrowded alkenes; Asymmetric synthesis of (3S,3?S)-(M,M)-(E)-(+)-1,1?,2,2?,3,3?,4,4?-octahydro-3,3?,7,7?-tetramethyl-4,4?-biphenanthrylidenes. Chirality, 2000, 12, 734-741.	2.6	10

#	Article	IF	Citations
379	Eliminating Fatigue in Surface-Bound Spiropyrans. Journal of Physical Chemistry C, 2019, 123, 25908-25914.	3.1	10
380	Synthesis of Core-Modified Third-Generation Light-Driven Molecular Motors. Journal of Organic Chemistry, 2020, 85, 10670-10680.	3.2	10
381	Photoâ€responsive Helical Motion by Lightâ€Driven Molecular Motors in a Liquidâ€Crystal Network. Angewandte Chemie, 2021, 133, 8332-8338.	2.0	10
382	Mechanism of Resistance Development in E. coli against TCAT, a Trimethoprim-Based Photoswitchable Antibiotic. Pharmaceuticals, 2021, 14, 392.	3.8	10
383	A molecular motor from lignocellulose. Green Chemistry, 2022, 24, 3689-3696.	9.0	10
384	Hypothesis-Driven, Structure-Based Design in Photopharmacology: The Case of eDHFR Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 4798-4817.	6.4	10
385	Structure and second harmonic generation of Langmuir-Blodgett films of two chiral amphiphilic azo dyes. Langmuir, 1993, 9, 1323-1329.	3.5	9
386	Electronic properties of individual diarylethene molecules studied using scanning tunneling spectroscopy. Journal of Applied Physics, 2012, 111, .	2.5	9
387	Bacterial patterning controlled by light exposure. Organic and Biomolecular Chemistry, 2015, 13, 1639-1642.	2.8	9
388	End-capping of amphiphilic nanotubes with phospholipid vesicles: impact of the phospholipid on the cap formation and vesicle loading under osmotic conditions. Chemical Communications, 2016, 52, 11697-11700.	4.1	9
389	Salenâ€Based Amphiphiles: Directing Selfâ€Assembly in Water by Metal Complexation. Angewandte Chemie - International Edition, 2019, 58, 14935-14939.	13.8	9
390	Object Transportation System Mimicking the Cilia of <i>Paramecium aurelia</i> Making Use of the Lightâ€Controllable Crystal Bending Behavior of a Photochromic Diarylethene. Angewandte Chemie, 2019, 131, 13442-13446.	2.0	9
391	Biaryl sulfonamides as <i>cisoid</i> azosteres for photopharmacology. Chemical Communications, 2021, 57, 4126-4129.	4.1	9
392	Excited State Structure Correlates with Efficient Photoconversion in Unidirectional Motors. Journal of Physical Chemistry Letters, 2021, 12, 3367-3372.	4.6	9
393	Chiral Amplification of Phosphoramidates of Amines and Amino Acids in Water. Angewandte Chemie - International Edition, 2021, 60, 11120-11126.	13.8	9
394	Highly Efficient Biobased Synthesis of Acrylic Acid. Angewandte Chemie, 2022, 134, .	2.0	9
395	Controlling rotary motion of molecular motors based on oxindole. Organic Chemistry Frontiers, 2022, 9, 2084-2092.	4.5	9
396	Photoswitchable architecture transformation of a DNA-hybrid assembly at the microscopic and macroscopic scale. Chemical Science, 2022, 13, 3263-3272.	7.4	9

#	Article	IF	Citations
397	Bidirectional Photomodulation of Surface Tension in Langmuir Films. Angewandte Chemie, 2017, 129, 297-302.	2.0	8
398	Supramolecular Low-Molecular-Weight Hydrogelator Stabilization of SERS-Active Aggregated Nanoparticles for Solution and Gas Sensing. Langmuir, 2017, 33, 8805-8812.	3.5	8
399	An atom efficient synthesis of tamoxifen. Organic and Biomolecular Chemistry, 2019, 17, 2315-2320.	2.8	8
400	Photophysics of First-Generation Photomolecular Motors: Resolving Roles of Temperature, Friction, and Medium Polarity. Journal of Physical Chemistry A, 2021, 125, 1711-1719.	2.5	8
