Fiona Hollis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/746175/publications.pdf

Version: 2024-02-01

23 papers 2,009 citations

430874 18 h-index 677142 22 g-index

25 all docs 25 docs citations

25 times ranked

2953 citing authors

#	Article	IF	CITATIONS
1	The forced swim test: Giving up on behavioral despair (Commentary on Molendijk & Company; de Kloet, 2021). European Journal of Neuroscience, 2022, 55, 2832-2835.	2.6	10
2	Neuroinflammation and Mitochondrial Dysfunction Link Social Stress to Depression. Current Topics in Behavioral Neurosciences, 2022, , 59-93.	1.7	18
3	Astrocytic release of ATP through type 2 inositol 1,4,5â€trisphosphate receptor calcium signaling and social dominance behavior in mice. European Journal of Neuroscience, 2021, 53, 2973-2985.	2.6	3
4	The glucocorticoid receptor in the nucleus accumbens plays a crucial role in social rank attainment in rodents. Psychoneuroendocrinology, 2020, 112, 104538.	2.7	21
5	Therapeutic potential of glutathione-enhancers in stress-related psychopathologies. Neuroscience and Biobehavioral Reviews, 2020, 114, 134-155.	6.1	32
6	Disruption of mTOR and MAPK pathways correlates with severity in idiopathic autism. Translational Psychiatry, 2019, 9, 50.	4.8	81
7	Diazepam actions in the VTA enhance social dominance and mitochondrial function in the nucleus accumbens by activation of dopamine D1 receptors. Molecular Psychiatry, 2018, 23, 569-578.	7.9	93
8	Medium chain triglyceride diet reduces anxiety-like behaviors and enhances social competitiveness in rats. Neuropharmacology, 2018, 138, 245-256.	4.1	49
9	Mitochondrial dysfunction in Autism Spectrum Disorder: clinical features and perspectives. Current Opinion in Neurobiology, 2017, 45, 178-187.	4.2	92
10	Acute stress alters individual risk taking in a timeâ€dependent manner and leads to antiâ€social risk. European Journal of Neuroscience, 2017, 45, 877-885.	2.6	46
11	Involvement of CRFR ₁ in the Basolateral Amygdala in the Immediate Fear Extinction Deficit. ENeuro, 2016, 3, ENEURO.0084-16.2016.	1.9	23
12	Stress pulls us apart: Anxiety leads to differences in competitive confidence under stress. Psychoneuroendocrinology, 2015, 54, 115-123.	2.7	85
13	Methyl Supplementation Attenuates Cocaine-Seeking Behaviors and Cocaine-Induced c-Fos Activation in a DNA Methylation-Dependent Manner. Journal of Neuroscience, 2015, 35, 8948-8958.	3.6	101
14	Mitochondrial function in the brain links anxiety with social subordination. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15486-15491.	7.1	204
15	Social Defeat as an Animal Model for Depression. ILAR Journal, 2014, 55, 221-232.	1.8	209
16	P.2.028 Anxiety may affect social dominance through modulation of neurotransmission in the mesolimbic system. European Neuropsychopharmacology, 2014, 24, S52.	0.7	0
17	The consequences of adolescent chronic unpredictable stress exposure on brain and behavior. Neuroscience, 2013, 249, 232-241.	2.3	55
18	Juvenile and adult rats differ in cocaine reward and expression of zif268 in the forebrain. Neuroscience, 2012, 200, 91-98.	2.3	8

FIONA HOLLIS

#	Article	IF	CITATIONS
19	Individual differences in the effect of social defeat on anhedonia and histone acetylation in the rat hippocampus. Hormones and Behavior, 2011, 59, 331-337.	2.1	91
20	Individual differences in novelty-seeking behavior in rats as a model for psychosocial stress-related mood disorders. Physiology and Behavior, 2011, 104, 296-305.	2.1	41
21	The effects of repeated social defeat on long-term depressive-like behavior and short-term histone modifications in the hippocampus in male Sprague–Dawley rats. Psychopharmacology, 2010, 211, 69-77.	3.1	98
22	Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nature Neuroscience, 2010, 13, 1137-1143.	14.8	553
23	Sex Differences in Social Interaction in Rats: Role of the Immediate-Early Gene zif268. Neuropsychopharmacology, 2010, 35, 570-580.	5.4	95