
Jiyun Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7461875/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly thermostable ultrathin planar Ag transparent heaters. Microelectronic Engineering, 2022, 251, 111658.	2.4	4
2	A 3nm-thick, quasi-single crystalline Cu layer with ultralow optoelectrical losses and exceptional durability. Acta Materialia, 2022, 223, 117484.	7.9	5
3	Micro-to-Nanometer Scale Patterning of Perovskite Inks via Controlled Self-Assemblies. Materials, 2022, 15, 1521.	2.9	2
4	Highly impermeable Al2O3 moisture barriers prepared by multiple plasma oxidation of discontinuous aluminum layers for optoelectronic devices. Thin Solid Films, 2022, 746, 139138.	1.8	1
5	Strategy for Fabricating Ultrathin Au Film Electrodes with Ultralow Optoelectrical Losses and High Stability. ACS Applied Materials & Interfaces, 2022, 14, 12797-12811.	8.0	9
6	Simultaneous Enhancement in Visible Transparency and Electrical Conductivity via the Physicochemical Alterations of Ultrathin-Silver-Film-Based Transparent Electrodes. Nano Letters, 2022, 22, 3133-3140.	9.1	8
7	Thickness Dependence of Cu-layer-based Transparent Heaters. Journal of Korean Institute of Metals and Materials, 2022, 60, 511-516.	1.0	0
8	Thermal stability enhancement of ultrathin Ag film electrodes by incorporating atomic oxygen. Applied Surface Science, 2021, 546, 149149.	6.1	20
9	Regulating Ag Wettability via Modulating Surface Stoichiometry of ZnO Substrates for Flexible Electronics. Advanced Functional Materials, 2021, 31, 2104372.	14.9	11
10	Transparent planar layer copper heaters for wearable electronics. Applied Surface Science, 2021, 559, 149895.	6.1	9
11	The Transmittance Modulation of ZnO/Cu/ZnO Transparent Conductive Electrodes Prepared on Glass Substrates. Materials, 2020, 13, 3916.	2.9	5
12	Highly flexible, transparent and conductive ultrathin silver film heaters for wearable electronics applications. Thin Solid Films, 2020, 697, 137835.	1.8	27
13	The Transmittance Modulation of ZnO/Ag/ZnO Flexible Transparent Electrodes Fabricated by Magnetron Sputtering. Journal of Nanoscience and Nanotechnology, 2020, 20, 379-383.	0.9	8
14	Thickness estimation of the silica-like thin layers via swelling-driven wrinkling instability. Thin Solid Films, 2020, 697, 137812.	1.8	1
15	Deposition of Low-Resistivity Aluminum Thin Films Via Application of Substrate Bias During Magnetron Sputtering. Journal of Korean Institute of Metals and Materials, 2020, 58, 715-720.	1.0	1
16	The critical role of substrate bias for the sputter deposition of molybdenum thin films. Microelectronic Engineering, 2019, 216, 111084.	2.4	2
17	Phase transformation in thin tungsten films during sputter deposition. Microelectronic Engineering, 2017, 183-184, 19-22.	2.4	19
18	On the potential of tungsten as next-generation semiconductor interconnects. Electronic Materials Letters, 2017, 13, 449-456.	2.2	33

Јічим Сної

#	Article	IF	CITATIONS
19	Observing Oxygen Vacancy Driven Electroforming in Pt–TiO ₂ –Pt Device via Strong Metal Support Interaction. Nano Letters, 2016, 16, 2139-2144.	9.1	73
20	Failure of semiclassical models to describe resistivity of nanometric, polycrystalline tungsten films. Journal of Applied Physics, 2014, 115, .	2.5	52
21	Coexistence of unipolar and bipolar resistive switching in Pt/NiO/Pt. Applied Physics Letters, 2014, 104, .	3.3	33
22	The electron scattering at grain boundaries in tungsten films. Microelectronic Engineering, 2014, 122, 5-8.	2.4	30
23	Crystallographic anisotropy of the resistivity size effect in single crystal tungsten nanowires. Scientific Reports, 2013, 3, 2591.	3.3	32
24	Surface roughness and magnetic properties of L1 FePt films on MgO/CrRu/TiN. Journal of Applied Physics, 2012, 112, .	2.5	11
25	Electron mean free path of tungsten and the electrical resistivity of epitaxial (110) tungsten films. Physical Review B, 2012, 86, .	3.2	79
26	Reversible resistive switching of SrTiOx thin films for nonvolatile memory applications. Applied Physics Letters, 2006, 88, 082904.	3.3	125
27	Resistance-switching Characteristics of polycrystalline Nb/sub 2/O/sub 5/ for nonvolatile memory application. IEEE Electron Device Letters, 2005, 26, 292-294.	3.9	101
28	Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications. IEEE Electron Device Letters, 2005, 26, 719-721.	3.9	107
29	Reversible resistance switching of the non-stoichiometric ZrO/sub x/ and SrTiO/sub x/ for non-volatile memory applications. , 2005, , .		0
30	Excellent resistance switching characteristics of Pt/SrTiO/sub 3/ schottky junction for multi-bit nonvolatile memory application. , 0, , .		14
31	Resistance switching of Al doped ZnO for Non Volatile Memory applications. , 0, , .		2