
J T Randerson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/746257/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. , 1998, 281, 237-240.		4,598
2	Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 2010, 10, 11707-11735.	4.9	2,326
3	Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 1993, 7, 811-841.	4.9	2,290
4	Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2009, 2, 831-836.	12.9	1,746
5	Interannual variability in global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics, 2006, 6, 3423-3441.	4.9	1,573
6	Global fire emissions estimates during 1997–2016. Earth System Science Data, 2017, 9, 697-720.	9.9	1,159
7	Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 2002, 415, 626-630.	27.8	1,157
8	CO2 emissions from forest loss. Nature Geoscience, 2009, 2, 737-738.	12.9	1,095
9	Analysis of daily, monthly, and annual burned area using the fourthâ€generation global fire emissions database (GFED4). Journal of Geophysical Research G: Biogeosciences, 2013, 118, 317-328.	3.0	1,086
10	Present-day climate forcing and response from black carbon in snow. Journal of Geophysical Research, 2007, 112, .	3.3	1,059
11	Global net primary production: Combining ecology and remote sensing. Remote Sensing of Environment, 1995, 51, 74-88.	11.0	1,016
12	Reconciling Carbon-cycle Concepts, Terminology, and Methods. Ecosystems, 2006, 9, 1041-1050.	3.4	904
13	An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18925-18930.	7.1	895
14	The Impact of Boreal Forest Fire on Climate Warming. Science, 2006, 314, 1130-1132.	12.6	765
15	A human-driven decline in global burned area. Science, 2017, 356, 1356-1362.	12.6	694
16	The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. Journal of Advances in Modeling Earth Systems, 2019, 11, 4245-4287.	3.8	692
17	Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature, 2014, 514, 213-217.	27.8	648
18	The Orbiting Carbon Observatory (OCO) mission. Advances in Space Research, 2004, 34, 700-709.	2.6	596

#	Article	IF	CITATIONS
19	Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences, 2013, 10, 1717-1736.	3.3	593
20	Global burned area and biomass burning emissions from small fires. Journal of Geophysical Research, 2012, 117, .	3.3	578
21	Estimated Global Mortality Attributable to Smoke from Landscape Fires. Environmental Health Perspectives, 2012, 120, 695-701.	6.0	576
22	Continental-Scale Partitioning of Fire Emissions During the 1997 to 2001 El Nino/La Nina Period. Science, 2004, 303, 73-76.	12.6	549
23	Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences, 2010, 7, 1171-1186.	3.3	535
24	Global estimation of burned area using MODIS active fire observations. Atmospheric Chemistry and Physics, 2006, 6, 957-974.	4.9	526
25	Biospheric Primary Production During an ENSO Transition. Science, 2001, 291, 2594-2597.	12.6	523
26	Arctic and boreal ecosystems of western North America as components of the climate system. Global Change Biology, 2000, 6, 211-223.	9.5	488
27	Carbon isotopes in terrestrial ecosystem pools and CO ₂ fluxes. New Phytologist, 2008, 178, 24-40.	7.3	444
28	Insights from Earth system model initial-condition large ensembles and future prospects. Nature Climate Change, 2020, 10, 277-286.	18.8	436
29	The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Global Biogeochemical Cycles, 1997, 11, 535-560.	4.9	435
30	Iterative near-term ecological forecasting: Needs, opportunities, and challenges. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1424-1432.	7.1	400
31	Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences, 2009, 6, 2099-2120.	3.3	399
32	Plant responses to increasing CO ₂ reduce estimates of climate impacts on drought severity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10019-10024.	7.1	399
33	Ecosystem carbon dioxide fluxes after disturbance in forests of North America. Journal of Geophysical Research, 2010, 115, .	3.3	395
34	Carbon emissions from fires in tropical and subtropical ecosystems. Global Change Biology, 2003, 9, 547-562.	9.5	390
35	Climate-driven risks to the climate mitigation potential of forests. Science, 2020, 368, .	12.6	346
36	Toward more realistic projections of soil carbon dynamics by Earth system models. Global Biogeochemical Cycles, 2016, 30, 40-56.	4.9	343

#	Article	IF	CITATIONS
37	Climate regulation of fire emissions and deforestation in equatorial Asia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20350-20355.	7.1	336