401	Bisthioxanthylidene biscrown ethers as potential stereodivergent chiral ligands. Organic and Biomolecular Chemistry, 2006, 4, 4101.	2.8	7
402	Spin relaxation in graphene with self-assembled cobalt porphyrin molecules. Physical Review B, 2015, 92, .	3.2	7
403	One-Pot, Modular Approach to Functionalized Ketones via Nucleophilic Addition of Alkyllithium Reagents to Benzamides and Pd-Catalyzed α-Arylation. ACS Catalysis, 2016, 6, 2622-2625.	11.2	7
404	Cu-catalyzed enantioselective allylic alkylation with organolithium reagents. Nature Protocols, 2017, 12, 493-505.	12.0	7
405	One-pot, modular approach to functionalized ketones <i>via</i> nucleophilic addition/Buchwald–Hartwig amination strategy. Chemical Communications, 2019, 55, 2908-2911.	4.1	7
406	Absolute Configuration Determination from Low <i>ee</i> Compounds by the Crystalline Sponge Method. Unusual Conglomerate Formation in a Preâ€Determined Crystalline Lattice. Angewandte Chemie - International Edition, 2021, 60, 11809-11813.	13.8	7
407	Chiral Amplification of Phosphoramidates of Amines and Amino Acids in Water. Angewandte Chemie, 2021, 133, 11220-11226.	2.0	7
408	A Novel Donor Acceptor Substituted Chiroptical Molecular Switch: Physical Properties and Photoisomerization Behavior. Molecular Crystals and Liquid Crystals, 2000, 344, 1-6.	0.3	6
409	Mapping the Excited-State Potential Energy Surface of a Photomolecular Motor. Angewandte Chemie, 2018, 130, 6311-6315.	2.0	6
410	Fast, Efficient and Low Eâ€Factor Oneâ€Pot Palladiumâ€Catalyzed Crossâ€Coupling of (Hetero)Arenes. Angewandte Chemie, 2018, 130, 9596-9599.	2.0	6
411	Highly Efficient and Robust Enantioselective Liquid–Liquid Extraction of 1,2â€Amino Alcohols utilizing VAPOL―and VANOLâ€based Phosphoric Acid Hosts. ChemSusChem, 2018, 11, 178-184.	6.8	6
412	Dualâ€Controlled Macroscopic Motions in a Supramolecular Hierarchical Assembly of Motor Amphiphiles. Angewandte Chemie, 2019, 131, 11101-11105.	2.0	6
413	Synthesis of Substituted Benzaldehydes via a Two-Step, One-Pot Reduction/Cross-Coupling Procedure. Organic Letters, 2019, 21, 4087-4091.	4.6	6
414	A Facile and Reproducible Synthesis of Near-Infrared Fluorescent Conjugates with Small Targeting Molecules for Microbial Infection Imaging. ACS Omega, 2020, 5, 22071-22080.	3.5	6

#	Article	IF	CITATIONS
415	Pd-catalyzed sp–sp3 cross-coupling of benzyl bromides using lithium acetylides. Chemical Communications, 2021, 57, 7529-7532.	4.1	6
416	Lightâ€Driven Spiral Deformation of Supramolecular Helical Microfibers by Localized Photoisomerization. Advanced Optical Materials, 2022, 10, 2101267.	7.3	6
417	Chiral Recognition in Bis-Urea-Based Aggregates and Organogels through Cooperative Interactions This work was supported by the Dutch Foundation for Scientific Research (NWO). The Royal Netherlands Academy of Sciences is gratefully acknowledged for a fellowship to J.v.E Angewandte Chemie - International Edition, 2001, 40, 613-616.	13.8	6
418	Iterative catalyst controlled diastereodivergent synthesis of polypropionates. Organic Chemistry Frontiers, 2016, 3, 1383-1391.	4.5	5
419	Cross-coupling of [¹¹ C]methyllithium for ¹¹ C-labelled PET tracer synthesis. Chemical Communications, 2021, 57, 203-206.	4.1	5
420	Predicting the substituent effects in the optical and electrochemical properties of N,N′-substituted isoindigos. Photochemical and Photobiological Sciences, 2021, 20, 927-938.	2.9	5
421	Light-Control over Casein Kinase $\hat{1}$ ' Activity with Photopharmacology: A Clear Case for Arylazopyrazole-Based Inhibitors. International Journal of Molecular Sciences, 2022, 23, 5326.	4.1	5
