Jaekyun Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7462066/publications.pdf

Version: 2024-02-01

933447 888059 23 317 10 17 citations g-index h-index papers 24 24 24 484 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis of Benzoxaphosphole 1-Oxide Heterocycles via a Three-Component Coupling Reaction Involving Arynes, Phosphites, and Ketones. Organic Letters, 2022, 24, 2192-2196.	4.6	7
2	Discovery and Photoisomerization of New Pyrrolosesquiterpenoids Glaciapyrroles D and E, from Deep-Sea Sediment Streptomyces sp Marine Drugs, 2022, 20, 281.	4.6	5
3	Discovery of New Imidazo[2,1- <i>b</i>]thiazole Derivatives as Potent Pan-RAF Inhibitors with Promising <i>In Vitro</i> and <i>In Vivo</i> Anti-melanoma Activity. Journal of Medicinal Chemistry, 2021, 64, 6877-6901.	6.4	15
4	Tropolone-Bearing Sesquiterpenes from <i>Juniperus chinensis</i> : Structures, Photochemistry and Bioactivity. Journal of Natural Products, 2021, 84, 2020-2027.	3.0	9
5	Modification of imidazothiazole derivatives gives promising activity in B-Raf kinase enzyme inhibition; synthesis, in vitro studies and molecular docking. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127478.	2.2	11
6	Facile Modification of LiAlCl ₄ Electrolytes for Mg–Li Hybrid Batteries by the Conditioning-Free Method. Journal of Physical Chemistry C, 2020, 124, 25738-25747.	3.1	3
7	Construction of 8-Azabicyclo[3.2.1]octanes via Sequential DDQ-Mediated Oxidative Mannich Reactions of <i>N</i> -Aryl Pyrrolidines. Organic Letters, 2018, 20, 1175-1178.	4.6	25
8	Enantioselective Synthesis of Chiral α-Thio-Quaternary Stereogenic Centers via Phase-Transfer-Catalyzed α-Alkylation of α-Acylthiomalonates. Journal of Organic Chemistry, 2018, 83, 1011-1018.	3.2	5
9	A new rigid diindolocarbazole donor moiety for high quantum efficiency thermally activated delayed fluorescence emitter. Journal of Materials Chemistry C, 2018, 6, 1343-1348.	5 . 5	60
10	Copper(I)-Catalyzed Synthesis of 1,4-Disubstituted 1,2,3-Triazoles from Azidoformates and Aryl Terminal Alkynes. Journal of Organic Chemistry, 2018, 83, 4805-4811.	3.2	21
11	Strategic Design of Highly Concentrated Electrolyte Solutions for Mg ²⁺ /Li ⁺ Dual-Salt Hybrid Batteries. Journal of Physical Chemistry C, 2018, 122, 27866-27874.	3.1	8
12	Asymmetric Synthesis of (â^')-6-Desmethyl-Fluvirucinine A1 via Conformationally-Controlled Diastereoselective Lactam-Ring Expansions. Molecules, 2018, 23, 2351.	3.8	3
13	Palladiumâ€Catalyzed Carbonylative Coupling Reactions of <i>N</i> , <i>N</i>	2.4	13
14	Discovery of \hat{l}^2 -Arrestin Biased Ligands of 5-HT ₇ R. Journal of Medicinal Chemistry, 2018, 61, 7218-7233.	6.4	18
15	Construction of the Azacyclic Core of Tabernaemontanine-Related Alkaloids ⟨i>via⟨ i> Tandem Reformatsky–Aza-Claisen Rearrangement. Journal of Organic Chemistry, 2017, 82, 1464-1470.	3.2	8
16	Phase-transfer catalyzed enantioselective α-alkylation of α-acyloxymalonates: construction of chiral α-hydroxy quaternary stereogenic centers. RSC Advances, 2016, 6, 77427-77430.	3.6	5
17	Synthesis and biological evaluation of picolinamides and thiazole-2-carboxamides as mGluR5 (metabotropic glutamate receptor 5) antagonists. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 140-144.	2.2	9
18	Enantioselective αâ€Alkylation of Benzylideneamino <i>tert</i> à€Butyl Malonates by Phaseâ€Transfer Catalysis. Advanced Synthesis and Catalysis, 2015, 357, 2841-2848.	4.3	12

#	Article	IF	CITATION
19	Synthesis of the Tricyclic Ring Structure of Daphnanes via Intramolecular [4 + 3] Cycloaddition/Sml ₂ -Pinacol Coupling. Organic Letters, 2015, 17, 2672-2675.	4.6	34
20	Construction of Chiral α-Amino Quaternary Stereogenic Centers via Phase-Transfer Catalyzed Enantioselective α-Alkylation of α-Amidomalonates. Journal of Organic Chemistry, 2015, 80, 3270-3279.	3.2	16
21	Synthesis and Photoluminescent Properties of New Azaâ€Indenofluorene Derivatives. Heteroatom Chemistry, 2013, 24, 18-24.	0.7	7
22	Diastereoselective Synthesis of 2,6-Disubstituted 4-(Dimethoxymethyl)tetraÂhydropyrans Using TMSOTf-Promoted Prins-Pinacol Cyclization. Synlett, 2013, 24, 2292-2296.	1.8	4
23	Highly Enantioselective Phaseâ€Transfer Catalytic αâ€Alkylation of αâ€∢i>tert∢/i>â€Butoxycarbonyllactams: Construction of βâ€Quaternary Chiral Pyrrolidine and Piperidine Systems. Advanced Synthesis and Catalysis, 2011, 353, 3313-3318.	4.3	19