38	Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature, 2018, 553, 194-198.	27.8	325
39	Systematic assessment of terrestrial biogeochemistry in coupled climate–carbon models. Global Change Biology, 2009, 15, 2462-2484.	9.5	324
40	Precision requirements for space-based data. Journal of Geophysical Research, 2007, 112, .	3.3	322
41	Influence of tree species on continental differences in boreal fires and climate feedbacks. Nature Geoscience, 2015, 8, 228-234.	12.9	320
42	Protecting climate with forests. Environmental Research Letters, 2008, 3, 044006.	5.2	313
43	Biophysical considerations in forestry for climate protection. Frontiers in Ecology and the Environment, 2011, 9, 174-182.	4.0	301
44	Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change, 2017, 7, 529-534.	18.8	285
45	Sustained climate warming drives declining marine biological productivity. Science, 2018, 359, 1139-1143.	12.6	276
46	A framework for benchmarking land models. Biogeosciences, 2012, 9, 3857-3874.	3.3	267
47	Differences between surface and column atmospheric CO2and implications for carbon cycle research. Journal of Geophysical Research, 2004, 109, .	3.3	259
48	Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences, 2014, 11, 2341-2356.	3.3	259
49	El Niño and health risks from landscape fire emissions in southeast Asia. Nature Climate Change, 2013, 3, 131-136.	18.8	250
50	Changing feedbacks in the climate–biosphere system. Frontiers in Ecology and the Environment, 2008, 6, 313-320.	4.0	247
51	Climate controls on the variability of fires in the tropics and subtropics. Global Biogeochemical Cycles, 2008, 22, .	4.9	238
52	The Global Fire Atlas of individual fire size, duration, speed and direction. Earth System Science Data, 2019, 11, 529-552.	9.9	227
53	The changing radiative forcing of fires: global model estimates for past, present and future. Atmospheric Chemistry and Physics, 2012, 12, 10857-10886.	4.9	212
54	Carbon 13 exchanges between the atmosphere and biosphere. Global Biogeochemical Cycles, 1997, 11, 507-533.	4.9	206

#	Article	IF	CITATIONS
55	Increases in early season ecosystem uptake explain recent changes in the seasonal cycle of atmospheric CO2at high northern latitudes. Geophysical Research Letters, 1999, 26, 2765-2768.	4.0	206
56	Daily and 3-hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	200
57	Forecasting Fire Season Severity in South America Using Sea Surface Temperature Anomalies. Science, 2011, 334, 787-791.	12.6	197
58	Fire dynamics during the 20th century simulated by the Community Land Model. Biogeosciences, 2010, 7, 1877-1902.	3.3	194
59	A few extreme events dominate global interannual variability in gross primary production. Environmental Research Letters, 2014, 9, 035001.	5.2	194
60	C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6. Geoscientific Model Development, 2016, 9, 2853-2880.	3.6	186
61	The effect of post-fire stand age on the boreal forest energy balance. Agricultural and Forest Meteorology, 2006, 140, 41-50.	4.8	184
62	The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional type in boreal forest ecosystems. Agricultural and Forest Meteorology, 2007, 147, 172-185.	4.8	182
63	Agricultural intensification increases deforestation fire activity in Amazonia. Global Change Biology, 2008, 14, 2262-2275.	9.5	180
64	The International Land Model Benchmarking (ILAMB) System: Design, Theory, and Implementation. Journal of Advances in Modeling Earth Systems, 2018, 10, 2731-2754.	3.8	175
65	Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: An annual perspective. Journal of Geophysical Research, 2005, 110, .	3.3	174
66	NET ECOSYSTEM PRODUCTION: A COMPREHENSIVE MEASURE OF NET CARBON ACCUMULATION BY ECOSYSTEMS. , 2002, 12, 937-947.		173
67	Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources. Nature, 2011, 476, 194-197.	27.8	167
68	Ecosystem responses to recent climate change and fire disturbance at northern high latitudes: observations and model results contrasting northern Eurasia and North America. Environmental Research Letters, 2007, 2, 045031.	5.2	160
69	Preindustrial-Control and Twentieth-Century Carbon Cycle Experiments with the Earth System Model CESM1(BGC). Journal of Climate, 2014, 27, 8981-9005.	3.2	156
70	Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences, 2016, 13, 5151-5170.	3.3	156