422	Xâ€Ray structure of the inherently dissymmetric olefin D,Lâ€ <i>trans</i> \$\frac{1}{2},3,4,1′,2′,3′,4′â€octahydroâ€4,4′â€biphenanthrylidene. Recueil Des Trava Pays-Bas, 1979, 98, 1-2.	ux Ghi miq	ue s iDes
423	Reorganization from Kinetically Stable Aggregation States to Thermodynamically Stable Nanotubes of BINOL-Derived Amphiphiles in Water. Langmuir, 2019, 35, 11821-11828.	3.5	4
424	Combinatorial Selection Among Geometrical Isomers of Discrete Long-Carbon-Chain Naphthalenediimides Induces Local Order at the Liquid/Solid Interface. ACS Nano, 2020, 14, 13865-13875.	14.6	4
425	On the Right "Track―to Artificial Assemblers. CheM, 2020, 6, 2868-2870.	11.7	4
426	Synthesis and Functionalization of Allenes by Direct Pdâ€Catalyzed Organolithium Crossâ€Coupling. Angewandte Chemie, 2020, 132, 7897-7903.	2.0	4
427	Transforming Dyes into Fluorophores: Excitonâ€Induced Emission with Chainâ€Iike Oligoâ€BODIPY Superstructures. Angewandte Chemie, 2022, 134, .	2.0	4
428	Computational Design, Synthesis, and Photochemistry of Cy7â€PPG, an Efficient NIRâ€Activated Photolabile Protecting Group for Therapeutic Applications**. Angewandte Chemie, 2022, 134, .	2.0	4
429	The Influence of Strain on the Rotation of an Artificial Molecular Motor. Angewandte Chemie, 0, , .	2.0	4
430	Stepwise Adsorption of Alkoxyâ€Pyrene Derivatives onto a Lamellar, Nonâ€Porous Naphthalenediimideâ€Template on HOPG. Chemistry - A European Journal, 2021, 27, 207-211.	3.3	3
431	In situ EPR and Raman spectroscopy in the curing of bis-methacrylate–styrene resins. RSC Advances, 2022, 12, 2537-2548.	3.6	3
432	A Photocleavable Contrast Agent for Light-Responsive MRI. Pharmaceuticals, 2020, 13, 296.	3.8	2

#	Article	IF	CITATIONS
433	Tuning of Morphology by Chirality in Selfâ€Assembled Structures of Bis(Urea) Amphiphiles in Water. Chemistry - A European Journal, 2021, 27, 326-330.	3.3	2
434	Phenylimino Indolinone: A Greenâ€Lightâ€Responsive Tâ€Type Photoswitch Exhibiting Negative Photochromism. Angewandte Chemie, 2021, 133, 25494.	2.0	2
435	Artificial microtubules burst with energy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11804-11805.	7.1	1
436	High-resolution gas-phase spectroscopy of a single-bond axle rotary motor. Tetrahedron, 2017, 73, 4887-4890.	1.9	1
437	Salenâ€Based Amphiphiles: Directing Selfâ€Assembly in Water by Metal Complexation. Angewandte Chemie, 2019, 131, 15077-15081.	2.0	1
438	Light-driven Molecular Motors on Surfaces for Single Molecular Imaging. Journal of Visualized Experiments, 2019, , .	0.3	1
439	Fast synthesis and redox switching of di- and tetra-substituted bisthioxanthylidene overcrowded alkenes. Chemical Communications, 2021, 57, 7665-7668.	4.1	1
440	Self-Assembly of Low-Dimensional Arrays of Thiophene Oligomers from Solution on Solid Substrates. , 2000, 12, 563.		1
441	Ultrafast Isomerization Dynamics of a Unidirectional Molecular Rotor Revealed by Femtosecond Stimulated Raman Spectroscopy (FSRS)., 2016,,.		1
442	Lightâ€gated binding in doubleâ€motorized porphyrin cages. Natural Sciences, 2022, 2, .	2.1	1
443	Supramolecular Chemistry at the Liquid/Solid Interface. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	0
444	Absolute Configuration Determination from Low ee Compounds by the Crystalline Sponge Method. Unusual Conglomerate Formation in a Preâ€Determined Crystalline Lattice. Angewandte Chemie, 2021, 133, 11915-11919.	2.0	0
445	Ultrafast Dynamics of Molecular Motors Driven by Near-Infrared Light. , 2020, , .		O