Valeria Bortolaia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/746254/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human health risks associated with antimicrobial-resistant enterococci and Staphylococcus aureus on poultry meat. Clinical Microbiology and Infection, 2016, 22, 130-140.	2.8	84
2	Host-Specific Patterns of Genetic Diversity among Incl1-lÎ ³ and IncK Plasmids Encoding CMY-2 Î ² -Lactamase in Escherichia coli Isolates from Humans, Poultry Meat, Poultry, and Dogs in Denmark. Applied and Environmental Microbiology, 2016, 82, 4705-4714.	1.4	72
3	High Diversity of Extended-Spectrum β-Lactamases in <i>Escherichia coli</i> Isolates from Italian Broiler Flocks. Antimicrobial Agents and Chemotherapy, 2010, 54, 1623-1626.	1.4	71
4	Relation between tetR and tetA expression in tetracycline resistant Escherichia coli. BMC Microbiology, 2016, 16, 39.	1.3	69
5	Occurrence and Characterization of mcr-1-Positive Escherichia coli Isolated From Food-Producing Animals in Poland, 2011–2016. Frontiers in Microbiology, 2019, 10, 1753.	1.5	65
6	The Soil Microbiota Harbors a Diversity of Carbapenem-Hydrolyzing β-Lactamases of Potential Clinical Relevance. Antimicrobial Agents and Chemotherapy, 2016, 60, 151-160.	1.4	54
7	Antibiotic-Induced, Increased Conjugative Transfer Is Common to Diverse Naturally Occurring ESBL Plasmids in Escherichia coli. Frontiers in Microbiology, 2019, 10, 2119.	1.5	53
8	Distribution and possible transmission of ampicillin- and nalidixic acid-resistant Escherichia coli within the broiler industry. Veterinary Microbiology, 2010, 142, 379-386.	0.8	45
9	High diversity of plasmids harbouring blaCMY-2 among clinical Escherichia coli isolates from humans and companion animals in the upper Midwestern USA. Journal of Antimicrobial Chemotherapy, 2014, 69, 1492-1496.	1.3	44
10	Potential Pathogenicity and Host Range of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Healthy Poultry. Applied and Environmental Microbiology, 2011, 77, 5830-5833.	1.4	36
11	Prediction of Acquired Antimicrobial Resistance for Multiple Bacterial Species Using Neural Networks. MSystems, 2020, 5, .	1.7	36
12	ST131 <i>fimH</i> 22 <i>Escherichia coli</i> isolate with a <i>bla</i> CMY-2/Inc11/ST12 plasmid obtained from a patient with bloodstream infection: highly similar to <i>E. coli</i> isolates of broiler origin. Journal of Antimicrobial Chemotherapy, 2019, 74, 557-560.	1.3	34
13	Incl1 ST3 and Incl1 ST7 plasmids from CTX-M-1-producing Escherichia coli obtained from patients with bloodstream infections are closely related to plasmids from E. coli of animal origin. Journal of Antimicrobial Chemotherapy, 2019, 74, 2171-2175.	1.3	33
14	Characterization of Isolates of Salmonella enterica Serovar Stanley, a Serovar Endemic to Asia and Associated with Travel. Journal of Clinical Microbiology, 2012, 50, 709-720.	1.8	32
15	Persistence of Vancomycin Resistance in Multiple Clones of Enterococcus faecium Isolated from Danish Broilers 15 Years after the Ban of Avoparcin. Antimicrobial Agents and Chemotherapy, 2015, 59, 2926-2929.	1.4	32
16	High diversity of genes and plasmids encoding resistance to third-generation cephalosporins and quinolones in clinical Escherichia coli from commercial poultry flocks in Italy. Veterinary Microbiology, 2018, 216, 93-98.	0.8	32
17	CTX-M-1 and CTX-M-15-producing Escherichia coli in dog faeces from public gardens. Acta Veterinaria Scandinavica, 2015, 57, 83.	0.5	28