71	Substrate limitations for heterotrophs: Implications for models that estimate the seasonal cycle of atmospheric CO2. Global Biogeochemical Cycles, 1996, 10, 585-602.	4.9	153
72	The COVID-19 lockdowns: a window into the Earth System. Nature Reviews Earth & Environment, 2020, 1, 470-481.	29.7	153

#	Article	IF	CITATIONS
73	Interannual variation in global-scale net primary production: Testing model estimates. Global Biogeochemical Cycles, 1997, 11, 367-392.	4.9	151
74	Satellite remote sounding of midâ€ŧropospheric CO ₂ . Geophysical Research Letters, 2008, 35, .	4.0	151
75	Vegetation controls on northern high latitude snowâ€albedo feedback: observations and <scp>CMIP</scp> 5 model simulations. Global Change Biology, 2014, 20, 594-606.	9.5	151
76	Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science, 2016, 353, 1419-1424.	12.6	149
77	Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5361-5366.	7.1	149
78	Postfire response of North American boreal forest net primary productivity analyzed with satellite observations. Global Change Biology, 2003, 9, 1145-1157.	9.5	147
79	New constraints on Northern Hemisphere growing season net flux. Geophysical Research Letters, 2007, 34, .	4.0	147
80	Impacts of biomass burning emissions and land use change on Amazonian atmospheric phosphorus cycling and deposition. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	142
81	The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo. Global Change Biology, 2011, 17, 2853-2866.	9.5	142
82	Climate control of terrestrial carbon exchange across biomes and continents. Environmental Research Letters, 2010, 5, 034007.	5.2	137
83	Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation. Atmospheric Chemistry and Physics, 2013, 13, 5227-5241.	4.9	137
84	Trends in North American net primary productivity derived from satellite observations, 1982-1998. Global Biogeochemical Cycles, 2002, 16, 2-1-2-14.	4.9	133
85	The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN. Biogeosciences, 2012, 9, 509-525.	3.3	131
86	The age distribution of global soil carbon inferred from radiocarbon measurements. Nature Geoscience, 2020, 13, 555-559.	12.9	123
87	Top-down estimates of global CO sources using MOPITT measurements. Geophysical Research Letters, 2004, 31, .	4.0	122
88	Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002. Journal of Geophysical Research, 2004, 109, .	3.3	122
89	Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 141-162.	3.0	121
90	Recovery of Aboveground Plant Biomass and Productivity After Fire in Mesic and Dry Black Spruce Forests of Interior Alaska. Ecosystems, 2008, 11, 209-225.	3.4	120

#	Article	IF	CITATIONS
91	Long-term trends and interannual variability of forest, savanna and agricultural fires in South America. Carbon Management, 2013, 4, 617-638.	2.4	120
92	Change in net primary production and heterotrophic respiration: How much is necessary to sustain the terrestrial carbon sink?. Global Biogeochemical Cycles, 1996, 10, 711-726.	4.9	115
93	A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nature Climate Change, 2017, 7, 906-911.	18.8	115
94	Model comparisons for estimating carbon emissions from North American wildland fire. Journal of Geophysical Research, 2011, 116, .	3.3	112
95	The influence of burn severity on postfire vegetation recovery and albedo change during early succession in North American boreal forests. Journal of Geophysical Research, 2012, 117, .	3.3	111
96	Seasonal and latitudinal variability of troposphere Δ14CO2: Post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere. Global Biogeochemical Cycles, 2002, 16, 59-1-59-19.	4.9	108
97	Fire emissions from C3and C4vegetation and their influence on interannual variability of atmospheric CO2and δ13CO2. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	108
98	Regional patterns of radiocarbon and fossil fuel-derived CO2in surface air across North America. Geophysical Research Letters, 2007, 34, .	4.0	108
99	Future increases in Arctic lightning and fire risk for permafrost carbon. Nature Climate Change, 2021, 11, 404-410.	18.8	103
100	Do volcanic eruptions enhance or diminish net primary production? Evidence from tree rings. Global Biogeochemical Cycles, 2003, 17, n/a-n/a.	4.9	101
101	Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nature Plants, 2019, 5, 952-958.	9.3	101
