Mikkel Brydegaard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7461645/publications.pdf

Version: 2024-02-01

		304743	377865
59	1,354	22	34
papers	citations	h-index	g-index
60	60	60	600
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system. Optics Express, 2015, 23, A1613.	3.4	90
2	SUPER RESOLUTION LASER RADAR WITH BLINKING ATMOSPHERIC PARTICLES — APPLICATION TO INTERACTING FLYING INSECTS (Invited Paper). Progress in Electromagnetics Research, 2014, 147, 141-151.	4.4	89
3	Continuousâ€wave differential absorption lidar. Laser and Photonics Reviews, 2015, 9, 629-636.	8.7	78
4	Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	51
5	Observations of movement dynamics of flying insects using high resolution lidar. Scientific Reports, 2016, 6, 29083.	3.3	49
6	Inelastic hyperspectral lidar for profiling aquatic ecosystems. Laser and Photonics Reviews, 2016, 10, 807-813.	8.7	46
7	The bat–bird–bug battle: daily flight activity of insects and their predators over a rice field revealed by high-resolution Scheimpflug Lidar. Royal Society Open Science, 2018, 5, 172303.	2.4	46
8	Multiband modulation spectroscopy for the determination of sex and species of mosquitoes in flight. Journal of Biophotonics, 2018, 11, e201800014.	2.3	46
9	Towards Quantitative Optical Cross Sections in Entomological Laser Radar – Potential of Temporal and Spherical Parameterizations for Identifying Atmospheric Fauna. PLoS ONE, 2015, 10, e0135231.	2.5	45
10	Insect monitoring with fluorescence lidar techniques: feasibility study. Applied Optics, 2009, 48, 5668.	2.1	44
11	Insect monitoring with fluorescence lidar techniques: field experiments. Applied Optics, 2010, 49, 5133.	2.1	44
12	Photonic Monitoring of Atmospheric and Aquatic Fauna. Laser and Photonics Reviews, 2018, 12, 1800135.	8.7	41
13	Advances in automatic identification of flying insects using optical sensors and machine learning. Scientific Reports, 2021, 11, 1555.	3.3	39
14	Tea classification and quality assessment using laser-induced fluorescence and chemometric evaluation. Applied Optics, 2012, 51, 803.	1.8	38
15	Effective Parameterization of Laser Radar Observations of Atmospheric Fauna. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 327-334.	2.9	33
16	Versatile multispectral microscope based on light emitting diodes. Review of Scientific Instruments, 2011, 82, 123106.	1.3	32
17	Lidar reveals activity anomaly of malaria vectors during pan-African eclipse. Science Advances, 2020, 6, eaay5487.	10.3	31
18	Automating insect monitoring using unsupervised near-infrared sensors. Scientific Reports, 2022, 12, 2603.	3.3	31

#	Article	IF	CITATIONS
19	Scheimpflug Lidar for combustion diagnostics. Optics Express, 2018, 26, 14842.	3.4	27
20	Drone-based area scanning of vegetation fluorescence height profiles using a miniaturized hyperspectral lidar system. Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	25
21	Can the narrow red bands of dragonflies be used to perceive wing interference patterns?. Ecology and Evolution, 2018, 8, 5369-5384.	1.9	25
22	Daily Evolution of the Insect Biomass Spectrum in an Agricultural Landscape Accessed with Lidar. EPJ Web of Conferences, 2016, 119, 22004.	0.3	24
23	Application of lidar remote sensing of insects in agricultural entomology on the Chinese scene. Journal of Applied Entomology, 2020, 144, 161-169.	1.8	23
24	Feasibility study: fluorescence lidar for remote bird classification. Applied Optics, 2010, 49, 4531.	2.1	21
25	Realistic Instrumentation Platform for Active and Passive Optical Remote Sensing. Applied Spectroscopy, 2016, 70, 372-385.	2.2	21
26	Passive kHz lidar for the quantification of insect activity and dispersal. Animal Biotelemetry, 2018, 6, .	1.9	20
27	Investigation of atmospheric insect wing-beat frequencies and iridescence features using a multispectral kHz remote detection system. Journal of Applied Remote Sensing, 2014, 8, 083503.	1.3	19
28	Atmospheric CO ₂ sensing using Scheimpflug-lidar based on a 157-Âμm fiber source. Optics Express, 2019, 27, 17348.	3.4	18
29	Remote nocturnal bird classification by spectroscopy in extended wavelength ranges. Applied Optics, 2011, 50, 3396.	2.1	17
30	Staining-free malaria diagnostics by multispectral and multimodality light-emitting-diode microscopy. Journal of Biomedical Optics, 2013, 18, 036002.	2.6	16
31	Advances in entomological laser radar. Journal of Engineering, 2019, 2019, 7542-7545.	1.1	16
32	A Scheimpflug lidar used to observe insect swarming at a wind turbine. Ecological Indicators, 2020, 117, 106578.	6.3	16
33	Real-time dispersal of malaria vectors in rural Africa monitored with lidar. PLoS ONE, 2021, 16, e0247803.	2.5	16
34	On the Exploitation of Mid-infrared Iridescence of Plumage for Remote Classification of Nocturnal Migrating Birds. Applied Spectroscopy, 2013, 67, 477-490.	2.2	15
35	Bark beetles as lidar targets and prospects of photonic surveillance. Journal of Biophotonics, 2021, 14, e202000420.	2.3	15
36	Entomological Scheimpflug lidar for estimating unique insect classes in-situ field test from Ivory Coast. OSA Continuum, 2020, 3, 2362.	1.8	14

