
Nobue Itasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7462241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A liquid culture cancer spheroid model reveals low PI3K/Akt pathway activity and low adhesiveness to the extracellular matrix. FEBS Journal, 2021, 288, 5650-5667.	4.7	6
2	Local modulation of the Wnt/βâ€catenin and bone morphogenic protein (BMP) pathways recapitulates rib defects analogous to cerebroâ€costoâ€mandibular syndrome. Journal of Anatomy, 2020, 236, 931-945.	1.5	5
3	Novel 3D Liquid Cell Culture Method for Anchorage-independent Cell Growth, Cell Imaging and Automated Drug Screening. Scientific Reports, 2018, 8, 3627.	3.3	30
4	Developmental abnormalities of the otic capsule and inner ear following application of prolylâ€hydroxylase inhibitors in chick embryos. Birth Defects Research, 2018, 110, 1194-1204.	1.5	0
5	Hypoxia promotes production of neural crest cells in the embryonic head. Development (Cambridge), 2016, 143, 1742-1752.	2.5	34
6	Expression of prolyl hydroxylases 2 and 3 in chick embryos. Gene Expression Patterns, 2016, 21, 97-102.	0.8	2
7	Cover Image, Volume 170A, Number 5, May 2016. , 2016, 170, i-i.		0
8	Cerebro–costo–mandibular syndrome: Clinical, radiological, and genetic findings. American Journal of Medical Genetics, Part A, 2016, 170, 1115-1126.	1.2	21
9	3D Tumor Models and Time-Lapse Analysis by Multidimensional Microscopy. Methods in Molecular Biology, 2016, 1379, 181-188.	0.9	0
10	Dynamic and influential interaction of cancer cells with normal epithelial cells in 3D culture. Cancer Cell International, 2014, 14, 108.	4.1	29
11	Hox proteins drive cell segregation and non-autonomous apical remodelling during hindbrain segmentation. Development (Cambridge), 2014, 141, 1492-1502.	2.5	26
12	A Positive Role of Cadherin in Wnt/β-Catenin Signalling during Epithelial-Mesenchymal Transition. PLoS ONE, 2011, 6, e23899.	2.5	154
13	Crosstalk between Wnt and bone morphogenic protein signaling: A turbulent relationship. Developmental Dynamics, 2010, 239, 16-33.	1.8	134
14	Interaction with surrounding normal epithelial cells influences signalling pathways and behaviour of Src-transformed cells. Journal of Cell Science, 2010, 123, 171-180.	2.0	175
15	Characterization of Wise Protein and Its Molecular Mechanism to Interact with both Wnt and BMP Signals. Journal of Biological Chemistry, 2009, 284, 23159-23168.	3.4	115
16	Regulation of Hoxb4 induction after neurulation by somite signal and neural competence. BMC Developmental Biology, 2009, 9, 17.	2.1	4
17	Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nature Cell Biology, 2008, 10, 170-177.	10.3	227
18	Wise promotes coalescence of cells of neural crest and placode origins in the trigeminal region during head development. Developmental Biology, 2008, 319, 346-358.	2.0	31

Nobue Itasaki

#	Article	IF	CITATIONS
19	Lack of the murine homeobox gene Hesx1 leads to a posterior transformation of the anterior forebrain. Development (Cambridge), 2007, 134, 1499-1508.	2.5	72
20	Wise retained in the endoplasmic reticulum inhibits Wnt signaling by reducing cell surface LRP6. Developmental Biology, 2007, 310, 250-263.	2.0	39
21	Inhibitory Gli3 Activity Negatively Regulates Wnt/β-Catenin Signaling. Current Biology, 2007, 17, 545-550.	3.9	100
22	Bone Density Ligand, Sclerostin, Directly Interacts With LRP5 but Not LRP5G171V to Modulate Wnt Activity. Journal of Bone and Mineral Research, 2006, 21, 1738-1749.	2.8	315
23	Connective-tissue growth factor modulates WNT signalling and interacts with the WNT receptor complex. Development (Cambridge), 2004, 131, 2137-2147.	2.5	181
24	Wise, a context-dependent activator and inhibitor of Wnt signalling. Development (Cambridge), 2003, 130, 4295-4305.	2.5	294
25	Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the <i>HoxB</i> genes in two distinct groups. Development (Cambridge), 2002, 129, 5103-5115.	2.5	266
26	Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development (Cambridge), 2002, 129, 5103-15.	2.5	82
27	The Wnt∫β-Catenin Pathway Posteriorizes Neural Tissue in Xenopus by an Indirect Mechanism Requiring FGF Signalling. Developmental Biology, 2001, 239, 148-160.	2.0	117
28	Conservation and elaboration of Hox gene regulation during evolution of the vertebrate head. Nature, 2000, 408, 854-857.	27.8	167
29	â€~Shocking' developments in chick embryology: electroporation and in ovo gene expression. Nature Cell Biology, 1999, 1, E203-E207.	10.3	296
30	Initiation of Rhombomeric Hoxb4 Expression Requires Induction by Somites and a Retinoid Pathway. Neuron, 1998, 21, 39-51.	8.1	260
31	A Role for Gradient en Expression in Positional Specification on the Optic Tectum. Neuron, 1996, 16, 55-62.	8.1	121
32	Reprogramming Hox Expression in the Vertebrate Hindbrain: Influence of Paraxial Mesoderm and Rhombomere Transposition. Neuron, 1996, 16, 487-500.	8.1	189
33	Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. , 0, .		1