102	Satellite-derived increases in net primary productivity across North America, 1982-1998. Geophysical Research Letters, 2002, 29, 69-1-69-4.	4.0	100
103	Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia. Journal of Geophysical Research, 2011, 116, .	3.3	100
104	Changes in surface albedo after fire in boreal forest ecosystems of interior Alaska assessed using MODIS satellite observations. Journal of Geophysical Research, 2008, 113, .	3.3	98
105	Fire severity influences the response of soil microbes to a boreal forest fire. Environmental Research Letters, 2016, 11, 035004.	5.2	98
106	Time-dependent inversion estimates of global biomass-burning CO emissions using Measurement of Pollution in the Troposphere (MOPITT) measurements. Journal of Geophysical Research, 2006, 111, .	3.3	94
107	Representing leaf and root physiological traits in CLM improves global carbon and nitrogen cycling predictions. Journal of Advances in Modeling Earth Systems, 2016, 8, 598-613.	3.8	93
108	Continental-scale net radiation and evapotranspiration estimated using MODIS satellite observations. Remote Sensing of Environment, 2011, 115, 2302-2319.	11.0	91

#	Article	IF	CITATIONS
109	Zonally contrasting shifts of the tropical rain belt in response to climate change. Nature Climate Change, 2021, 11, 143-151.	18.8	88
110	Do biomass burning aerosols intensify drought in equatorial Asia during El Niño?. Atmospheric Chemistry and Physics, 2010, 10, 3515-3528.	4.9	87
111	Expansion of Coccidioidomycosis Endemic Regions in the United States in Response to Climate Change. GeoHealth, 2019, 3, 308-327.	4.0	86
112	Nitrogen deposition in tropical forests from savanna and deforestation fires. Global Change Biology, 2010, 16, 2024-2038.	9.5	84
113	Evaluating two experimental approaches for measuring ecosystem carbon oxidation state and oxidative ratio. Journal of Geophysical Research, 2008, 113, .	3.3	82
114	Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nature Climate Change, 2018, 8, 434-440.	18.8	80
115	Fire effects on net radiation and energy partitioning: Contrasting responses of tundra and boreal forest ecosystems. Journal of Geophysical Research, 2005, 110, .	3.3	79
116	Impulse response functions of terrestrial carbon cycle models: method and application. Global Change Biology, 1999, 5, 371-394.	9.5	78
117	Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems. Biogeosciences, 2014, 11, 3739-3755.	3.3	78
118	Estimates of fire emissions from an active deforestation region in the southern Amazon based on satellite data and biogeochemical modelling. Biogeosciences, 2009, 6, 235-249.	3.3	76
119	Identification of two distinct fire regimes in Southern California: implications for economic impact and future change. Environmental Research Letters, 2015, 10, 094005.	5.2	75
120	How much global burned area can be forecast on seasonal time scales using sea surface temperatures?. Environmental Research Letters, 2016, 11, 045001.	5.2	72
121	Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air–sea gas transfer velocity. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 390-417.	1.6	71
122	Influence of clouds and diffuse radiation on ecosystemâ€atmosphere CO ₂ and CO ¹⁸ O exchanges. Journal of Geophysical Research, 2009, 114, .	3.3	71
123	High-latitude cooling associated with landscape changes from North American boreal forest fires. Biogeosciences, 2013, 10, 699-718.	3.3	71
124	The role of fire in global forest loss dynamics. Global Change Biology, 2021, 27, 2377-2391.	9.5	71
125	Contribution of ocean, fossil fuel, land biosphere, and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO ₂ . Journal of Geophysical Research, 2008, 113,	3.3	70
126	Mapping the daily progression of large wildland fires using MODIS active fire data. International Journal of Wildland Fire, 2014, 23, 655.	2.4	69

#	Article	IF	CITATIONS
127	Coccidioidomycosis Dynamics in Relation to Climate in the Southwestern United States. GeoHealth, 2018, 2, 6-24.	4.0	69
128	The use of ATSR active fire counts for estimating relative patterns of biomass burning - a study from the boreal forest region. Geophysical Research Letters, 2003, 30, .	4.0	68
129	Satellite observations of terrestrial water storage provide early warning information about drought and fire season severity in the Amazon. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 495-504.	3.0	66