18	Limited similarity between plasmids encoding CTX-M-1 β-lactamase in Escherichia coli from humans, pigs, cattle, organic poultry layers and horses in Denmark. Journal of Global Antimicrobial Resistance, 2015, 3, 132-136.	0.9	26

Valeria Bortolaia

#	Article	IF	CITATIONS
19	CTX-M-1 Î ² -lactamase expression in Escherichia coli is dependent on cefotaxime concentration, growth phase and gene location. Journal of Antimicrobial Chemotherapy, 2015, 70, 62-70.	1.3	26
20	<i>Escherichia coli</i> Producing CTX-M-1, -2, and -9 Group β-Lactamases in Organic Chicken Egg Production. Antimicrobial Agents and Chemotherapy, 2010, 54, 3527-3528.	1.4	25
21	<i>vanO</i> , a New Glycopeptide Resistance Operon in Environmental Rhodococcus equi Isolates. Antimicrobial Agents and Chemotherapy, 2014, 58, 1768-1770.	1.4	25
22	Extended-spectrum beta-lactamase-producing Escherichia coli and antimicrobial resistance in municipal and hospital wastewaters in Czech Republic: Culture-based and metagenomic approaches. Environmental Research, 2021, 193, 110487.	3.7	24
23	Fate of CMY-2-Encoding Plasmids Introduced into the Human Fecal Microbiota by Exogenous <i>Escherichia coli</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	21
24	Cephalosporinâ€resistant <i>Escherichia coli</i> isolated from farm workers and pigs in northern Vietnam. Tropical Medicine and International Health, 2018, 23, 415-424.	1.0	20
25	Vancomycin resistance in Enterococcus faecium isolated from Danish chicken meat is located on a pVEF4-like plasmid persisting in poultry for 18 years. International Journal of Antimicrobial Agents, 2018, 52, 283-286.	1.1	19
26	Expanding the Repertoire of Carbapenem-Hydrolyzing Metallo-ß-Lactamases by Functional Metagenomic Analysis of Soil Microbiota. Frontiers in Microbiology, 2016, 7, 1985.	1.5	18
27	<i>Chromobacterium</i> spp. harbour Ambler class A β-lactamases showing high identity with KPC. Journal of Antimicrobial Chemotherapy, 2016, 71, 1493-1496.	1.3	18
28	ESBL and AmpC β-Lactamase Encoding Genes in E. coli From Pig and Pig Farm Workers in Vietnam and Their Association With Mobile Genetic Elements. Frontiers in Microbiology, 2021, 12, 629139.	1.5	16
29	Strain Diversity of CTX-M-Producing Enterobacteriaceae in Individual Pigs: Insights into the Dynamics of Shedding during the Production Cycle. Applied and Environmental Microbiology, 2014, 80, 6620-6626.	1.4	15
30	Quantitative assessment of faecal shedding of β-lactam-resistant Escherichia coli and enterococci in dogs. Veterinary Microbiology, 2015, 181, 298-302.	0.8	13
31	Biochemical Characterization of CPS-1, a Subclass B3 Metallo-β-Lactamase from a Chryseobacterium piscium Soil Isolate. Antimicrobial Agents and Chemotherapy, 2016, 60, 1869-1873.	1.4	13
32	Addressing Learning Needs on the Use of Metagenomics in Antimicrobial Resistance Surveillance. Frontiers in Public Health, 2020, 8, 38.	1.3	11
33	A culture-independent method for studying transfer of Incl1 plasmids from wild-type Escherichia coli in complex microbial communities. Journal of Microbiological Methods, 2018, 152, 18-26.	0.7	6
34	Zoonotic Transmission of Antimicrobial Resistant Enterococci: A Threat to Public Health or an Overemphasised Risk?. , 2015, , 407-431.		6
35	Clonal and plasmid-mediated flow of ESBL/AmpC genes in Escherichia coli in a commercial laying hen farm. Veterinary Microbiology, 2022, 270, 109453.	0.8	3