#	Article	IF	CITATIONS
37	Design and validation of a fiber optic point probe instrument for therapy guidance and monitoring. Journal of Biomedical Optics, 2014, 19, 071408.	2.6	13
38	The Scheimpflug lidar method., 2017,,.		11
39	Advantages of shortwave infrared LIDAR entomology. , 2014, , .		10
40	First Polarimetric Investigation of Malaria Mosquitoes as Lidar Targets. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-8.	2.9	10
41	Particle profiling and classification by a dual-band continuous-wave lidar system. Applied Optics, 2018, 57, 10164.	1.8	10
42	Scheimpflug lidar range profiling of bee activity patterns and spatial distributions. Animal Biotelemetry, 2022, 10, .	1.9	9
43	Short-Wave infrared atmospheric scheimpflug lidar. EPJ Web of Conferences, 2018, 176, 01012.	0.3	8
44	High Dynamic Range in Entomological Scheimpflug Lidars. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-11.	2.9	8
45	3D-Printed Fluorescence Hyperspectral Lidar for Monitoring Tagged Insects. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-9.	2.9	8
46	Potential for identification of wild night-flying moths by remote infrared microscopy. Journal of the Royal Society Interface, 2022, 19, .	3.4	8
47	Chemometric approach to chromatic spatial variance. Case study: patchiness of the Skyros wall lizard. Journal of Chemometrics, 2012, 26, 246-255.	1.3	7
48	Exploitation of an atmospheric lidar network node in single-shot mode for the classification of aerofauna. Journal of Applied Remote Sensing, 2017, 11 , 1 .	1.3	6
49	Weak population genetic structure in Eurasian spruce bark beetle over large regional scales in Sweden. Ecology and Evolution, 2022, 12, .	1.9	5
50	Correlation of mosquito wing-beat harmonics to aid in species classification and flight heading assessment. , $2019, \dots$		4
51	Probing insect backscatter cross-section and melanization using kHz optical remote detection system. , 2016, , .		3
52	Probing insect backscatter cross section and melanization using kHz optical remote detection system. Journal of Applied Remote Sensing, 2017, 11, 016015.	1.3	3
53	Inelastic hyperspectral lidar for aquatic ecosystems monitoring and landscape plant scanning test. EPJ Web of Conferences, 2018, 176, 01003.	0.3	3
54	Drone-Based Fluorescence Lidar Systems for Vegetation and Marine Environment Monitoring. EPJ Web of Conferences, 2020, 237, 07013.	0.3	3

#	Article	IF	Citations
55	Exploitation of Multi-Band Lidar for the Classification of Free-Flying Migratory Birds: A Pilot Study Over Athens, Greece. EPJ Web of Conferences, 2016, 119, 27002.	0.3	2
56	Passive unmanned sky spectroscopy for remote bird classification. , 2011, , .		1
57	Complete parameterization of temporally and spectrally resolved laser induced fluorescence data with applications in bio-photonics. Chemometrics and Intelligent Laboratory Systems, 2015, 142, 95-106.	3.5	1
58	Investigation of atmospheric insect wing-beat frequencies and iridescence features using a multi-spectral kHz remote detection system. Proceedings of SPIE, 2014, , .	0.8	0
59	Applied kHz optical remote sensing for determination of insect flight direction and relative size. , 2015, , .		0