130	Contrasting controls on wildland fires in Southern California during periods with and without Santa Ana winds. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 432-450.	3.0	66
131	A possible global covariance between terrestrial gross primary production and13C discrimination: Consequences for the atmospheric13C budget and its response to ENSO. Global Biogeochemical Cycles, 2002, 16, 83-1-83-16.	4.9	65
132	The sensitivity of CO and aerosol transport to the temporal and vertical distribution of North American boreal fire emissions. Atmospheric Chemistry and Physics, 2009, 9, 6559-6580.	4.9	63
133	Multicentury changes in ocean and land contributions to the climateâ€carbon feedback. Global Biogeochemical Cycles, 2015, 29, 744-759.	4.9	63
134	Title is missing!. Biogeochemistry, 2000, 48, 91-114.	3.5	59
135	Controls on the spatial pattern of wildfire ignitions in Southern California. International Journal of Wildland Fire, 2014, 23, 799.	2.4	58
136	Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model. Journal of Geophysical Research, 2008, 113, .	3.3	56
137	Economic carbon cycle feedbacks may offset additional warming from natural feedbacks. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 759-764.	7.1	56
138	Measurement of soil carbon oxidation state and oxidative ratio by ¹³ C nuclear magnetic resonance. Journal of Geophysical Research, 2009, 114, .	3.3	55
139	Interannual variability of surface energy exchange depends on stand age in a boreal forest fire chronosequence. Journal of Geophysical Research, 2008, 113, .	3.3	54
140	Why Does Amazon Precipitation Decrease When Tropical Forests Respond to Increasing CO ₂ ?. Earth's Future, 2019, 7, 450-468.	6.3	53
141	Smoke radiocarbon measurements from Indonesian fires provide evidence for burning of millennia-aged peat. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12419-12424.	7.1	52
142	Mitigation of methane emissions in cities: How new measurements and partnerships can contribute to emissions reduction strategies. Earth's Future, 2016, 4, 408-425.	6.3	51
143	Disturbance suppresses the aboveground carbon sink in North American boreal forests. Nature Climate Change, 2021, 11, 435-441.	18.8	51
144	Daily burned area and carbon emissions from boreal fires in Alaska. Biogeosciences, 2015, 12, 3579-3601.	3.3	50

#	Article	IF	CITATIONS
145	Spatial patterns and source attribution of urban methane in the Los Angeles Basin. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2490-2507.	3.3	50
146	Is carbon within the global terrestrial biosphere becoming more oxidized? Implications for trends in atmospheric O2. Global Change Biology, 2006, 12, 260-271.	9.5	48
147	Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries. Journal of Climate, 2013, 26, 4447-4475.	3.2	48
148	Carbon isotope discrimination of arctic and boreal biomes inferred from remote atmospheric measurements and a biosphere-atmosphere model. Global Biogeochemical Cycles, 2002, 16, 1-1-15.	4.9	47
149	Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model. Biogeosciences, 2011, 8, 387-414.	3.3	47
150	Interactions between land use change and carbon cycle feedbacks. Global Biogeochemical Cycles, 2017, 31, 96-113.	4.9	46
151	Carbon cycle extremes during the 21st century in CMIP5 models: Future evolution and attribution to climatic drivers. Geophysical Research Letters, 2014, 41, 8853-8861.	4.0	45
152	A new interhemispheric teleconnection increases predictability of winter precipitation in southwestern US. Nature Communications, 2018, 9, 2332.	12.8	45
153	Satellite-based assessment of climate controls on US burned area. Biogeosciences, 2013, 10, 247-260.	3.3	44
154	Concentration and ÎƊ of molecular hydrogen in boreal forests: Ecosystem-scale systematics of atmospheric H2. Geophysical Research Letters, 2002, 29, 35-1-35-4.	4.0	43
155	Consequences of Incomplete Surface Energy Balance Closure for CO2 Fluxes from Open-Path CO2/H2O Infrared Gas Analysers. Boundary-Layer Meteorology, 2006, 120, 65-85.	2.3	43
156	The covariation of Northern Hemisphere summertime CO ₂ with surface temperature in boreal regions. Atmospheric Chemistry and Physics, 2013, 13, 9447-9459.	4.9	42
157	A high-resolution time series of oxygen isotopes from the Kolyma River: Implications for the seasonal dynamics of discharge and basin-scale water use. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	41
158	Deforestation-induced climate change reduces carbon storage in remaining tropical forests. Nature Communications, 2022, 13, 1964.	12.8	41
159	ELEVATED ATMOSPHERIC CO2INCREASES WATER AVAILABILITY IN A WATER-LIMITED GRASSLAND ECOSYSTEM. Journal of the American Water Resources Association, 1997, 33, 1033-1039.	2.4	40
160	Fireâ€related carbon emissions from land use transitions in southern Amazonia. Geophysical Research Letters, 2008, 35, .	4.0	39
161	Molecular hydrogen uptake by soils in forest, desert, and marsh ecosystems in California. Journal of Geophysical Research, 2008, 113, .	3.3	39
162	Evaluating greenhouse gas emissions inventories for agricultural burning using satellite observations of active fires. Ecological Applications, 2012, 22, 1345-1364.	3.8	39

#	Article	IF	CITATIONS
163	Quantifying fireâ€wide carbon emissions in interior Alaska using field measurements and Landsat imagery. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1608-1629.	3.0	39
164	Reversal of Increasing Tropical Ocean Hypoxia Trends With Sustained Climate Warming. Global Biogeochemical Cycles, 2018, 32, 551-564.	4.9	39
165	Impacts of precipitation seasonality and ecosystem types on evapotranspiration in the Yukon River Basin, Alaska. Water Resources Research, 2010, 46, .	4.2	37
166	Contribution of soil respiration in tropical, temperate, and boreal forests to the18O enrichment of atmospheric O2. Global Biogeochemical Cycles, 2003, 17, n/a-n/a.	4.9	36
167	Large-scale plant light-use efficiency inferred from the seasonal cycle of atmospheric CO2. Global Change Biology, 2004, 10, 1240-1252.	9.5	36
168	Evaluating the strength of the land–atmosphere moisture feedback in Earth system models using satellite observations. Hydrology and Earth System Sciences, 2016, 20, 4837-4856.	4.9	36
169	Influence of reduced carbon emissions and oxidation on the distribution of atmospheric CO2: Implications for inversion analyses. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	35
170	Temperature and moisture dependence of soil H2uptake measured in the laboratory. Geophysical Research Letters, 2006, 33, .	4.0	34
171	Optimal use of land surface temperature data to detect changes in tropical forest cover. Journal of Geophysical Research, 2011, 116, .	3.3	34
172	Wildfire response to changing daily temperature extremes in California's Sierra Nevada. Science Advances, 2021, 7, eabe6417.	10.3	34
173	Postâ€fire changes in net shortwave radiation along a latitudinal gradient in boreal North America. Geophysical Research Letters, 2012, 39, .	4.0	33
174	Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO ₂ . Global Biogeochemical Cycles, 2014, 28, 1295-1310.	4.9	33
175	Biomass burning contribution to black carbon in the Western United States Mountain Ranges. Atmospheric Chemistry and Physics, 2011, 11, 11253-11266.	4.9	32
176	The effect of plant physiological responses to rising CO2 on global streamflow. Nature Climate Change, 2019, 9, 873-879.	18.8	32
177	Influence of terrestrial ecosystems and topography on coastal CO2measurements: A case study at Trinidad Head, California. Journal of Geophysical Research, 2005, 110, .	3.3	30
178	Human-ignited fires result in more extreme fire behavior and ecosystem impacts. Nature Communications, 2022, 13, 2717.	12.8	30
179	Statistical prediction of terrestrial water storage changes in the Amazon Basin using tropical Pacific and North Atlantic sea surface temperature anomalies. Hydrology and Earth System Sciences, 2014, 18, 2089-2102.	4.9	29
180	Machine learning to predict final fire size at the time of ignition. International Journal of Wildland Fire, 2019, 28, 861.	2.4	29

#	Article	IF	CITATIONS
181	Climate change decreases the cooling effect from postfire albedo in boreal North America. Global Change Biology, 2020, 26, 1592-1607.	9.5	29
182	Improving Representation of Deforestation Effects on Evapotranspiration in the E3SM Land Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 2412-2427.	3.8	28
183	Using generalized cross-validation to select parameters in inversions for regional carbon fluxes. Geophysical Research Letters, 2004, 31, .	4.0	26
184	Recent changes in the air-sea gas exchange of methyl chloroform. Geophysical Research Letters, 2004, 31, .	4.0	25
185	Seasonal exchange of CO2and δ18O-CO2varies with postfire succession in boreal forest ecosystems. Journal of Geophysical Research, 2006, 111, .	3.3	25
186	Spatial patterns and controls on burned area for two contrasting fire regimes in Southern California. Ecosphere, 2016, 7, e01210.	2.2	24
187	Black carbon aerosol dynamics and isotopic composition in Alaska linked with boreal fire emissions and depth of burn in organic soils. Global Biogeochemical Cycles, 2015, 29, 1977-2000.	4.9	23
188	Are the impacts of land use on warming underestimated in climate policy?. Environmental Research Letters, 2017, 12, 094016.	5.2	23
189	Plant Physiological Responses to Rising CO ₂ Modify Simulated Daily Runoff Intensity With Implications for Globalâ€5cale Flood Risk Assessment. Geophysical Research Letters, 2018, 45, 12,457.	4.0	23
190	Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America. Environmental Research Letters, 2022, 17, 054008.	5.2	23
191	Escalating carbon emissions from North American boreal forest wildfires and the climate mitigation potential of fire management. Science Advances, 2022, 8, eabl7161.	10.3	23
192	Global warming and tropical carbon. Nature, 2013, 494, 319-320.	27.8	21
193	Climate, Fuel, and Land Use Shaped the Spatial Pattern of Wildfire in California's Sierra Nevada. Journal of Geophysical Research C: Biogeosciences, 2021, 126, e2020JG005786.	3.0	21
194	Warming as a Driver of Vegetation Loss in the Sonoran Desert of California. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005942.	3.0	21
195	Climateâ€Ðriven Limits to Future Carbon Storage in California's Wildland Ecosystems. AGU Advances, 2021, 2, e2021AV000384.	5.4	21
196	Soil Moisture Variability Intensifies and Prolongs Eastern Amazon Temperature and Carbon Cycle Response to El Niño–Southern Oscillation. Journal of Climate, 2019, 32, 1273-1292.	3.2	20
197	Recent California tree mortality portends future increase in drought-driven forest die-off. Environmental Research Letters, 2020, 15, 124040.	5.2	20
198	Plant Physiology Increases the Magnitude and Spread of the Transient Climate Response to CO2 in CMIP6 Earth System Models. Journal of Climate, 2020, 33, 8561-8578.	3.2	20

#	Article	IF	CITATIONS
199	Rate and velocity of climate change caused by cumulative carbon emissions. Environmental Research Letters, 2015, 10, 095001.	5.2	19
200	Forecasting Daily Wildfire Activity Using Poisson Regression. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 4837-4851.	6.3	19
201	Unraveling the Role of Temperature and Rainfall on Active Fires in the Brazilian Amazon Using a Nonlinear Poisson Model. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 117-128.	3.0	17
202	Boreal forest fire CO and CH ₄ emission factors derived from tower observations in Alaska during the extreme fire season of 2015. Atmospheric Chemistry and Physics, 2021, 21, 8557-8574.	4.9	17
203	Quantifying aerosol direct radiative effect with Multiangle Imaging Spectroradiometer observations: Topâ€ofâ€atmosphere albedo change by aerosols based on land surface types. Journal of Geophysical Research, 2009, 114, .	3.3	16
204	The role of temporal evolution in modeling atmospheric emissions from tropical fires. Atmospheric Environment, 2014, 89, 158-168.	4.1	16
205	Using radiocarbon to constrain black and organic carbon aerosol sources in Salt Lake City. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9843-9857.	3.3	16
206	Harnessing cross-border resources to confront climate change. Environmental Science and Policy, 2018, 87, 128-132.	4.9	16
207	Microsatellite instability in follicle centre cell lymphoma. British Journal of Haematology, 1996, 93, 160-162.	2.5	15
208	Iconic CO ₂ Time Series at Risk. Science, 2012, 337, 1038-1040.	12.6	15
209	The Carbon Isotope Composition of Plants and Soils as Biomarkers of Pollution. , 2010, , 407-423.		15
210	California wildfire spread derived using VIIRS satellite observations and an object-based tracking system. Scientific Data, 2022, 9, .	5.3	15
211	Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace gas and criteria pollutant species. Atmospheric Measurement Techniques, 2015, 8, 3481-3492.	3.1	14
212	Management and climate contributions to satelliteâ€derived active fire trends in the contiguous United States. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 645-660.	3.0	13
213	Tropical North Atlantic oceanâ€atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires. Geophysical Research Letters, 2015, 42, 6462-6470.	4.0	13
214	Forecasting Global Fire Emissions on Subseasonal to Seasonal (S2S) Time Scales. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001955.	3.8	13
215	Building a machine learning surrogate model for wildfire activities within a global Earth system model. Geoscientific Model Development, 2022, 15, 1899-1911.	3.6	13
216	Heterogeneity in cell proliferation and expression of p53 and bcl-2 during the indolent phase of germinal centre cell lymphoma: an explanation for clinical variability. British Journal of Haematology, 1995, 90, 830-836.	2.5	12

#	Article	IF	CITATIONS
217	Tropical biomass burning smoke plume size, shape, reflectance, and age based on 2001–2009 MISR imagery of Borneo. Atmospheric Chemistry and Physics, 2012, 12, 3437-3454.	4.9	12
218	Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model. Biogeosciences, 2013, 10, 8233-8252.	3.3	12
219	Modeling methane emissions from rice agriculture in China during 1961–2007. Journal of Integrative Environmental Sciences, 2010, 7, 49-60.	2.5	11
220	Future Drying in Central America and Northern South America Linked With Atlantic Meridional Overturning Circulation. Geophysical Research Letters, 2018, 45, 9226-9235.	4.0	10
221	Recurrent patterns in surface thermal fronts associated with cold filaments along the West Coast of North America. Remote Sensing of Environment, 1993, 46, 146-163.	11.0	9
222	Accuracy and precision of ¹⁴ C-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol. Atmospheric Measurement Techniques, 2015, 8, 3729-3743.	3.1	9
223	The influence of daily meteorology on boreal fire emissions and regional trace gas variability. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2793-2810.	3.0	9
224	Comparison With Global Soil Radiocarbon Observations Indicates Needed Carbon Cycle Improvements in the E3SM Land Model. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1098-1114.	3.0	9
225	Satellite hydrology observations as operational indicators of forecasted fire danger across the contiguous United States. Natural Hazards and Earth System Sciences, 2020, 20, 1097-1106.	3.6	9
226	Linking ¹³ C-based estimates of land and ocean sinks with predictions of carbon storage from CO ₂ fertilization of plant growth. Tellus, Series B: Chemical and Physical Meteorology, 2022, 51, 668.	1.6	8
227	A Growing Freshwater Lens in the Arctic Ocean With Sustained Climate Warming Disrupts Marine Ecosystem Function. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005693.	3.0	8
228	Graph-Guided Regularized Regression of Pacific Ocean Climate Variables to Increase Predictive Skill of Southwestern U.S. Winter Precipitation. Journal of Climate, 2021, 34, 737-754.	3.2	8
229	Fluorescent polymerase chain reaction of a panel of CA repeats on chromosome 6 in the indolent phase of follicular centre cell lymphoma. British Journal of Cancer, 1996, 74, 942-946.	6.4	7
230	Linking 13C-based estimates of land and ocean sinks with predictions of carbon storage from CO2 fertilization of plant growth. Tellus, Series B: Chemical and Physical Meteorology, 1999, 51, 668-678.	1.6	7
231	Results from the carbon-land model intercomparison project (C-LAMP) and availability of the data on the earth system grid (ESG). Journal of Physics: Conference Series, 2007, 78, 012026.	0.4	7
232	The response of the18O/16O composition of atmospheric CO2to changes in environmental conditions. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 55-79.	3.0	6
233	Reply to: A critical examination of a newly proposed interhemispheric teleconnection to Southwestern US winter precipitation. Nature Communications, 2019, 10, 2918.	12.8	6
234	Terrestrial Ecosystems and Interannual Variability in the Global Atmospheric Budgets of 13CO2 and		6

12CO2., 2005, , 217-234.

#	Article	IF	CITATIONS
235	Coccidioidomycosis (Valley Fever) Case Data for the Southwestern United States. Open Health Data, 2020, 7, 1.	3.7	5
236	Hotspots of predictability: Identifying regions of high precipitation predictability at seasonal timescales from limited time series observations. Water Resources Research, 0, , .	4.2	4
237	VEMAP: model shootout at the sub-continental corral. Trends in Ecology and Evolution, 1996, 11, 313-314.	8.7	1
238	Allele Imbalance at Tumour Suppressor Loci During the Indolent Phase of Follicle Centre Cell Lymphoma. Leukemia and Lymphoma, 1996, 22, 113-117.	1.3	1
239	Kai, Tyler, Randerson & Blake reply. Nature, 2012, 486, E4-E4.	27.8	1
240	Leave the sea be. New Scientist, 2016, 232, 18-19.	0.0	0